
546 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  5,  MAY  1998

Energy Minimization of Contours Using
Boundary Conditions

Sharat Chandran and A.K. Potty

Abstract—Reconstruction of objects from a scene may be viewed as a
data fitting problem using energy minimizing splines as the basic
shape. The process of obtaining the minimum to construct the “best”
shape can sometimes be important. Some of the potential problems in
the Euler-Lagrangian variational solution proposed in the original
formulation [1], were brought to light in [2], and a dynamic
programming (DP) method was also suggested. In this paper we
further develop the DP solution. We show that in certain cases, the
discrete form of the solution in [2], and adopted subsequently [3], [4],
[5], [6] may also produce local minima, and develop a strategy to avoid
this. We provide a stronger form of the conditions necessary to derive
a solution when the energy depends on the second derivative, as in
the case of “active contours.”
Index Terms—Dynamic programming, energy minimization,
deformable contours, optimal solutions, active contours.
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1 INTRODUCTION

FROM [7] (see Table 1), we see that various early and intermediate
level computer vision tasks are obtained by energy minimization
of various functionals.

As a representative case, we consider obtaining contours de-
signed to model shape, and we are particularly interested in ap-
plying the snake model of computing contours [1].

1.1 Minimizing Strategy
We turn our attention to the energy minimizing method, which,
although does not affect the snakes paradigm, is crucial to the ob-
tained behavior of the snake and is independent in its own right
[2], [8]. These authors point out some problems in the original
scheme, such as the correctness of the solution once a model is
chosen, the running time of the algorithm, the robustness of the
algorithm with respect to noise, etc. The basic objective of obtain-
ing the minimum of the energy is achieved through DP (in the case
of the former), and a greedy algorithm (in the case of the latter).

1.2 Related Research and This Paper
In this work, we further develop the non-variational solution in
achieving global minimum. We remark that research, e.g., [3], [4],
[5], [6] subsequent to [2] and implementing, for the purposes of
this paper, virtually identical algorithms have also seemingly pre-
supposed global minimum. Note that in neither [1] nor [8] is there
any attempt to obtain the global minimum energy of the snake.
Further, our solution is not iterative and to this extent, it is similar
to the spirit of the solution presented in [6].

The spline model implies a solution to a differential equation
[1], [2]. The principal contribution in this paper, and the reason
our algorithm differs from previously described algorithms is
that we require the knowledge of exactly two end points of the
contour. Unless such points are given, a boundary condition is
not available, and hence the solution of any differential equation
is suspect.

2 THE BASIC MODEL

The basic model of the snake is described in this section, but we
invite the interested reader to [1] for more details. Representing
the contour by the position vector v(s) = (x(s), y(s)) with the inde-
pendent parameter s, we can write its energy functional as

E s E s dssnakev v1 62 7 1 62 7=
0

1
 where Esnake = Eint + Eext .

Here, Eext stands for the “external” energy of the curve and is
due to image forces, and other external forces that the user may
seek to impose. Eint represents the internal energy of the curve.
Based upon theoretical and experimental considerations [1], the
internal energy is modeled as

E
s s s ss ss

int =
+a b0 5 0 5 0 5 0 54 9v v

2 2

2                          (1)

where α and β are parameters that are set by the user, and sub-
scripts denote conventional derivatives as usual. We need to find
v(s) such that E(v(s)) is the minimum.

This is a classical problem from variational calculus and an it-
erative Euler-Lagrange equation can be set up for the discrete case.
In [2], a few problems with this approach are pointed out. To their
list, we would like to add

• The solution of any differential equation requires the specifi-
cation of appropriate boundary conditions. A large class of
unrelated functions can satisfy the differential equation, but
not the differential equation and the boundary conditions. Our
confidence in the described solution therefore wanes.

3 PRIOR DP SOLUTION

First, consider the contour with the position vector w = v1, v2, …,
vn, vi = (xi, yi). The energy of the snake is
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Note that we have produced a discrete version of (1). Further,
we have assumed implicitly a step size of one, or alternatively, this
restriction is absorbed in the αi term. The approach consists of first
supposing that the position vector vi can have at most m degrees of
freedom. The vector therefore can take only a finite set of values,
and one could propose an exhaustive search algorithm. However
such an algorithm is combinatorially implosive with a running
time of O(mn). It would be hopeless to do such a search, even for
small values of m, such as m = 9.

The total energy of the contour fortuitously works out to be
sum of n individual energy terms E1, E2, …, En, where each energy
term Ei depend only on three points vi−1, vi, and vi+1. Amini et al.
[2] observed that due to this nature of the energy function (2), it is
possible to do much better by organizing the energy terms as fol-
lows. We illustrate by considered only terms involving α, i.e., we
have set βi = 0 and ignored the external energy.

We set S0(v1) = 0 for each of the m positions of v1, and

S v S v v v

E S v

i i v i i i i i

snake m n n

i
+ - +
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For example, using superscripts to indicate the m degrees of free-
dom for the various components of the position vector,

S v v v k mk
1 2 1 2

2
0 1 22 7 = + - =%&'

()*min : , , ,a K

where we have used αi ≡ α, a common assumption, and fixed v2

in some location within the m degrees of freedom. Then one it-
eration of the algorithm in [2] can be roughly summarized as in
Fig. 1. After the minimum energy is obtained as

min , , ,S v S v S vn n n n n n
m

- - -1
1

1
2

14 9 4 9 4 9J LK , a backward scan is used to find

the actual vector w. The running time of the iteration is now
O(nm2)—a dramatic improvement.

The above is simply one possible position of the contour. It rep-
resents a local minimum energy position since we have allowed a
degree of freedom of only m. The contour could of course be any-
where inside the image unbounded by m; thus, in order to obtain
the final contour, Amini et. al. seemingly adopt an iterative algo-
rithm as shown in Fig. 2 (compare Fig. 5, [2]) where m is set to a
small value such as 9 or 16.

3.1 Comments on Algorithm II
The problem with the implementation in [2] can be intuitively
visualized if we consider a limiting case of a “point” snake, i.e., a
snake made up of a single point. Such a snake is of course use-
less to the computer vision problem, but if we observe the itera-
tion of the algorithm, and in particular Steps 3 and 4, we find
that there is no application of the optimal cost function of the DP
formulation. Instead, the algorithm reduces to an iterative
greedy search in a m m�  neighborhood. It comes as little
surprise then that the authors of [8] state in their abstract “[our
algorithm] … gives results comparable to the DP algorithm, but
is much faster ….”

In other words, Algorithm II achieves the best possible curve
within one iteration (conceptually thought of as in one dimension).
However, it does not apply the principle of dynamic programming
moving from one iteration to another (conceptually in two dimen-
sions), and therefore compromises on the promised attempt of the

global minimum. Note that this is true for any bounded value of
m, the degree of freedom.

Another issue of concern in [2] is the optimization framework
introduced (for example, (20) and (23) in [2]). It appears that this
framework is not explicitly used in their algorithm. The parameter
m is somewhat artificially introduced and has to be “hardcoded”
in the algorithm. In comparison, the variational approach has no
such parameter (the parameter γ is introduced for a different pur-
pose, viz., the numerical solution). Yet, the Euler-Lagrange equa-
tion must follow from the continuous dynamic programming
formulation.

An increasing evidence is that, in the method of [2], the algorithm
halts when “there is no change in the optimal cost function.” As
defined above, this can very well happen in a local minimum, for
instance, when there is no change in the image forces around the
current location of the contour in a large image of size 1,028 × 1,028.
This also implies that we cannot predict the running time of the
overall algorithm even though we know the time for each iteration.

4 THE DP SOLUTION—APPLYING THE BOUNDARY
CONDITIONS

4.1 Admissibility
Before we present our ideas, we would like to start with some
(fairly well known) clarifications. For obvious reasons, the
minimum energy of the snake, a continuous function, is derived
using techniques in numerical analysis. However, it is not clear
what minimum is obtained. To amplify, provided a scene con-
sisting of a set of objects of interest, what is not desired is to ob-
tain one snake that has a minimum energy, but rather to tie a set
of snakes to the set of objects of interests. In other words, we do
not attempt the segmentation problem here. In the original for-
mulation, the user or a higher level process positions the ap-
proximate snake near the object of interest. For us this implicitly
defines a zone of admissible snakes What we do not desire is for
the admissible snake to get trapped in a local minimum within
the zone.

0. for (i = 1; i < n ; i = i+ 1)
    for (k = 1; k ≤ m ; k = k + 1) Si (k) = ∞; S0 (k) = 0
1. for (i = 1; i < n ; i = i + 1)
2.     for (k = 1; k ≤  m ; k = k + 1)
3.         for (j = 1; j ≤  m ; j = j + 1) begin

4.             temp = 0 5 1

2

1. a v v E S ji i
k

ext i- + +- - 1 6
5.             if (temp < Si(k)) begin

6.                  Si(k) = temp
7.                  M(k) = j
            end
        end

Fig. 1. Algorithm I: One iteration in the DP algorithm.

1. Compute energy of the contour at some position using the
above algorithm.

2. If the energy is higher than the energy of the previous po-
sition, exit with the previous position.

3. Perturb the next point locally.
4. Choose the lowest energy of the m possible ways of the

above perturbation.
5. Go to Step 1.

Fig. 2. Algorithm II: Iterating the basic DP loop.
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4.2 The Formulation of a Noniterative Solution
To set the stage for our solution, we first set (as in [2]) the energy
functional of the snake to depend only on the first order deriva-
tive. We consider the general case later. Let

I F s s s ds= �v v1 6 1 62 7, ,
a

b
,                                   (3)

where v′ = dv/ds.

Imposing the boundary conditions, v(α) = va and v(β) = vb, the
initial step is to divide the interval α ≤ s ≤ β into n subintervals of

equal length ∆s by the points sj = α + j∆s, j = 0, …, n. For every

admissible curve, let vj = v(sj). If ∆s is small, then v′(sj) can be ap-

proximated by � £�
-+v v

v v
sj j s

j j4 9. 1

D .

In terms of the points (sj, vj), the integral can be represented
approximately by the finite sum,
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Hence, now the problem of finding the function v(s) which
minimizes (3) can be replaced by the approximating problem of
finding the n − 1 values vj which minimizes (4) when v0 and vn are
fixed at values va and vb, respectively.

Define the state functions [9] Λk(ξ) as,
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where vk = ξ. Then
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i.e.,
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Also
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Note that this formulation can be done only because (5) is separa-
ble. Here it should be mentioned that the DP method can be ap-
plied only to separable functions.

Due to this formulation, the minimum value of I is Λ0(Va).
In the above formulation, ξ, and therefore vk are continuous

variables. To solve the problem numerically, we treat both ξ and vk
as discrete, that is, for each k, we determine a discrete set of values
which ξ and so vk can assume. Then Λk(ξ) is tabulated only for
these values. To compute Λk(ξ), vk+1 is only allowed to take values
in the discrete set of values appropriate to ξ.

In addition to tabulating the values of Λk(ξ), we also tabulate

$vk+1 x1 6 , the value of vk+1 corresponding to ξ at the (k + 1)st stage

that minimizes (7). At the final stage, we determine Λ0(a), as well

as v v1 1
* $= a1 6 . The optimal values of other vk would be obtained by

means of

v v vk k k k n+
*

+
*= = -1 1 1 2 2$ , , , ,4 9 K .                (9)

4.3 Remarks About Our Formulation
By this method, we actually determine a whole family of extremal
curves as we move away from the point vb. At the last step, one

determines the particular extremal curve emanating from vb,
which also passes through va. This is illustrated in Fig. 3. This en-
sures that the contour obtained by the DP process is indeed the
globally minimal contour passing through va and vb.

Also note that the “point snake” of Section 3.1 poses no prob-
lem since the boundary conditions will be satisfied. Finally, the
method is intrinsically noniterative, and we can therefore bound
the overall worst case running time to be O(nP) where P is the size
of the admissible region, and n is the desired number of points on
the snake.

4.4 Incorporating Higher-Order Differential
Having considered the basic strategy, in this section we see how to
incorporate higher order differentials which are essential to model
the snake accurately. We set

I F s s s s ds= � ��v v v0 5 0 5 0 52 7, , ,
0

1
                         (10)

where � =v vs d s ds0 5 0 5  and �� = �v vs d s ds0 5 0 5 .
This can be approximated by the following finite sum,
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Now, since (11) is separable, the state functions [9] associated with
(11) become

L D Lk k k k k
k

sx x x x1 2 1 1 2 1 1
1

, min , , ,2 7 2 7 2 7> C= +
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+ + +v
v v v) ,

k n= -1 2, ,K                                       (12)

and

Λn − 1(ξ1, ξ2) = )(vb, ξ1, ξ2)∆s                            (13)

Here, vb is one of the two boundary positions, the other being
va used later below.

To solve the problem numerically, we treat ξ and vk as discrete,
that is, for each k, we have a discrete set of values which ξ and,
hence, vk can assume.

Fig. 3. Various curves emanate from point vb. The algorithm picks the
one that passes through va and which has least cost. The figure also
shows a stage in the DP process.
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The solution now proceeds with the tabulation of Λk(ξ1, ξ2) (As a

refinement, to compute Λk(ξ1, ξ2), vk+1 is allowed to take only those

values appropriate to ξ1 and ξ2). The progress is, intuitively, back-
wards, starting first with the use of (13) to tabulate the values of

Λn−1 obtained at different values of ξ1 and ξ2. At later stages we

vary vk+1 over the possible values it can take subject to ξ1 and ξ2

and tabulate the values of Λk(ξ1, ξ2). The corresponding values of

vk+1 at which the minimum is attained for every pair (ξ1, ξ2),
namely, $ ,vk+1 1 2x x2 7 is also tabulated.

When all the iterations in (12) are completed, the algorithm

proceeds, intuitively, forward. First, define v va0
* =  and

v va1
* = + e , where e  is an error term introduced due to the

higher-order differential. Optimal positions vk+
*

1 can be obtained
from the tabulated information using (14)

v v v v+k k k k+
* *

-
*=1 1 1$ ,4 9 ,

k n= -1 2, ,K .                                    (14)

Note the use of the boundary values va and vb as contrasted
with [2], where the convergence of the solution depends on reduc-
tion in energy values.

5 CONCLUSION

A controlled continuity spline can be used to determine the shape
of an object in an image by subjecting it to image forces, and de-
termining its final equilibrium position. In this paper we have
addressed the problem of computing the minimum energy using
DP principles.

In particular, we have built upon both the continuous and dis-
crete forms of the solution outlined in [2]. There, the dynamic pro-
gramming principle to avoid local minima is used within a single
iteration (i.e., in one dimension), but is not applied from one itera-
tion to another (i.e., in two dimensions). By introducing the idea of
a goal node using known locations of the final contour, we have
provided a two dimensional form of the DP method. An applica-
tion of our method is in tracking contours in multiple frames.

The framework of the solution provided in the continuous case
in [2] fails when the energy functional depends on the second de-
rivative. We have also derived a solution in this case again using
principles of DP.

In order to demonstrate the correctness of the algorithm devel-
oped in Section 4, it was run on various images [10]. We can con-
clude that our method matches the boundary that the human eye
would have picked out whereas other methods sometime settle
down in a nonglobal minimum.
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