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Multiple Criteria Decision-Making (MCDM) seeks to find one or several satisfactory alternatives among a set of possible alter-
natives. In this paper, for the first time, we develop a multiple criteria decision-making approach for solving the machine-part cell
formation problem when there are conflicting objectives. The objectives are to: maximize the machine utilization rate (to have a
higher productivity rate), minimize the number of duplicated machines (to have a lower cost and space requirement), and minimize
the number of exceptional elements (to have a lower inter-flow traffic among cells). Our approach can be modified to consider other
objectives as desired. To find the most preferred alternative to this problem, we develop an approach for generating all efficient
(non-dominated) alternatives and then select the most preferred alternative from this set. Our approach consists of three steps: (i)
generating a seed alternative for each given number of cells; (ii) generating all non-dominated alternatives for each given seed
alternative; and (iii) evaluating all generated non-dominated alternatives to find the most preferred alternative. The relationships
among alternatives and objectives are discussed. An example is solved to demonstrate the details of the proposed approach. Some
experimental results solving several problems selected from the literature are also presented.

1. Introduction

Cellular manufacturing has been recognized as one of the
most innovative approaches for improving productivity
and flexibility under the many-products and low-volume
production environment, as it tries to effectively trans-
form batch-type production into line-type production.
One of the first problems to be solved in the system design
stage is the machine-part cell formation. According to
similarities in design features or processing requirements,
the parts are grouped into families, and machines into
cells. Families of parts can then be processed in their
corresponding machine cells.

Multiple Criteria Decision-Making (MCDM) seeks to
find one or several satisfactory alternatives among a set of
possible alternatives. Alternatives are judged by several
criteria, which are conflicting in almost all real life deci-
sion problems. Many approaches have been proposed for
solving MCDM problems. The most recently proposed
interactive methods provide a desirable and flexible way
to solve MCDM problems. By interaction with the deci-

sion-maker, preference information is captured and uti-
lized to evaluate alternatives. The interactive procedures
often involve eliminating undesirable alternatives so as to
decrease the set of alternatives.

Several interactive methods have been proposed to
screen the set of alternatives and to assess the decision-
maker’s preference information over criteria (Malakooti,
1988a; Davey and Olson, 1998; Karacapilidis and Pappis,
2000). The effort has been focussed on decreasing the set
of alternatives and decreasing the number of questions
posed to the decision-maker for assessing his/her prefer-
ence information. In the case of large alternative sets and
non-linear utility functions, it is still a very difficult if not
impossible task to assess the decision-maker’s preference
information and find the best alternative. MCDM tech-
niques are an integral piece in solving group technology
problems.

Many manufacturing firms are considering using group
technology and cellular manufacturing technology to in-
crease their productivity and flexibility, and quicken their
responses to market changes. The design of a cellular
manufacturing system consists of three major stages: (i)
economical and technical feasibility study; (ii) design of
manufacturing systems; and (iii) systems implementation*Corresponding author.
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(Wemmerlov and Hyer, 1989). A Cellular Manufacturing
System (CMS) can be designed by applying group tech-
nology and just-in-time concepts. One of the first prob-
lems to be solved in the system design stage is the
machine-part cell formation. According to similarities in
design features or processing requirements, parts are
grouped into families, and machines into cells. Families
of parts can then be completely processed in their corre-
sponding machine cells. The design procedures based on
design features of parts require a classification and coding
system that is time-consuming and difficult to develop
and implement. Most design methods use the processing
requirement of parts to form machine-part cells (King
and Nakornchai, 1982; Kusiak, 1987; Srinivasan et al.,
1990; Dahel and Smith, 1993).

The processing requirements of parts on machines can
be represented in the form of a matrix faijg called the

machine-part incidence matrix. The incidence matrix faijg
has m rows representing machines and n columns repre-
senting parts. For an element aij in the incidence matrix

aij ¼ 1 if part j requires an operation on machine i,
0 otherwise.

n
The grouping of parts into families and machines into

cells results in row and column exchanges of the incidence
matrix. The hoped-for solution is a block-diagonal ma-
trix. Figure 1(a) is an example of an initial machine-part
incidence matrix with 10 machines and 15 parts. Fig-
ure 1(b) is the resultant matrix after grouping; there are
three distinct machine-part cells. Part family 1, consisting
of parts 2, 10, 11, 12, and 7, can be processed on Machine
cell 1, which consists of machines 1, 7 and 10. Part family
2, consisting of parts 3, 5, 8, 13, and 15, can be processed
on Machine cell 2, which consists of machines 2, 5, and 8.
Part family 3, consisting of parts 1, 6, 9, 14, and 4, can be
processed on Machine cell 3, which consists of machines
3, 4, 6 and 9.

The cells formed in the above example are mutually
exclusive. But in most cases, the final grouped cells are
not mutually exclusive. A few entries outside the diagonal
blocks represent operations to be performed outside the
assigned machine cells. These elements are called excep-
tional elements. The corresponding machine is called a
bottleneck machine, and the corresponding part is called
an exceptional part. Figure 2 shows the final clustering of
a different problem with seven exceptional elements.

During the past two decades, many research papers
have been published in the literature for machine-part cell
formation. These methods are based on the following
approaches:

1. Coding and classification (Xu and Wang, 1989;
Bedworth et al., 1991).

Fig. 1. (a) An initial incidence matrix with 15 parts and 10
machines; and (b) the expected final clustered matrix.

Fig. 2. The final clustered matrix of a system with seven ex-
ceptional elements.
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2. Machine-part group analysis (Burbidge, 1971; King,
1980a,b; Chan and Milner, 1982; Chandrasekharan
and Rajagopalan, 1986).

3. Similarity coefficients (Seifoddini, 1989; Askin et al.,
1991).

4. Knowledge-based (ElMaraghy et al., 1988; Singh
et al., 1991).

5. Mathematical programming (Choobineh, 1988;
Logendran, 1990; Rajamani et al., 1992).

6. Fuzzy clustering (Li et al., 1988; Xu and Wang,
1989).

Most of the methods developed in the literature are
concerned with the machine-part cell formation while
having a single objective function to optimize. After
solving the cell formation problem, if there exist excep-
tional elements in the final cell structure, some of the
methods suggest duplicating some of the bottleneck ma-
chines, or subcontracting exceptional parts in order to get
a mutually exclusive cell structure. For some more recent
developments and methods for machine-part formation
see Pierreval and Plaquin (1998) and Onwubolu and
Mutingi (2001). From the practical point of view, several
issues, such as cost to duplicate machines, cost to transport
parts, and machine utilization rate, should be taken into
consideration while designing part/machine cells. There is
a need for a systematic analysis for identifying different
objectives and criteria for construction and evaluation of
alternatives. The generalized P-median model is one of the
very few methods that considers two objectives, produc-
tion cost and the total sum of distance measures.

Recently, several significant contributions have been
made to the field relating to group technology. Among
these are artificial neural network approaches that can be
used to solve group technology problems. Malakooti and
Zhou (1998) develop a feedforward approach for the
analysis and design of artificial neural networks. Methods
for machine set-up optimization via artificial neural net-
work approaches have been created as well (see Malakooti
and Raman 2000a). Malakooti and Raman (2000b) also
develop a clustering and multiple criteria approach for
using nerual networks. Many advances have been made
recently in the field of MCDM as well. Malakooti (2000)
developed a method for solving MCDM problems using
partial preference information. In related fields, multi-
objective approaches to solving established problems have
gained widespread support (see Malakooti and Al-alwani
2001; Malakooti and Subramanian 1999). Malakooti
(1988b), presents a decision-making methodology that the
decision-maker can use to identify and solve MCDM
problems using the identified utility function.

In this paper, we propose a multiple criteria decision-
making approach to investigate the machine-part cell
structure formation when conflicting objectives are pre-
sent. The approach includes three levels: forming one seed
alternative for each possible number of cells; generating

alternative cell structures for each possible number of
cells; and selecting the best cell structure; the selection
is based on maximizing the machine utilization rate,
minimizing the number of duplicated machines, and
minimizing the number of exceptional elements. The re-
lationships among these objectives are investigated and
experimental results are presented.

There are several techniques to assess weights of ad-
ditive utility functions; these methods include ranking
and rating criteria (objectives), (Steuer, 1986), weights
derived from indifferent trade-offs (Keeney and Raiffa,
1976). Although in this paper, for the purpose of illus-
tration, we use an additive utility function, one may use
more complex utility functions that may be concave,
convex, or other types (Malakooti and Zhou, 1994).

The rest of the paper is organized as follows. In Sec-
tion 2, the multiple criteria approach is presented. In
Section 3, an example is solved and the relationships
among criteria are investigated. Section 4 provides the
experimental results. Section 5 contains the conclusions.
Table 3 contains the details of the experimental results.

2. The multiple criteria approach for cell formation

In practice, mutually independent machine-part cells do
not exist for most problems (for more information about
Group Technology see Chandrasekharan and Rajago-
palan (1986); Malakooti and Yang, (1995)). This means
that the corresponding exceptional parts need to be
moved among different machine cells. In order to de-
crease this kind of intercell part flow, the corresponding
bottleneck machines need to be duplicated. Duplicating
machines can decrease intercell part flow but will increase
the capital cost and may decrease the machine utilization
rate. There is a trade-off among intercell part flow and
capital cost, as well as other criteria such as machine
utilization, cell utilization, machine loading, etc. Most of
the methods require the number of cells, R, to be given
(known) parameter. However in practical design, the
number of cells is unknown and needs to be determined.
In this paper, we propose an approach to identify the
most preferred alternative. Clearly, to put all machines
and parts into one single cell or to create a unique cell for
each machine does not make any sense. We assume that
the minimum number of machine-part cells Rmin is two.

2.1. Model formulation

2.1.1. Definitions

1. An alternative ai is a machine-part cell structure which
can be represented as fðmir; pirÞ; r ¼ 1; 2; . . . ;Rg,
where mir is the index set of machines in cell r, pir is the
index set of parts in cell r, and R is the number of cells.

2. Rmin is the minimum possible number of cells and Rmax

the maximum possible number of cells.
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3. The machine utilization rate (MU ) can be computed;

MU ¼ N1=
XR
r¼1

mrnr

 !
;

where N1 is the total number of ones within the cells, R is
the number of cells, mr is the number of machines in the
rth cell, and nr is the number of components in the rth cell
(Chandrasekharan and Rajagopalan, 1986). Generally
speaking, the higher the MU , the better the machines are
being utilized.

2.1.2. The model

2.1.2.1. The multiple criteria problem: Problem (P1):
From the set of q alternatives (machine-part cell struc-
tures) A ¼ fai; i ¼ 1; 2; . . . ; qg, find the alternative that
optimizes the following objectives:

min f1(ai) = number of duplicated machines;
min f2(ai) = number of exceptional elements;
max f3(ai) = machine utilization rate,

where

ai 2 A:

We define the normalized values of f1(ai), f2(ai), and
f3(ai) as:

f �
1 ðaiÞ ¼ ðf1maxðaiÞ � f1ðaiÞÞ=ðf1maxðaiÞ � f1minðaiÞÞ; ð1Þ
f �
2 ðaiÞ ¼ ðf2maxðaiÞ � f2ðaiÞÞ=f2maxðaiÞ � f2minðaiÞÞ; ð2Þ

f �
3 ðaiÞ ¼ f3ðaiÞ: ð3Þ

Then the problem can be formulated as:

max f �
1 ðaiÞ;

max f �
2 ðaiÞ;

max f �
3 ðaiÞ;

ai 2 A:

We generate all non-dominated (or efficient) alterna-
tives for each given value of cell numbers, R, i.e., solve the
following problem for each R, where R is the number of
cells, ranging from Rmin to Rmax.

For each given value of number of cells (R), solve,

max f �
1 ðaiÞ;

max f �
2 ðaiÞ;

max f �
3 ðaiÞ;

ai 2 A:

The set of solutions to the above problem is discrete.
One set of approaches for solving discrete multiple criteria
decision making problems (Steuer, 1986; Malakooti, 1989;
Malakooti and Zhou, 1994) are based on assuming that
there exists a composite objective (so-called utility or
value function) for a given decision-maker that can be

assessed in order to rank alternatives and find the most
preferred alternative. Efficiency or non-dominancy is a
well-known definition that can be used to screen out al-
ternatives that cannot be selected as the most preferred
alternative. For the three objective problem assuming all
objectives are to be maximized, the definition is as follows:

An alternative ai 2 A is non-dominated if and only if
there does not exist any other alternative ai0 2 A, such
that f �

1 ðai0 Þ 
 f �
1 ðaiÞ, f �

2 ðai0 Þ 
 f �
2 ðaiÞ, and f �

3 ðai0 Þ 
 f �
3 ðaiÞ

where at least one of above inequalities is greater than
(>).

For example, (2, 10, 6) dominates (2, 9, 6), but does not
dominate (3, 8, 5); from these three alternatives, alter-
native (2, 9, 6) can be eliminated. In practice, there may
exist many dominated alternatives that need not be gen-
erated or evaluated. In our Multiple Criteria Decision-
Making (MCDM) approach to cell formation, we use the
non-dominancy definition to avoid generating or evalu-
ating useless alternatives.

2.1.2.2. The additive composite utility function: Problem
(P2). Given that the composite utility function is addi-
tive, we propose to solve the MCDM cell selection
problem as follows:

Step 1. For each given number of cells R, generate the set
of non-dominated alternatives A ¼ fai; i ¼ 1; 2;
. . . ; qg, find the most preferred alternative which
maximizes the utility function for the first three
objectives:

Maximize
UðaiÞ ¼ w1f �

1 ðaiÞ þ w2f �
2 ðaiÞ þ w3 f �

3 ðaiÞ;
ai 2 A;

where w1 þ w2 þ w3 ¼ 1 and w1, w2, w3 > 0.
w1;w2, and w3 are known; they are the weights of
importance given by the decision-maker for the
first three objectives respectively.

Step 2. For each given R value, find the best alternative
ai 2 A such that UðaiÞ 
 Uðai0 Þ for any ai0 2 A.
Then for each given R, one best alternative is
selected.

Step 3. Now the decision maker is presented with
Rmax � Rmin number of MCDM alternatives from
which he or she should select the best one.

2.2. A three-level approach to find the best alternative

2.2.1. Level 1

For each given number of cells solve the family formation
problem using one of the existing machine-part cell for-
mation methods (Chandrasekharan and Rajagopalan
1986; Srinivasan et al., 1990; Kusiak et al., 1992). The
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generated alternative for each given R is called a seed al-
ternative. We start the cell number at Rmin ¼ R ¼ 2 and
increase R to Rþ 1 and solve the problem again, repeat
this procedure until R ¼ Rmax.

For a given R, we define an alternative to be a local
non-dominated alternative if it is non-dominated with
respect to a set of alternatives generated in the vicinity of
the seed alternative. Clearly, the seed alternative is a local
non-dominated alternative because the number of dupli-
cated machines of the seed alternative is zero (which is the
maximum value of f �

1 ).
In our experiments, we used the neural network-based

machine-part cell formation method (Malakooti and
Yang, 1995) to form the seed alternatives for each cell;
however, as stated before, any other family formation
method can be used to generate the seed alternative.

2.2.2. Level 2

For the given R, generate a set of local non-dominated
alternatives from the seed alternative using the following
heuristic procedure:

Step 1. If there are no exceptional elements in the seed
alternative, stop!

Step 2. Find the bottleneck machine j� with the most
exceptional elements.

Step 3. Find the corresponding machine-part cell C�
r in

which the most parts need to be processed on
bottleneck machine j�.

Step 4. Duplicate machine j�, and put it in cell C�
r ; now a

new local non-dominated alternative is generat-
ed.
Go to Step 1.

Using the above heuristic procedure, new alternatives
are generated by duplicating one bottleneck machine (at a
time) to decrease the number of exceptional elements.
Although f �

1 of a new alternative decreases, the corre-
sponding f �

2 increases. We conclude that the generated
alternatives are always local non-dominated with respect
to the two criteria f �

1 and f �
2 .

2.2.3. Level 3

Once all local non-dominated alternatives for all values of
R are generated, we check the efficiency definition for all
alternatives and remove all inefficient (or dominated) al-
ternatives.

In this step, the decision-maker is asked to choose the
best alternative for each given R, this selection can be
achieved by direct paired comparison of alternatives or
using the additive composite utility function (Problem
(P2)). After identifying the best alternative for each given
R, then the decision-maker is asked to choose the best
alternative from this set of Rmax � Rmin number of alter-
natives.

3. An example to explain the three-level MCDM
approach and the relationships among criteria

In this section, we first solve an example problem in detail
using the developed approach. We then investigate the
relationship among the following criteria: the number of
duplicated machines, the number of exceptional elements,
and the machine utilization rate.

3.1. An example

The system has 10 machines and 15 parts. Figure 3 shows
the incidence matrix. The number of cells are R ¼ 2, 3, 4,
and 5.

3.1.1. Level 1

For illustrative purposes let consider R ¼ 3. To show the
multi-criteria alternatives associated with R ¼ 3, we first
generate a seed alternative for solving the machine cell
formation using any of the existing methods. As an ex-
ample, we can use the Artificial Neural Network (ANN)-
based method (Malakooti and Yang, 1995) to form the
seed alternative. The following is a brief summary of the
ANN-based method: input a pattern (a machine vector or
a part vector) to the two-layer neural network; compute
the distance between the input pattern and three cluster
centers (weight vectors); the node with the shortest dis-
tance is the winning node and the input pattern belongs
to the corresponding cluster; update the weight vector
according to an update equation; repeat the steps until an
error criterion is satisfied. The neural network clustered
patterns corresponding to machines 01, 06, and 07 into
cluster 1; patterns corresponding to machines 02, 05, and
10 into cluster 2; patterns corresponding to machines 03,
04, 08, and 09 into cluster 3.

Fig. 3. A system with 10 machines and 15 parts.
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The procedure was repeated for part vectors. Figure 4
shows the final matrix by the ANN-based method. In this
case f1 ¼ 0 (number of duplicated machines), f2 ¼ 7
(number of exceptional elements) and f3 ¼ ð11þ 16 þ
18Þ=ð4� 3 þ 6� 3þ 5� 4Þ ¼ 0:90.

3.1.2. Level 2

Step 1. Are there any exceptional elements? Yes.
Step 2. Find the bottleneck machine j� with the most

exceptional elements. j� = machine 03 (three
exceptional elements).

Step 3. Find the corresponding machine-part cell C�
r in

which the most parts need to be processed on
machine 03. C�

r ¼ C2.
Step 4. Duplicate machine 03 and put it in cell C2 to

form a new alternative, f1 ¼ 1, f2 ¼ 5 and
f3 ¼ 0:84.

Repeat Steps 1–4 until there are no exceptional ele-
ments in the incidence matrix. We can generate four al-
ternatives.

For the given three cells (R ¼ 3), the objective values of
these alternatives are given in Table 1.

Using the same procedure, when we set the cell number
R ¼ 2, 4, and 5, we can generate corresponding seed al-
ternatives and generate the sets of local non-dominated
alternatives. Figure 6 shows the seed alternative for

R ¼ 2, Fig. 7 shows the seed alternative for R ¼ 4, and
Fig. 8 shows the seed alternative for R ¼ 5. We do not
increase the cell number beyond R ¼ 5 because a cell with
only one machine in it appears when R ¼ 5 (see Fig. 8).

In Table 2, we list all 29 alternatives for this problem.
We normalize the first three objective values using

Fig. 4. The seed alternative for cell number R ¼ 3.

Fig. 5. The alternative generated from the seed alternative.

Table 1. The objective values of all five alternatives when R ¼ 3

a3 a4 a5 a6 a7

Number of duplicated machines: f1 0 1 2 3 4
Number of exceptional elements: f2 7 5 3 1 0
Machine utilization rate: f3 0.90 0.84 0.80 0.78 0.75

Fig. 6. The seed alternative for R ¼ 2.
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Equations (1), (2) and (3). The normalized objective
values are f �

1 , f �
2 , and f �

3 respectively. For each given R
value, if the decision-maker’s preference weights are
known, the best alternative is the one with the highest
utility value for that given number of cells (R). For the
purpose of illustration, we show our results for two dif-
ferent sets of values of weights, which could represent the
respective preferences of two different decision-makers.
The two sets of weights are: w1 ¼ w2 ¼ w3 ¼ 1=3, and
w1 ¼ 0:2, w2 ¼ 0:4, w3 ¼ 0:4, respectively. Then we cal-
culate utility values corresponding to these two sets of
weights. U1 is the utility value corresponding to
w1 ¼ w2 ¼ w3 ¼ 1=3, U2 is the utility value corresponding
to w1 ¼ 0:2, w2 ¼ 0:4, w3 ¼ 0:4.

Suppose that the decision-makers utility is U1 i.e.,
w1 ¼ w2 ¼ w3 ¼ 1=3. For two cells, R ¼ 2, either alterna-
tives 1 or 2 are the best alternatives. For R ¼ 3, alternative
3 is the best one; for R ¼ 4, alternatives 9 or 10 are the best
ones; and for R ¼ 5, alternatives 20, 21, or 22 are the best
ones. At this stage, the decision-maker is asked for paired
comparison of above alternatives, that is finding the best
one from the set of alternatives, 1, 2, 3, 9, 10, 20, 21, and 22.

For example, suppose that the decision-maker selects
alternative 3 (a3) which is associated with three cells
(R ¼ 3). See Fig. 9 for the alternative 3, a3. For this al-
ternative the number of duplicated machines is zero, the
number of exceptional elements is seven, and the machine
utilization rate is 0.90.

Now suppose that the decision-maker’s weights of
importance for objectives are: w1 ¼ 0:2, w2 ¼ 0:4, and
w3 ¼ 0:4, and after the comparison of the best alterna-
tives for different R values, the decision-maker selects
alternative 6, a6, as the best one, see Fig. 10 for details of
this alternative. For this alternative the number of du-
plicated machines is three, the number of exceptional el-
ements is one, and the machine utilization rate is 0.78.

We note that different decision-maker’s may choose
different values of R and assess different weight values for
objectives than those given in these examples.

3.2. Some observations about the relationships
among criteria

We now use the data obtained by solving the above ex-
ample problem to demonstrate the relationships among
criteria. We try to construct relationships for the fol-
lowing pairs of criteria: the machine utilization rate and
the cell numbers, the number of exceptional elements and
the cell numbers, the machine utilization rate and the
number of duplicated machines, the number of excep-
tional elements and the number of duplicated machines.

The machine utilization rate (where no duplicated
machines are allowed) increases when the number of cells
increases. The number of exceptional elements (where no
duplicated machines are allowed) increases when the
number of cells increases. For a given number of cells, the
machine utilization rate decreases when the number of
duplicated machines increases. For a given number of
cells, the number of exceptional elements decreases when
the number of duplicated machines increases.

For a given (constant) number of duplicated machines,
as R increases, the machine utilization also increases.
Similarly, for a given machine utilization when R in-
creases, the number of duplicated machines also in-
creases. One can also conclude that, for a given R, as the
number of exceptional elements increases, the machine
utilization also increases.

4. Experimental results

To test our approach, we programmed it in the C language
and ran it on an IBM/486 compatible PC. We collected

Fig. 7. The seed alternative a0 for R ¼ 4. Fig. 8. The seed alternative a0 for R ¼ 5.
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eight problems from the literature and solved them using
the developed approach. We summarize the experimental
results in Table 3. For the purpose of the experiment, we
chose two sets of preference weights: (i) w1 ¼
w2 ¼ w3 ¼ 1=3; and (ii) w1 ¼ 0:2, w2 ¼ 0:4, and w3 ¼ 0:4.
We calculated utility values for these two sets of weights
respectively. Then, the best alternatives corresponding to
these two sets of weights were found. We also list the
approximate computational time for each problem.

5. Conclusions

In this paper, we developed a multiple criteria decision-
making approach to obtain the most preferred alternative
for the machine-part cell formation problems when there
exist conflicting objectives. We developed a three-level
method. We first generate a seed machine-part cell al-
ternative for a given number of cells. For this alternative,

a set of non-dominated alternatives are generated. We
considered the following objective functions: the number
of duplicated machines; the number of exceptional ele-
ments; and the machine utilization rate. In this paper, we
address three objectives; however, in practice one may
choose two of these three objectives. Alternatively, one
may consider more than three objectives; or develop one’s
own definition of such objectives. The contribution of this
paper is the presentation of an algorithm that shows how
to formulate and solve multi-objective cell formation
problems by generating non-dominated alternatives.
Thus, one can use or develop other objectives and still use
our approach with the same principles for generating
efficient (non-dominated) alternatives.

Fig. 9. The best machine-part cell structure for w1 ¼ w2 ¼
w3 ¼ 1=3.

Fig. 10. The best machine-part cell structure for w1 ¼ 0:2,
w2 ¼ 0:4, and w3 ¼ 0:4.

Table 2. The 29 alternatives generated by the developed procedure

R ¼ 2 R ¼ 3 R ¼ 4

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Number of duplicated machines: f1 0 1 0 1 2 3 4 0 1 2 3 4
Number of exceptional elements: f2 2 0 7 5 3 1 0 15 12 10 8 6
Machine utilization rate: f3 0.59 0.57 0.90 0.84 0.80 0.78 0.75 0.93 0.93 0.93 0.90 0.88
Normalized value of f1 using Equation (1): f �

1 1.00 0.91 1.00 0.91 0.82 0.73 0.64 1.00 0.91 0.82 0.73 0.64
Normalized value of f2 using Equation (2): f �

2 0.90 1.00 0.65 0.75 0.85 0.95 1.00 0.25 0.40 0.50 0.60 0.70
Normalized value of f3 using Equation (3): f �

3 0.59 0.57 0.90 0.84 0.80 0.78 0.75 0.93 0.93 0.93 0.90 0.88
U1 ðU1 ¼ 1=3ðf �

1 Þ þ 1=3ðf �
2 Þ þ 1=3ðf �

3 ÞÞ 0.83 0.83 0.85 0.83 0.82 0.82 0.80 0.73 0.75 0.75 0.74 0.74
U2 ðU2 ¼ 0:2ðf �

1 Þ þ 0:4ðf �
2 Þ þ 0:4ðf �

3 ÞÞ 0.80 0.81 0.82 0.82 0.82 0.84 0.83 0.67 0.71 0.74 0.75 0.76
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We developed a systematic approach for generating
non-dominated alternatives for each given number of cells.
We demonstrated that all non-dominated alternatives can
be generated by an enumeration method (i.e., generating
of non-dominated alternatives for each and all of the cells).

We successfully solved and obtained the most preferred
alternative for several well-known problems from the
literature using our approach developed in this paper. We
also investigated the relationships among the criteria for
different alternatives.
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