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AbstractÐFingerprint classification is an important indexing method for any large scale fingerprint recognition system or database as

a method for reducing the number of fingerprints that need to be searched when looking for a matching print. Fingerprints are generally

classified into broad categories based on global characteristics. This paper describes novel methods of classification using hidden

Markov models (HMMs) and decision trees to recognize the ridge structure of the print, without needing to detect singular points. The

methods are compared and combined with a standard fingerprint classification algorithm and results for the combination are presented

using a standard database of fingerprint images. The paper also describes a method for achieving any level of accuracy required of the

system by sacrificing the efficiency of the classifier. The accuracy of the combination classifier is shown to be higher than that of two

state-of-the-art systems tested under the same conditions.

Index TermsÐHenry fingerprint classification, hidden Markov models, decision trees, neural networks, NIST database.
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1 INTRODUCTION

THE classification of fingerprints has long been an
important part of any fingerprinting system. A partition

of fingerprints into groups of broadly similar patterns
allows filing and retrieval of large databases of fingerprints
for quick reference. Currently, interest in fingerprint
classification is stimulated by its use in automatic finger-
print identification systems (AFIS). In an AFIS, the goal is to
find a match for a probe fingerprint in the database of
enrolled prints, possibly numbering many millions. Classi-
fication is used in an AFIS to reduce the size of the search
space to fingerprints of the same class before attempting
exact matching.

The most widely used system of fingerprint classification
is the Henry system and its variants [1]. Examples from five
of the main classes of the Henry system are shown in Fig. 1.

Many previous authors have developed automated
systems to classify fingerprints, using a wide variety of
techniques. Cappelli et al. [2] provide a recent review of a
number of methods that have been used and Section 8 in
this paper presents results from other authors.

Most automatic systems use the Henry classes and these
are important for existing AFIS databases and systems
which require compatibility with human classifications,
either because of legacy data or because some manual
intervention is necessary in the process, requiring the use of
human-interpretable classes. A variety of approaches to
classification has been tried, the most fundamental being a
syntactic analysis of the relative positions and number of
core and delta points in the print. The core and delta points,
shown in Fig. 1, are the singular points in the flow of the
ridges. Finding these points in the image is a difficult image
processing task, particularly with poor quality images, but
if found reliably, the classification is simple [3], [4]. Maio

and Maltoni [5] use a structural analysis of the direction of
ridges in the print, without needing to find core and delta
points. Blue et al. [6] and Candela et al. [7] use the core
location to center their representation scheme, which is
based on a principal components analysis (PCA) of ridge
directions, and then they use a variety of classifiers. Halici
and Ongun [8] similarly use PCA-projected, core-centered
ridge directions, but classified with a self-organizing map;
and Jain et al. [9] also use the core for translation
invariance, using a Gabor filter representation and a
k-Nearest Neighbor classifier.

For situations where there is no need to use existing
classes, some researchers have developed systems which rely
on machine-generated classes or dispense with classes all
together and use ªcontinuousº classification [2], [10], [8], [11].
Here, the criterion is not adherence to the Henry classes, but
merely consistency among classifications of different prints
from the same finger. Fingerprints are represented by points
in a feature space on which some distance measure is defined.
Test fingerprints are matched against all those in the database
falling within some radius of the test print. By increasing the
radius, classification can be made arbitrarily accurate,
reducing errors by increasing the size of the search space
and, hence, search time. Continuous classification holds the
prospect of circumventing the difficult and restrictive Henry
classification problem and has produced the best results of
recent years, but has disadvantages besides the uninterpret-
ability mentioned above. Using Henry classes, the portions of
the database that must be searched are always the same,
allowing for rigid segmentation of the database and a priori
design of the search strategy. A continuous system presents
an entirely different subset of the database for every matching
operation, complicating and slowing the matching.

This paper describes a combination of novel approaches
to fingerprint classification using the Henry system. The
system described has been designed to operate on both
rolled and ªdabº fingerprints, where some of the structural
information used by other systems (such as the delta
position) may not be available in the fingerprint image. The
system described has been tested on the NIST Special
database 4 [12] database of fingerprint images and results
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are presented. Further, a method of measuring the
efficiency of a classification algorithm is described, allowing
a principled comparison of this algorithm with previous
published works. Finally, a method for achieving arbitrary
accuracy is described, allowing the Henry classifier to be
used with the flexibility of continuous classifiers. This
method trades off accuracy against classifier efficiency,
allowing an imperfect classifier to be used in a real-world
system, while retaining all the advantages of a traditional
Henry system.

The approach taken here is of a combination of
classifiers, each using different features and with different
errors on test data. Two novel classifiers are described,
using two-dimensional hidden Markov models (HMMs)
and decision trees. In addition to showing that these
classifiers perform well on the classification problem, and
without the need for core/delta information, this paper
shows that the combination of classifiers provides a way
forward for the improvement of fingerprint classification
in the same way as recent improvements in isolated
handwritten character recognition performance have been
largely brought about not by better classifiers but by
combinations of different classifiers. The classifiers are
tested in isolation and in combination with the Probabil-
istic Neural Network classifier and pseudoridge tracer
from the PCASYS system described by Candela et al. [7].
The experiments are all performed on discrete, Henry
classification, but the system could be extended to
continuous classification or classification with unsuper-
vised clustering, using such techniques as unsupervised
K-means HMM clustering [13].

The following sections describe the HMM classifier
(previously described in [14]), the decision tree classifier,
and PCASYS classifiers. In Section 5, classification based
upon the outputs of these classifiers is then described as
well as combining the classifiers to improve accuracy.
Section 6 describes a measure of efficiency of the classifier
and shows how arbitrary efficiency can be achieved.
Section 7 presents results for the classifiers and their

combinations, and results are compared with previously
published results in Section 8.

2 CLASSIFICATION BY HIDDEN MARKOV MODEL

Hidden Markov models are a form of stochastic finite state
automaton well-suited to pattern recognition and success-
fully applied to speech recognition [15], [16] and other
problems. They are appropriate to the problem posed here
because of their ability to classify patterns based on a large
quantity of features whose number is variable and which
have certain types of underlying structure, especially if that
structure results in stationarity of the feature distributions
over some spatial or temporal period. Such structure is found
in fingerprints, where ridge orientations, spacings, and
curvatures are, for the most part, only slowly varying across
the print. In a fingerprint, the basic class information can be
inferred from syntactic analysis of singular points, but can
also be seen in the general pattern of the ridgesÐthe way a
nonexpert human would classify prints. The HMM is able to
statistically model the different structures of the ridge
patterns by accumulations of evidence across the whole
print, without relying on singular point extraction.

2.1 Ridge Extraction

The system deals with fingerprint images stored as arrays of

gray levels and obtained with a scanner or camera deviceÐ

either from an inked fingerprint on paper or as a ªlive-scanº

directly from the finger. For much of the work in this paper,

the NIST-4 [12] database of rolled fingerprint images has

been used since this provides a large number (4,000) of
fingerprints with associated class labels. In addition, part of

the NIST-9 database has been used.
The features provided to the recognizer are based on the

characteristics of the intersections of ridges with a set of

fiducial lines that are laid across the fingerprint image. To

find the ridge locations, a number of image processing

techniques are used [17], summarized as follows:

1. Initial segmentation: The PCASYS algorithm for
extracting a central fingerprint region from a full
rolled print is used on prints from the NIST-9
database. NIST-4 is already segmented at this level;

2. Smoothing;
3. Finding the predominant direction in each of an

array of blocks covering the image;
4. Segmenting the image into the area of the print

(foreground) and the unwanted background, based
on the strength of directionality found in each block;

5. Applying directional filters to highlight the ridges
and detecting pixels that are parts of ridges;

6. Thinning the ridge image so that each ridge is left
represented by an eight-connected, one-pixel-wide
line termed the skeleton.

2.2 Feature Extraction

Given the skeleton image of the ridges, parallel fiducial
lines are laid across the image at an angle �, as shown in
Fig. 2, and each one followed in turn. For each intersection
of a fiducial line with a ridge, a feature is generated. Each
feature consists of a number of measurements, chosen to
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Fig. 1. Examples of five fingerprint categories, marked with core and

delta points, with their frequencies of occurrence.



characterize the ridge behavior and its development at the
intersection point:

1. the distance since the last intersection;
2. the angle of intersection;
3. the change in angle since the last intersection;
4. the curvature of the ridge at the intersection.

The angle features (2) can be seen to contain similar
information to the coarse direction field calculated in the
preprocessing stages of this system and used by other
systems as the feature set for classification [7]. However,
this representation allows a higher resolution representa-
tion of the fingerprints, and allows more information to be
represented (e.g., ridge spacing and curvature). Further
measurements could also be taken at each point.

The measurements of each feature are termed a frame
and the frames, Rik for the ith fiducial line are collectively
termed a row, Ri, whose ordering is preserved. For each
orientation � of fiducial lines, a separate representation
R� � fRi; 8ig of the print is obtained. In this research, only
horizontal and vertical lines have been used, giving features
Rh and Rv, respectively, but other angles may allow further
information to be captured.

2.3 Hidden Markov Models

Typically, HMMs are one-dimensional structures suitable
for analyzing temporal data. Here, the data are two-
dimensional, but the process of feature extraction can also
be described as a one-dimensional array of one-dimensional
row processes. Thus, we can apply a ªtwo-dimensional
hidden Markov model,º similar to that of Agazzi et al. [18],
which consists of a nesting of row models within whole-
print models, as shown in Fig. 3.

For classification, a model Mc is constructed for each
class, c, and the maximum likelihood class is chosen after
calculating the probability of the data R given the model:
argmaxcP �RjMc�.

2.3.1 Row Modeling

To simplify the analysis of the model, first consider a row
model modeling a single row of fingerprint data. Each row
model Mi is a conventional HMM and consists of a number
of states which model the small, stationary regions in a row.
Any row Ri is assumed to have been generated by the row
automaton transiting from state to state, producing the
frames in the observed order at each transition, with Sijk
being the kth state in the sequence whereby Mi produces Ri

(k corresponds to time in a temporal HMM). The state

transitions are controlled by probabilities P �Sijk jSijkÿ1
�

trained with certain constraints: The state must monotoni-

cally increase Sijk � Sijk0 for k > k0 and it is possible to skip

states at the edge of the print. Because of the nature of the

printing process whereby, especially for dabs, it is to be

expected that edge regions of the fingerprint will be missing

but the central regions will always be present, only states at

the edge of the print may be skipped. This effectively

constrains the initial state distribution P �Sij0
�.

The frame emission probabilities are modeled with

mixtures of diagonal covariance, multivariate Gaussian

distributions. Thus, for any frame Rik , it is possible to

calculate the likelihood P �Rik jSijk� of it occurring in any state

Sijk . With these likelihoods, for any row model, the like-

lihood of any row can be approximated by the maximum

likelihood of any state sequence aligning the features and

states calculated as a product of frame likelihoods and

transition probabilities for the state sequence:

P �RijMj� �max
Sij

P �Ri0 jSij0
�P �Sij0

�Y
k

P �Rik jSijk�P �Sijk jSijkÿ1
�: �1�

The models are initialized by using an equal-length

alignment with the frames evenly distributed across the

states of the model. After estimating the initial parameter

values, using smooth equal-length alignment [19],

Viterbi alignment is used to find the maximum-likelihood

alignment of frames with states, which is used for

retraining. Around two iterations of training are necessary

to achieve good classification performance.

2.3.2 Global Model

The global model is the same as a row model, except that its

states are row models and its frames are whole rows. Thus,

for each model c:
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Fig. 2. A sample fingerprint showing horizontal fiducial lines ( � 0).

Fig. 3. A schematic of the two-dimensional structure of the HMM,

showing three row models of five states each, forming a global model for

a single class.



P �RjMc� �max
S0

P �R0jMS0
0
�P �MS0

0
�Y

k

P �RkjMS0
k
�P �S0kjS0kÿ1�;

�2�

where S0 is an alignment specifying which row model MS0
k

models the row of data Rk.

2.4 Multiple HMM Classifiers

For each orientation of fiducial lines, a separate classifier
can be made. Since the errors of the different classifiers will
be different, a combination of their scores may yield better
accuracy. Denoting by Mh

c , Mv
c , the class c models trained

with vertical and horizontal features, respectively, and
assuming independence, the likelihood of the data is
written as:

P �Rh;RvjCc� � P �RhjMh
c �P �RvjMv

c�: �3�
Fusion of multiple classifiers is treated in more detail in
Section 5.3.

3 DECISION TREE CLASSIFIERS

To provide a supplementary classification, hopefully giving
uncorrelated errors, another type of features has been
extracted and classified with a decision tree approach. Such
decision, trees are built using techniques based upon those
of Amit et al. [20]. These authors tackled a number of
problems including that of digit recognitionÐclassifying
images of the digits ª0º to ª9.º

The technique used by Amit et al. for constructing
decision trees involves the generation of a large number of
simple features. Each feature in isolation provides little
information about the classification decision, for example,
the existence of an edge at a particular location in an image
may give little clue as to the digit's identity. However,
combinations of such features can represent much impor-
tant information needed to make an accurate classification
decision. Amit et al. describe a procedure for making
decision trees by growing questions based upon such
combinations of simple features.

The procedure has been adopted here for fingerprint
classification and involves an initial feature extraction
phase, followed by question building which creates
informative questions assisting in classification. These
complex questions are combined in a hierarchical manner
to form decision trees which are used for classification.
Because the trees are constructed stochastically, trees
constructed for the same problem have different perfor-
mances and, as is common with decision tree classifiers,
multiple trees are combined to give the final classification.

3.1 Feature Extraction

This second classifier was designed to give a second
opinion on the classification of a fingerprint image. For
this purpose, the errors in classification should be as
uncorrelated as possible with those made by the HMM,
thus a different set of features was generated for this
classification method. Again, the motivation is to consider
distributed information from across the fingerprint without
extraction of singular points. Because the class information
is implicit in the shapes of ridges, features that are easily

and reliably extracted and which encode the ridge shape in
a simple, concise manner were chosen.

The initial preprocessing used is identical to that of the
HMM classifier, up to the extraction of ridges (Section 2.1),
but, instead of taking features at intersections with fiducial
lines, features are generated at salient points on the ridges.
The features consist of curvature maxima and four axis-
parallel turning points (dxds � 0 or dy

ds � 0 for a ridge
represented as the parametric curve �x�s�; y�s�� and dis-
tinguished by the sign of the second derivative). Some
example features are shown in Fig. 4. For each feature, the
feature type and location (in pixels at 500 dpi) is recorded.
These features are all based on local computations on the
ridges and, again, avoid the extraction of global features
such as core and delta points. Again, they are invariant to
translation and to small amounts of rotation. These features
are also appropriate for the classification of dabs since the
majority of features in a rolled print also occur in the region
typically imaged in a dab.

3.2 Decision Trees

A binary decision tree is constructed as a hierarchy of
binary questions [21]. Questions are logical statements
about the features that may be present in the fingerprint
and about the relations between those features; for a given
fingerprint, a question is either true or false. At the ªtopº
level, each test sample is asked the first question. According
to the test sample data, the question returns either true or
false and the branch to the second-level is determined. On
whichever branch is chosen, a second level question is
asked and a further bifurcation is induced. In this way, each
test sample descends the tree by a route dependent on its
features and arrives at a leaf node. Leaf nodes are labeled
according to the classes of the test data that arrived there. In
a simple classification problem, leaf nodes will be pureÐ
i.e., receive only training samples from a single class and
the unambiguous classification of any test sample arriving
there would be the class of the training data at that node.
For more complex problems, the leaf nodes contain mixed
data and the test data is labeled with a probability
distribution across the classes.

Fig. 5 shows a small decision tree with two levels. Each
of the three nodes of the tree contains a question of the form
specified in Section 3.3. At each node and at the leaves, a
class histogram with four classes is shown, indicating the
reduction in entropy as the tree is traversed. The root node
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Fig. 4. A single ridge showing the extracted features for the decision

tree: curvature maximum and, left, right, bottom, and top, turning points.



has all classes equally likely, with no discrimination, and
the other nodes have successively stronger discrimination
between the classes.

3.3 Questions

A question consists of a list of required features and a set of
relations between them in the same manner as those of
Amit et al. Each feature is specified as one of the five
features described above (four turning points and curvature
maximum). Relations are all of the form ªx is direction of
y,º where direction is one of North, South, East, West.
Optionally, a question can also impose a distance limitÐ-
that the feature must be within a certain distance.
Experimentation led us to use two distance bands: features
within 0.1º and features within 0.2º. An example question
may specify that there is a maximum of curvature East of a
lower turning point which is itself East of, and within 0.2º
of, a maximum of curvature. Other questions are shown in
the nodes of Fig. 5. Questions are constructed in such a way
that every feature is related to at least one feature in the
feature list and so that every pair of features can have at
most one relation.

Given a new print, the print can be tested by a search
that determines if the question can be fulfilled by the
features of the print.

3.4 Question Construction

During tree construction questions are constructed ran-
domly as follows:

1. Select any feature class as the first feature.
2. Test the data separation. If more than 2=3 of training

data at this node reply yes, refine the question and
repeat this step. If less than 1=3 reply yes, discard
this question and construct a new question. Other-
wise, evaluate the question.

Refining the question consists of adding extra restrictions,
which inevitably make a ªyesº answer less likely. The
proportion of samples answering ªyesº can be reduced in
one of two ways. First, a feature can be added. In this case, a
random feature type is chosen and added to the list. A random
relation is chosen to relate it to a randomly chosen feature

already in the list. Second, if there are two or more features in
thequestion andsome pair hasnorelation betweenthem, then
an additional relation can be added to the question between
any pair of features that are as yet unrelated.

When adding a relation is not possible, a feature is
added. Otherwise, a random choice is made, biased toward
adding a relation since this keeps the number of features
lower, limiting the dimensionality of the search space for
answering questions and making testing faster.

Having arrived at a question which channels approxi-
mately half the data to each of the ªyesº and ªnoº sides, the
question is evaluated. The measure of the effectiveness of a
question is the change of entropy in the distributions before
and after applying the question. Classes at the root node
have high entropy, but the leaf nodes should have very low
entropy (be ªpurerº). The relative entropy of the output
distributions for a node is computed for many randomly
constructed, candidate questions and the question with the
highest entropy change is chosen.

A tree is recursively constructed until the leaves are pure
or until a maximum depth (typically 7) is reached. Fig. 6
shows the effect of varying the depth of the trees and the
number of trees used. Multiple trees are merged by
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Fig. 5. A two-level decision tree, showing hypothetical class distributions at each node. Each node has a question formed of a list of feature types

that must be present and a list of relationships between them that must be true for the question to return ªyes.º

Fig. 6. Raw error rates (no priors, unweighted) plotted against number of
trees for the decision tree classifier tested on the NIST-4 test set, using
averages of different numbers of trees, for trees built to different depths.
Error bars in the error rate estimate are shown for the depth six case.



multiplying the leaf node distributions class-by-class, as in
Section 2.4.

4 PCASYS

Candela et al. [7] have described a fingerprint classifier
called PCASYS, which is based upon a probabilistic neural
network (PNN) classifying features consisting of principal-
component projected orientation vectors. The orientations
of the ridges taken in a 28x30 grid of points around the core
are reduced in dimensionality with principal components
analysis. The resulting 64-dimensional vectors are classified
with the PNN. They have published results and made their
software available, making possible a realistic comparison
with this system. Lumini et al. [10] have used this software
and extended it to provide continuous classification. To
provide an alternative classification method and an
enhanced combination classifier, PCASYS has been tested
on the same testing data as classified by the HMM and
decision tree classifiers. Results are presented for PCASYS
alone and in combination with the other classifiers.

PCASYS incorporates a pseudoridge tracer which detects
upward curving ridges and is able to correctly identify
some whorl prints, but provides no information to
distinguish among the other classes. This effectively
penalizes the other classes when returning a ªyesº answer.
PCASYS also exploits prior information to improve its
accuracy (see Section 5.1).

5 POSTPROCESSING AND CLASSIFIER

COMBINATION

Given the raw classifiers presented above, a number of
steps must be taken to apply the classifiers to a test set. The
following sections describe using class priors to enhance
classifier accuracy, weighting the results to predict behavior
on true test sets and methods for the combination of
multiple classifiers.

5.1 Class Priors

Because the classes that are used are not equal in frequency of
occurrence, calculating the posterior probability of a class,
given the data, requires the product of the data likelihood,
given the class c and the prior probability of the class:

P �cjR� / P �RjMc�P �c�: �4�
The class priors have been estimated by Wilson et al. [22] on
222 million fingerprints. (The proportions are 0.037, 0.338,
0.317, 0.029, 0.279 for arch, left loop, right loop, tented arch,
and whorl, respectively).

5.2 Class Weighting

Since the NIST-4 database (and, correspondingly, the test
set used here) has equal numbers of prints from each class,
to obtain a good estimate of the true test-condition accuracy,
the results must be weighted according to the true
frequencies of occurrence, using the same procedure of
Wilson et al. [22]. Otherwise, a classifier good at recognizing
arches, which are rare, would appear better on this test set
than in the real world, or on a representative test set where
this ability is rarely called upon.

5.3 Classifier Combination

Four classifiers (counting the PCASYS pseudoridge classi-
fier) are available in this work. Each by itself is capable of
classifying fingerprints with a limited accuracy. However,
each classifier uses different features and methods, so the
errors produced by each classifier should be somewhat
uncorrelated. In this situation, combining the results of the
classifiers should produce an improved classifier with
lower error rate. Many other authors have tackled the
problems of decision fusion and, here, we take two simple
approaches.

5.3.1 Linear Likelihood Fusion

The first method of combination is a probabilistic approach
since the output of each classifier is a probability distribu-
tion P �cjRi� across the classes c.

Strictly speaking, if each classifier gave a true probability
out and, with N independent classifiers operating on
features Ri, the posterior probability would be:

P �cjR1; . . . ;RN� / P �c�
Y
i

P �Rijc�: �5�

However, in practice, the probabilities are correlated and
have varying reliabilities. The HMM probabilities are the
product of many correlated probabilities and the PNN
already incorporates prior information. To correct for these
effects, weights wi are introduced to balance the classifier
combination. Working in the log domain, with normal-
ization constant k:

logP �cjR1; . . . ;RN� � k� logP �c� �
X
i

wiP �Rijc�: �6�

For simple classification, the class

argmaxc logP �cjR1; . . . ;RN�
is chosen as the correct answer. Finding the weights wi,
however, is a difficult problem. Estimation of weights by line
searches on the training set fails to generalize well to the test
set, so the following trained approach was used, which is
found to achieve accuracies close to those obtained when
optimizing linear weights by line search on the test set.

5.3.2 Neural Network Fusion

The second fusion approach is to use a backpropagation
neural network. Here, the class probabilities for all the
classifiers are combined in a neural network, trained to
output the true class on the training set. Additionally, four
estimates of the fingerprint quality [23] are supplied to the
network, though their effect is not significant. Training uses
a momentum-based weight update scheme and Softmax
outputs [24], giving an output class probability distribution.
Training samples are weighted to simulate a uniform prior
and the output probabilities are multiplied by the class
prior 5.1 when testing. Separate networks are trained to
combine the HMM and decision tree or to combine all four
classifiers. To generate enough training data for the
neural network, the first half of the NIST-4 database was
supplemented with 5,400 prints from the NIST-9 database
(Volume 2, CDs 1, 2, 3).
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6 CLASSIFIER EFFICIENCY

Since the purpose of a fingerprint classifier is to partition large
fingerprint databases, in addition to the classification
accuracyÐthe proportion of classifications that give the
correct classÐthe classification efficiency must also be
considered. Since many authors use different classes, a
consistent measure of efficiency, as described here, is
essential for the comparison of results. An efficiency measure
also permits the evaluation of rejection and backing-off
strategies described in Section 6.2.

The classification efficiency can be considered as a
measure of reduction of search space. In practice, the
proportion of the database to be searched will vary with
each query, so, over a test set, the average efficiency can be
calculated as:

Number of matches required with no classifier

Number of matches required when classifier is used
; �7�

where an exhaustive 1 : many match against a database of

N prints is counted as N matches. If a perfect classifier is

used to classify M prints prior to matching against a

database of N prints, any of the MPc test prints in class c

(which occurs with probability Pc) need only be tested

against the NPc database prints of class c. Thus, the total

number of matches required is now
P

c NMP 2
c instead of

NM. The efficiency of a perfect classifier using these classes

is thus 1P
c
P 2
c

. Using the five NIST-4 classes and the

frequencies of Section 5.1, this gives an efficiency of 3.39.

Merging arch and tented arch classes only reduces the

efficiency to 3.37 since this distinction so rarely needs to be

made. As can be seen, the imbalance of the class priors

makes the efficiency significantly lower than would be

obtained with five equally frequent classes (an efficiency of

5). In practice, the efficiency of a fallible classifier will

deviate from this valueÐfor instance, a classifier which

consistently mistakes all prints for arches will have an

efficiency of 15 (1/0.066).

6.1 Alternate Classes

NIST-4 provides alternate class labels for 17.5 percent of the

prints [12, p. 8], but these are ignored in this work, a

classification being deemed correct only if it matches the

primary class label. Allowing matches with the alternate

label too would increase the recognition rates but would

lower the efficiency of the classifier since such prints, when

enrolled, would have to be stored twice (under both classes)

in our database, resulting in extra searches every time the

secondary class was searched.

6.2 Backing-Off

Previous classification works have quoted error rates that
would be unacceptable in real-world systems. It is clear that
accuracy can be a trade-off for efficiencyÐsearching more
than just the top one class will give higher accuracy but

lower efficiency [25]. If a reliable measure of confidence in

the classifier's answer is available, it is possible to devise

methods to adjust the reliance on the classifier answer when

that classification is uncertain, and thus reducing the

number of errors made. Some classifiers [7] have used a

rejection mechanism, which improves the accuracy at the

cost of not pruning the search with those prints that are

rejected. This section proposes a more complex scheme to

allow graceful and efficient ªbacking-offº of classifier

reliance based on a likelihood ratio confidence measure.
It is clear that if the likelihoods for the top two classes are

very different, then the classifier can be considered to be

more ªconfidentº in its answer than if the two likelihoods

are similar (when it would only take a small perturbation to

change the ranks of the answers). Thus, the likelihood ratio

of the top two answers is examined. If this is less than an

empirically determined threshold, then the top choice is

deemed to be not confident and the top two classes are

jointly returned as the answer (increasing the proportion of

the database subsequently searched by the 1:many match-

er). Similarly, the likelihood ratio of the second and third

choices is compared to a threshold to allow backing-off to

three classes. Repeating the procedure, if all the likelihoods

are similar, the classifier will return a ªdon't knowº answer

and all classes must be searched. More traditional rejection

strategies (e.g., [22]) use a criterion to back off directly from

the ªtop-choice onlyº to the ªdon't knowº answer without

allowing as rich a classification.
The efficiency of the classifier when allowing backing-off

is now:

MNPM
m�1 �mN

; �8�

where �m; 1 � �m � 0, is the proportion of the database

searched for query print m.
Adjusting the likelihood ratio threshold allows arbitrary

accuracy to be obtained. A large threshold would give a

null classifier with 100 percent accuracy but an efficiency of

one. A threshold of zero would give the basic top-one

accuracy and maximum efficiency (3.37 for the four class

problem). Adjusting the threshold allows us to set the

overall classifier accuracy to that deemed necessary for the

whole system. However, it should be noted that this

arbitrary classification accuracy is achieved within the

context of a Henry classification system where the portions

of the database to be searched will always conform to the

Henry classifications and, thus, allow the database parti-

tioning and search to be designed to operate on prior

knowledge, not having to cope with dynamically changing

subsets, as in continuous classification.
In fact, the efficiency loss (i.e., extra search time) of

searching the next class is dependent on the frequency of

that class, so a more advanced backing-off algorithm should

take this into account to achieve a better trade-off of

accuracy for efficiency.
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7 RESULTS

Following the practice of Jain et al. [9], the system has been
trained and tested on the NIST-4 database of fingerprint
images. The training set was composed of the first
2,000 prints and the test set was the remaining 2,000 prints
from NIST-4 (1,000 pairs, so no test prints had correspond-
ing prints in the training data). The primary class labels
given with the databases were used, but, since the efficiency
is hardly affected, the classifier was only trained to
distinguish four classes, treating arch and tented arch as
identical. Table 1 shows the error rates for various
combinations of classifiers. All results presented in this
table are weighted, as in Section 5.2, to simulate the natural
frequencies of occurrence of the fingerprint classes.

Table 2 shows the confusion matrix for the four-classifier
neural network fusion with priors, but without the class
weighting, and shows the distribution of misclassifications
and the error rate for each of the four classes used.

Fig. 7 shows the trade-off between error rate and
efficiency obtainable by varying the likelihood ratio used
for backing-off.

8 PREVIOUS RESULTS

Table 3 shows the results achieved by a number of

fingerprint classification systems that have previously been

published. These points are plotted in Fig. 8 along with the

curve of possible operating points for the combination

presented here and the continuous systems of Cappelli et al.

[2], Lumini et al. [10], and Halici and Ongun [8]. For each

system, the efficiency of the classifier is shown with the

corresponding error rate. In some cases, authors have used

rejection strategies where a proportion � of prints are

rejected, making the identification system search the whole

database (with an efficiency of 1). Assuming these rejected

prints are uniformly distributed across the database, the

efficiency of the combined system is

Er � E�1ÿ �� � �; �9�
where E is the natural efficiency using a classifier returning
a single class. (This is the value plotted in Fig. 8 where
appropriate.)

8.1 Comparison

Because of the estimation of efficiency in the case of
rejection and because of the wide range of testing condi-
tions previously used, the figure and table present results
which are not always directly comparable. In particular, the
error rate of the PCASYS system is 7.8 percent under the
conditions described by Candela et al. [7]. However, when
their software is run on this test set and scoring in a manner
consistent with the results presented here, with class
weighting, the error rate was 6.1 percent (11.4 percent
without weighting), a figure in which the results of the
combined classifier here should be compared. Similarly,
Jain et al. quote an accuracy of 5.2 percent with 1.8 percent
rejection, but, if the data from the confusion matrix [9, table
3] are scored using the class frequencies found in real data
(Fig. 1), the accuracy is 6.2 percent.1 These two are the only
systems for which truly comparable results were available.
Table 4 shows the error rates for the uniform testing
conditions and these are plotted in Fig. 7.

One limitation of some previous works is simply that
little can be inferred from the results presented when the
test sets are so small or where the test set is not truly
independent of the training set. For example, [28] derive the
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TABLE 1
Error Rates, Testing Different Combinations of the Classifiers

The HMM classifier used here has eight rows of eight states each and
uses a shared pool of 200 Gaussians with four-dimensional features.
The decision tree (DT) classifier is a mixture of 30 trees, each with seven
levels. The three combination results use a neural network. The
PCASYS PNN+Pseudoridge classifier result uses a heuristic combina-
tion [7] which incorporates the priors.

TABLE 2
Confusion Matrix for the NIST-4 Test Set (without Reweighting)

The table shows the assigned classes for fingerprints falling into each of
the true classes and a per-class error rate.

Fig. 7. A graph of error rate against efficiency for the combination
described here. The curve shows the trade-off of efficiency against error
rate for a variety of likelihood ratio thresholds. Other algorithms tested
under the same conditions are also plotted, along with the FBI
performance target.

1. A weighted average of the class error rates 7.4 percent, 7.3 percent,
5.0 percent, 1.4 percent, 6.0 percent, counting Arch/Tented Arch confusions
as correct. For these results, however, where an alternate class label is given
(cf. Section 6.1), either answer is considered to be correct, giving a higher
accuracy than would be obtained under the same conditions we have used.



test set from the training set using artificial noise processes.
Although [22] and [6] use the NIST-4 database, they test on
second imprints of the same fingers that were used for
training, an unrealistic scenario for which classification by
recognition of the fingerprints would result in much lower
recognition rates and efficiencies on the order of many
thousands. Fitz and Green [29] average over five samples of
a fingerprint before attempting classification.

A final problem with previous work is that the accuracies
of the systems are simply not high enough. If one is to get
the full filtering effect of the classification, only the top class
must be chosen and it has been seen that the classification
accuracies for the top class (no paper presents any other
accuracy, such as top 2, etc.) is never high enough to be
used in a real system. The higher accuracies that are
obtained are achieved by rejecting difficult prints, so the
filtering achieved is even lower. Karu and Jain [4] quote the
acceptable error rate for the FBI as being 1 percent at
20 percent rejection rate. With four classes, using (9), this is
equivalent to a filtering efficiency of 2.816, a performance
achieved by the combination classifier described here and
by no previous system, as shown in Fig. 7.

9 CONCLUSIONS

This paper has proposed two new, effective methods for

fingerprint classification which do not require core and delta

information and which have been designed to work on both

dabs and rolled prints. The combination of classifiers

described here produces significantly better results than

any of the component classifiers. Existing Henry fingerprint

classifier accuracies fall short of what is required to make a

significant contribution to an AFI system.
This paper has proposed a method for comparing the

efficiencies of different classification schemes and describes

a system for achieving an arbitrary degree of accuracy from

a classification system while evaluating the effect of the

trade-off. By this means, current fingerprint classifiers can

be rendered of use in an AFI system. The new classification

combination can achieve a filtering efficiency of 2.8, with an

error rate of only 1.0 percent, meeting the FBI requirements

for a classification system, and is the first system known to

the author to acheive this. Performance for this Henry

system is comparable to the performance of continuous

classifiers and extensions are envisaged to adapt the

methods here for non-Henry and continuous classification.
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TABLE 3
A Comparison of Published Fingerprint Classification Methods

Fig. 8. A graph of error rate against efficiency for a number of published

algorithms.

TABLE 4
Comparative Error Rates and Efficiencies for Three

Systems on the Second Half of the NIST-4 Data
Using True Class Frequency Weightings
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