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Multiobjective Genetic Algorithms Applied
to Solve Optimization Problems

Alexandre H. F. Dias and Jõao A. de Vasconcelos

Abstract—In this paper, we discuss multiobjective optimization
problems solved by evolutionary algorithms. We present the non-
dominated sorting genetic algorithm (NSGA) to solve this class of
problems and its performance is analyzed in comparing its results
with those obtained with four others algorithms. Finally, the NSGA
is applied to solve the TEAM benchmark problem 22 without con-
sidering the quench physical condition to map the Pareto-optimum
front. The results in both analytical and electromagnetic problems
show its effectiveness.

Index Terms—Electromagnetics, multiobjective evolutionary al-
gorithms, nondominated sorting genetic algorithms.

I. INTRODUCTION

M ANY real-world electromagnetic problems involve
simultaneous optimization of multiple objectives that

often are competing. In a multiobjective optimization problem
(MOP), there may not exist one solution that is best with
respect to all objectives. Usually, the aim is to determine the
tradeoff surface, which is a set of nondominated solution points,
known asPareto-optimal (PO) or noninferior solutions. In
view of the fact that none of the solutions in the nondominated
set is absolutely better then any other, any one of them is an
acceptable solution. The choice of one solution over the other
requires problem knowledge and a number of problem-related
factors [1].

One way to solve multiobjective problems is to transform the
original problem in a single-objective one, by weighting the ob-
jectives with a weight vector. This process allows the use of any
single-objective optimization algorithm, but the obtained solu-
tion depends on the weight vector used in the weighting process.
Genetic algorithms (GAs) work with a population of points, so
we expect that they can find the Pareto-optimal front easily.

In this paper, we present the NSGA [2] and we analyze it
regarding the solution of MOPs. Moreover, we compare its re-
sults with those obtained by the multiobjective evolutionary al-
gorithms (MOEAs): VEGA [3], NPGA [4] and MOGA [5], and
the classical method of objective weighting refereed as
[1]. We compare its performances in the solution of two an-
alytical test problems. Finally, we apply the NSGA to solve
the TEAM problem 22 without taking into account the quench
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physical condition with the aim of find the (quasi) optimum
tradeoff surface.

II. M ULTIOBJECTIVE OPTIMIZATION PROBLEM

Mathematically, we can write MOPs as

maximize

subject to

where

(1)

and is the vector of decision variables, is the objective
vector, is the decision space, and is called the objective
space. The solution of (1) is usually no unique, but a set
of equally efficient, noninferior or nondominated solutions,
known as Pareto-optimal set [1].

A noninferior solution is one that is not dominated by any
other feasible solution. Mathematically, in the maximization
case, we say that the solution dominates , or is superior
to , i.e.,

If any other in the feasible space of design variables does
not dominate , hence, is a noninferior, nondominated or a
Pareto-optimal point. Two Pareto-optimal points are indifferent
to each other.

The optimization algorithm should be terminated if any one
of the Pareto-optimal solutions is obtained. But in practice, since
there could be a number of Pareto-optimal solutions and the suit-
ability of one solution depends on a number of factors, including
the designer’s choice and problem environment, finding the en-
tire set of Pareto-optimal solutions may be desired. In the fol-
lowing section, we describe in details the nondominated sorting
genetic algorithm (NSGA).

III. NSGA DESCRIPTION

The basic idea behind NSGA is the ranking process exe-
cuted before the selection operation, as shown in Fig. 1. This
process identifies nondominated solutions in the population, at
each generation, to form nondominated fronts [2], based on the
concept of nondominance criterion as explained in Section II.
After this, the selection, crossover, and mutation usual opera-
tors are performed.
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Fig. 1. Flow chart of NSGA.

In the ranking procedure, the nondominated individuals in
the current population are first identified. Then, these individ-
uals are assumed to constitute the first nondominated front with
a large dummy fitness value [2]. The same fitness value is as-
signed to all of them. In order to maintain diversity in the pop-
ulation, a sharing method is then applied. Afterwards, the indi-
viduals of the first front are ignored temporarily and the rest of
population is processed in the same way to identify individuals
for the second nondominated front. A dummy fitness value that
is kept smaller than the minimum shared dummy fitness of the
previous front is assigned to all individuals belonging to the new
front. This process continues until the whole population is clas-
sified into nondominated fronts. Since the nondominated fronts
are defined, the population is then reproduced according to the
dummy fitness values.

The NSGA was first proposed with a stochastic remainder
proportional selection (SRS) procedure. However, it is possible
to use any other selection technique as roulette wheel or tourna-
ment [6]. As the individuals in the first front have higher fitness
value, they always get more copies than the rest of the popu-
lation. This method was intended to search for nondominated
regions, and sharing helps to distribute the individuals over this
region. By emphasizing nondominated points, NSGA favors the
schemata representing the Pareto-optimum regions [2].

NSGA implements both aspects of Goldberg’s suggestion in
the better way [6], i.e., the ranking procedure is performed ac-
cording to the nondominance definition over the population and
a uniform distribution of the nondominated is guaranteed using
a niche formation technique. Both aspects produce distinct non-
dominated points to be found in the population.

Fitness Sharing:In genetic algorithms, sharing techniques
aim at encouraging the formation and maintenance of stable
subpopulations or niches [7]. This is achieved by degrading the
fitness value of points belonging to a same niche in some space.
Consequently, points that are very close to, with respect to some
space (decision space in this paper), will have its dummy fit-
ness function value more degraded. The fitness value degrada-
tion of near individuals can be executed using (2) and (3), where
the parameter is the variable distance (Euclidean norm) be-
tween two individuals and , and is the maximum dis-
tance allowed between any two individuals to become members
of a same niche. In addition, is the dummy fitness value as-
signed to individual in the current front and is its corre-
sponding shared value. is the number of individuals in the
population. For details about niching techniques, see [8]

if

if

(2)

(3)

IV. DESCRIPTION OF , VEGA, MOGA, AND NPGA

The method of objective weighting, , is probably the
simplest of all classical techniques where multiple objectives are
combined into one overall objective function. In this method, the
optimal solution is controlled by a weight vectorand modi-
fying the corresponding weight can change the preference of an
objective. The only advantage of using this technique is that the
emphasis of one objective over the other can be controlled and
the obtained solution is usually a Pareto-optimum solution [1].

An early GA application on multiobjective optimization by
Schaffer opened a new avenue of research in this field. The algo-
rithm, called vector evaluated genetic algorithm (VEGA), per-
forms the selection operation based on the objective switching
rule, i.e., selection is done for each objective separately, filling
equally portions of mating pool [3]. Afterwards, the matting
pool is shuffled, and crossover and mutation are performed as
usual.

Fonseca and Fleming [5] proposed a Pareto-based ranking
procedure (MOGA), where the rank of an individual is equal
the number of solutions found in the population where its corre-
sponding decision vector is dominated. The fitness assignment
is determined by interpolating the fitness value of the best in-
dividual (nondominated) and the worst one (most dominated).
The MOGA algorithm also uses a niche-formation method to
distribute the population over the Pareto-optimal region based
on the objective space.

The niched Pareto genetic algorithm (NPGA) proposed by
Horn, Nafpliotis, and Goldberg uses the concept of Pareto
dominance and tournament selection in solving MOPs [4].
In this method, a comparison set of individuals is ran-
domly picked from the current population before the selection
procedure. In addition, we choose two candidates from the
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current population that will compete to survive to the selection
operation. For selecting the winner, these two candidates
are compared with those of set using a nondomination
criterion as described in Section II.

V. CRITERION FORPERFORMANCEMEASUREMENTS

The performance measurement criterion used to evaluate the
Pareto fronts produced by the EAs is the coverage relationship
[7]. Given two sets of nondominated solutions, we compute for
each set the fraction of the solutions that is not covered (not
dominated) by the other. Since this comparison focus on finding
the Pareto-optimal set, this criterion uses the off-line perfor-
mance method. The nondominated solution set taken to perform
the comparison between all EAs is the summation of nondom-
inated solutions found by each algorithm at each run, after ap-
plication of a nondominance criterion.

VI. RESULTS

Analytical Problems

Two problems and were chosen in order to test the
multiobjective genetic algorithms discussed in this paper. The

problem has a convex Pareto-optimal front and is given by

(4)

The second problem is the nonconvex counterpart to

(5)

In both cases, and the Pareto-optimal front
is formed with . The function is defined by

(6)

The multiobjective EAs were executed 30 times for each
problem with the same initial population. The results of each
execution was stored in an auxiliary vector and at the end the
nondominance criterion was applied to the points belonging
to the auxiliary vector, resulting a nondominated set that was
taken as outcome. The set of genetic parameters used are:

and (for NPGA). The graphic results are
shown in Figs. 2 and 3.

The direct comparison of the outcomes achieved by the dif-
ferent multiobjective EA is presented in Table I. Each cell gives
the percentage of solutions evolved by method B that are non-
dominated by those achieved by method A for both problems
and . For example, the cell NPGA/MOGA signifies that 90%
of solutions found by NPGA are nondominated by those found
by MOGA for problem and 89% in the case of problem.
These results show that all methods give rise to similar solutions
with a slight superiority for NSGA method, with exception of

Fig. 2. Nondominated points for EAs—function� .

Fig. 3. Nondominated points for EAs—function� .

TABLE I
EA PERFORMANCEMEASUREMENT

VEGA. The result for VEGA method is explained by the fact
of its selection procedure does not use information of nondom-
inated fronts.

Optimization in Electromagnetics

The TEAM Benchmark Problem 22 was chosen to show the
application of NSGA described in the previous study in solving
a multiobjective electromagnetic optimization problem. In this
paper, we search to find the (quasi) Pareto-optimal front of a
superconducting magnetic energy storage device (SMES) [9].
The aim is to find the multiple Pareto-optimal points considering
two objective functions: 1) the first objective considers the stray
field and 2) the second one takes into account the stored energy
related to a prescribed value. The constraint conditions are the
bounds in the design variables. The quench physical condition
that guarantees superconductivity was neglected in this simula-
tion [10].
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Fig. 4. Pareto-optimal points (F � F ).

Fig. 5. Pareto-optimal points (Energy � B ).

Mathematically, the multiobjective optimization problem for
the SMES problem was stated as

(7)

where and .
The problem was solved considering three design vari-

ables in continuous case with a fixed current density

equal to 22.5 A/mm. The nondominated points have been
found using NSGA method (with roulette wheel selection,

and ) coupled
with a finite element code for energy and field calculations. The
domain was subdivided in triangular elements of first order.
The results are presented in Figs. 4 and 5.

VII. CONCLUSION

In this paper, a nondominated sorting genetic algorithm, pro-
posed by K. Deb, is described and compared with four others
algorithms using two test problems. In this comparison, the
NSGA performs better than the others do, showing that it can
be successfully used to find multiple Pareto-optimal solutions.
Its application to the SMES problem show that it is reliable to
solve multiobjective optimization in electromagnetics and that
the TEAM22 Pareto-optimal front must be convex.
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