Chapter 11

(Genetic Algoritms

11.1  Hill Climbing

If we know that the objective function has only one maximum then all up-hill trails lead
to that maximum and we can find its location (and therefore the best-fitting model) by
simply stepping uphill again and again from any convenient starting point. There are
many ways of going up the surface of the objective function to a maximum; they generally
rely on estimates of the derivatives of the objective function in the neighborhood of the
starting point. These techniques are collectively called “hill-climbing” and are usually
quite straightforward: follow the gradient vector uphill until the gradient is zero or as
close to zero are you are willing to tolerate. If there is only one local maximum then the
resulting model is the best solution to the inverse problem.

Unfortunately, many geophysically interesting inverse problems have objective functions
which are highly complicated and possess many local maxima. As a consequence, the
result of an iterative, gradient-following, or hill-climbing calculation may depend strongly
on the starting model: the algorithm may very well converge to a local maximum which
is not the globally highest peak.

An example of this complexity is shown in Figure 11.1. The computation from which
this was taken is a synthetic model of surface-consistent reflection statics with 55 model
parameters (50 statics delays and 5 auxiliary parameters) and is due to Christof Stork.
The figure shows the cross-correlation-based “goodness” function as a function of two of
the variable model parameters when the remaining 53 were set to their exactly-correct
values. (The central and largest peak is the global maximum for this problem.) The
figure suggests that the final answer we would get from a “hill-climbing” method will
depend strongly on where the climb begins (that is, on our choice of starting model). If
we chose a starting point at random from the domain shown in Figure 11.1, hill climbing
would almost always lead to an inferior solution (we would not climb the highest peak).
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Figure 11.1: The “goodness” function for a model surface-consistent statics calculation
involving 55 model statics parameters; the greater the value of this function, the better
the model’s parameters remove statics shifts in the data set (which is not shown). For
this figure 53 of the 55 parameters were set to the correct value and the remaining two
were varied.
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Hill-climbing methods are local optimization methods. At each step the algorithm only
examines the immediate vicinity of the current point in order to choose its next step;
the algorithm makes no attempt to reconnoiter distant portions of model space. This
limitation has two consequences for optimization:

o A local method only explores the single peak upon whose flanks it began.
o Local methods can be very efficient in reaching the hill’s top.

Where local methods are appropriate, they can be made to perform very well indeed.
Where local methods are inappropriate, they are likely to efficiently climb the wrong hill.

11.2 Global Optimization

In contrast to local methods, global methods are optimization techniques which make
some explicit effort to search more widely in model space. Thhree such methods are:

e exhaustive search,
e simulated annealing, and

o genetic algorithms.

We will very briefly mention a few properties of the first two of these classes, and then
devote the remainder of this note to a discussion of the third class: genetic algorithms.

11.3 Exhaustive Search

This straightforward scheme consists of simply evaluating the objective function for every
distinct model and reporting the model that produces the largest value. The only effort
involved in formulating such a calculation is deciding what constitutes “distinctness”
between models. All global methods require some such decision, and it usually amounts
to just converting continuous parameters to quantized ones.

Exhaustive search has the interesting properties that it is very simple to implement, it
is guaranteed to work, and it is almost always useless in practice. The problem with
exhaustive search in almost every case of interest is that the searcher becomes exhausted
long before the model space. For example, in the reflection statics example above (Figure
11.1) the model space consists of 55 parameters each of which was allowed to range over
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about 40 values. This fairly simple example has a model space with 40°® ~ 10®® distinct
models. If we could evaluate 10? models per second (one gigamod per second?), it would
take us about 3 x 107 years to search all of model space.

11.4 Simulated Annealing.

This class of techniques is based upon a close analogy between optimization and the
growth of long-range order (such as large crystals) in a slowly-cooling melt. Simulated
anealing has been the subject of much interest since it was invented in 1983 by Kirkpatrick,
Gelatt, and Vecchi [KGV83]. In the last two years, major advances have been made in
reliability and efficiency.

Simulated annealing, which will be discussed in detail in the next chapter, is usually
implemented as a sort of biased “drunkard’s walk” in model space. The drunkard’s path
through model space is the result of a competition between two tendencies: one is to walk
uphill to the nearest peak, and the other is to take a step in a randomly chosen direction.
When the drunkard is really plastered, practically all of his steps are chosen at random:;
when the drunkard is relatively sober, practically all of his steps are uphill. During the
course of a simulated annealing calculation, the drunkard’s state is varied slowly from
plastered to sober. The algorithm functions as a kind of hill-climbing in which the climber
is able to change hill from time to time.

Simulated annealing is a kind of quasi-local algorithm: it relies on sampling the space of
models by following along a path from nearest neighbor to nearest neighbor. As a result,
the computational complexity of the method is dominated by a grid size or step length
that is essentially unrelated to the underlying structure of the objective function. This
leads to a phenomenon known as “critical slowing down” or “the curse of dimensionality”
as the size of the problem grows.

11.5 Genetic Algorithms

This “new” class of global optimization algorithms, often referred to as GA’s, actually
predate simulated annealing by more than a decade. The concepts involved were dis-
covered and developed in the late 1960s and early 1970s by John Holland and his students.
Holland’s book [Hol75] describes the theory behind these algorithms. The field is quite
active; see [Dav9l], [Gre87], [Sch89], [BBI1]. (Also note the useful introductory text by
Goldberg [Gol89].)

Simulated annealing is based upon a close analogy between function optimization and a
physical system composed of particles that interact in a relatively simple way but are
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enormous in number. Genetic algorithms proceed from a loose analogy between function
optimization and a biological system composed of organisms that interact in a relatively
complex way and are comparatively few in number. A genetic algorithm tries to find an
optimal answer by evolving a population of trial answers in a way that mimics biological
evolution. If simulated annealing “cooks” an answer, then genetic algorithms “breed”
one.

11.5.1 Inside a GA

To be a little more specific, suppose that we have a scalar valued function which is defined
over some domain. Since our mental model is that of a geophysical inverse problem, we
refer to points in the domain as “models” and the value of the function at some model as
that model’s “fitness.” Our goal is to find a model, or possibly a set of several models,
that maximizes the fitness function: we want to find the best (“fittest”) models in the
space of all possible models. (In practice we’ll often settle for finding some “pretty fit”
models.)

The essence of a GA is that it’s a set of operations which we apply to a population of
models that lead us to a new population in such a way that the members of the new
population will have a greater expected average fitness than their predecessors. Suppose
that we are executing a genetic algorithm that has a constant population size of 15 (there
are many variations and this is a plausible one). Then at some point in the calculation, we
have a set of 15 models and we have computed the fitness for each of these. Figure (11.2)
is a cartoon showing a population with 15 members for an application in which a model
consists of a single real number, z, in the interval 0 < x < 1. Also shown is the fitness of
each model, as a vertical line from the abscissa to the curve of the fitness function. These
models were selected at random (which is how GA’s are usually started); Figure (11.5), to
which we shall turn later, shows the population when the search has progressed farther.

We then do our “GA-thing” on the population, and are led to a new population of mod-
els (many of which may be identical to members of the predecessor population). The
transition processes which tell us how to evolve the new population from the old one are
designed so that (among other things) the expected average fitness of the new population
is at least as large as the average fitness of the old one. We simply apply this processes
repetitively until we have found a satisfactory answer (or we have given up).

The details of these transition processes (which are the heart of GA’s ) vary widely, but
all share a basic tripartite structure. The elements of that structure are
e selection: designating which members of the current population will be allowed an

opportunity to pass on their characteristics to the next generation.

e recombination: contructing new child models by combining model features copied
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Figure 11.2: A schematic display of a model population in an application where a model
is specified by a single real number in the range [0,1]. The population consists of fifteen
randomly-chosen points from model space. Also shown is the objective (or “fitness”)
function as well as the value achieved by each model in the population.

from the set of selected parent models.

e mutation: randomly perturbing the model parameters of an occasional child model
(for the purpose of adding diversity to the population).

The literature cited earlier, like the field itself, abounds with a lush and bewildering variety
of genetic algorithms. We must content ourselves here with describing the particular
algorithm we actually used (which is a of a fairly common sort) in the example described
later.

11.5.2 Selection

We first select two parent models from the current population. The parent models will be
allowed to pass on some of their characteristics to a child model in the next generation.
We try to select the parents in a way that favors better models (in the sense of fitness) over
poorer models, but which still affords all models a reasonable opportunity to reproduce;
we will return to this point later. In our algorithm, the selected parents remain in the
population (that is, reproduction is not fatal).

A commonly used form of selection is illustrated in Figure (11.3). We assign a slice of
a roulette wheel to each model. The size of each model’s slice is somehow related to
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Figure 11.3: Each model in the current population gets a portion of a roulette wheel
according to its rank in a population sorted by fitness. We select parents by spinning
the wheel once for each parent (but we require the two parents to be distinct). (The
proportions shown here are not intended to directly reflect the situation in Figure (11.2).

that model’s relative fitness. In the example we discuss later “wheel space” is allocated
to each member of the population as a function solely of that member’s position in the
population’s rank order; that is, the position in the population once it has been sorted in
order of fitness. We use this scheme because it is independent of many decisions about
objective function scaling, but many other choices are in use.

11.5.3 Recombination

The next step is the creation of a “child” model from the selected parents. This step is
in some sense the inner magic of GA’s because it is mainly here that searching extends
into new regions of model space. Recombination, often called crossover, constructs a
child model by splicing together pieces copied from two parent models. The notion of
“splicing” bits of models together makes sense because we explicitly regard a model as
composed of a list of values. This list is called a “chromosome.”

The details of this representation are extremely important to producing an effective al-
gorithm, and the selection of an efficient representation is a major part of the art of GA’s.
In the example shown in Figure 11.2, where the “real” model was a single, real-valued
number, a good representation might be to use a 5-bit binary number. In this case our
chromosome would consist of 5 values, each of which was 0 or 1.

The simplest type of recombination, called one-point crossover, is as a cartoon in Figure
(11.4). Here two parent models, namely 10000 and 11111, are recombined to form two
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Figure 11.4: Fach model is encoded as a binary string of length 5. The two upper models
are the parents (and are already present in the population) and the two lower models
are the offspring produced by recombination. After a crossover point is chosen randomly
from the chromosome’s interior, each child is constructed by taking the first portion of
its chromsome from one parent and the second portion from the other.

child models, 11000 and 10111. The recombination process shown here simply requires
us to pick a random intermediate point in the chromosomes, and contruct each child by
selecting the first portion of its chromsome from one parent and the second portion from
the other parent.

In our algorithm, one of the offspring is returned to the population to compete. At that
moment, since the parents are still present in the population, there is an extra member
in the population. We then discard the least fit of these. In this scheme a child must be
at least as fit as the least fit pre-existing member in order to survive.

The 5-bit chromosome of binary digits can represent 2° = 32 different states. There is
no instrinsic reason why these had to be equally-spaced, or even ordered, points across
the model domain. We are free to use mappings that are more natural to a particular
problem, such as non-equally spaced points or different binary representation schemes
such as (as is often done) Gray coding (see [How75]). Further, individual chromosome
values do not have to be binary; many applications use larger domains (as does the one
we discuss later). The selection of useful representations is one of the most challenging
and central issues in making GA’s useful optimizers.

Note also that recombination results in a search in model space in which newly sampled
regions need not be adjacent to previously sampled regions. (Simulated annealing, on
the other hand, proceeds by a series of neighbor-to-neighbor steps.) This non-linear,
non-proximate search process results in a surprisingly efficient reconnaisance of model
space.
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Figure 11.5: A stage in the hypothetical evolution of a GA maximization calculation
associated with the model shown in Figure (11.2). The elements of the population are
clustering near peaks of the objective function.

11.5.4 Mutation

Finally, most GA’s also incorporate a low probability randomizing process called muta-
tion. Mutation acts to randomly perturb a randomly chosen element in an occasional
(randomly selected) child. In the absence of mutation, no child could ever acquire a
chromosome gene value which was not already present in the population.

11.5.5 Search

The result of these three operations, selection, crossover, and mutation, is a new popu-
lation of models the same size we started with. Figure (11.5) represents an intermediate
stage in the hypothetical evolution of a GA for the optimization problem illustrated in
Figure (11.2). We can see that the members of the population have begun to cluster
around the maxima.

The selection process is crucial to a GA’s effectiveness because it determines the balance
between exploration and exploitation. A selection algorithm which gives too little weight
to fitness will not lead to convergence near maxima; with no weight at all the process
simply becomes a kind of unbiased random search. The other extreme, an algorithm that
overemphasizes fitness, tends to converge too quickly around the one or two fittest initial
models; this extreme does not search long enough to get the lay of the land.
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1. The four models shown are all associated with the schema 10**1.

There are many other issues involved in selecting a GA. Do we allow duplicate models
in the population? How do we choose an initial population? How do we know when to
stop? We do not have the space, the experience, or the insight to discuss any of these
comprehensively. It is our experience, however, that these design issues are still open
questions, and anyone who would apply these algorithms must be prepared to spend
some effort in experimenting with the algorithm.

11.5.6 Schemata

Holland [Hol75] has provided a deep theoretical result that sheds light on the nature of a
GA’s search. Holland’s insight derives from considering the effects of selection, crossover,
and mutation on the probability of occurrence of schemata in the population.

A schema is a regular expression in model space. A schema is constructed by replacing
zero or more of the parameters in a model with “don’t care” symbols, ¢f. Figure (11.6).
A schema always matches one or more actual models.

Schemata play the central role in Holland’s analysis of the inner workings of GA’s because
schemata, unlike the models themselves, have significant and calculable chances of surviv-
ing reproduction even when the child model is different from both of its parents. Holland
analyzed a simple (but representative) form of GA in terms of the change in the number
of instances of a particular schema in the population. Define the fitness of a schema to
be the average fitness of all of the models that are represented by that schema. Holland
showed that the expected number of instances of a particular schema will grow more or
less exponentially with an exponent that reflects the ratio of the fitness of that schema to
the average fitness of all schemata.

Holland’s insight suggests that GA’s are searching for globally distributed information
about the behavior of the function we seek to minimize, but that the form this information
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takes is subtle. It also points out that the “state” of a GA is carried by the entire population
of models, as opposed to simulated annealing in which the state is carried by one point.
Thus in some sense, a GA has greater potential because it has a larger and more complex
form of “memory” than simulated annealing.

11.6 Example: Array Optimization

Barth and Wunsch [BW90] proposed using optimization techniques to aid in designing
acoustic tomography experiments. They applied simulated annealing to a simple yet
interesting and illustrative design example. We’ll apply a GA to a reduced version of
their calculation.

Suppose that we wish to design a travel-time tomography experiment that is, in a sense
that we will describe shortly, maximally efficient. To be more specific, suppose that the
model we wish to determine consists of a 3 x 3 array of homogeneous blocks and we wish
to determine the acoustic slowness of each block. Suppose further that we are given a
set of potential observations; that is, a set of potential ray paths from which we choose
the (smaller) set of actual ray paths along which we may observe travel times. Finally,
suppose that we can ignore ray-bending so that all rays are straight lines. We will be
allowed to make 9 actual observations, the smallest number that could possibly resolve all
9 model parameters. Our problem is to select the 9 actual rays from the set of potential
rays such that the wave speeds in the model’s blocks are determined as accurately as
possible.

We follow Barth and Wunsch in defining “as accurately as possible” in terms of the
singular values of the system’s sensitivity matrix. Suppose that we have chosen a set of
actual rays. Then we can compute a 9 x 9 matrix, S, which tells us how to compute the
travel times for this set of rays, 7, given the values of the model’s slowness parameters,
o:

T=S5"0.

The singular values of S are a measure of the dependence of errors in the model’s para-
meters, o, upon errors in the travel-time data, 7. The larger the singular values of S are,
the smaller the errors in 0. Our measure of goodness will be the value of the smallest sin-
gular value of S. (Since S is a function of the actual rays being observed, then obviously
the singular values are also a function of the actual rays being observed.)

We specify the calculation by specifying the size of the model (3 x 3 in this case) and a
set of potential rays from which the final rays must be selected. We chose a set of 216
potential rays; these are shown in Figure 11.7. (The number of geometrically feasible
rays is larger than this; we reject rays that, for example, have both endpoints on the same
side, or give rise to the same matrix coefficients.) Fach trial solution of our optimization
problem is a set of 9 actual rays chosen from the set of 216 potential rays. For those
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Figure 11.7: The set of 216 rays made available to a fictitious tomographic experiment.
The model is a 3 x 3 block model. Designing the experiment requires the selection of 9
rays from this set such that the most poorly-resolved model parameters is as well-resolved
as possible. Not all rays are separately resolved in the figure.

9 rays we compute a sensitivity matrix, 5, and its singular value decomposition. The
“goodness” of the chosen set of 9 rays is the value of the smallest singular value of S.

The function we are trying to optimize is very complicated and probably impervious
to assaults by local optimization techniques. Think of each trial solution as being a
point in a 9-dimensional solution space; each coordinate is integer-valued and can take
on any value in the range 1,...,216 (representing the selection of one ray from the set
of potential rays). If we ponder a bit on whether or not the quantity we are trying to
optimize is unimodal (has only one extremum) or not, we will be forced to the conclusion
that in fact this function has no natural shape. Because we are free to map the integer
values 1,...,216 to the set of basis rays in any fashion we want, and because there is
no “natural” mapping, we can make the shape of the function into virtually anything we
wish. More to the point, we have no idea how to choose a mapping which will make this
calculation amenable to local optimization.

We fed this problem to a fairly straightforward GA and allowed it to chug along for
3.5 % 10° trials. It came up with the ray set shown in Figure 11.8. We don’t know if there
is a better solution but this seems to be a pretty good one. Its singular values are shown
in Figure 11.9.

The GA found this result after examining 3.5 x 10° ray sets. This sounds like a lot of
work (and it is) but the model space it was searching contained 8 x 10*® models, so from
that point of view this calculation was astoundingly efficient.
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Figure 11.8: Model calculated by the GA which maximizes the smallest eigenvalue of the
forward operator.
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Figure 11.9: Singular value spectrum for the ray set shown in the previous figure. There
are 9 singular values and the smallest is 0.37.
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11.7 Summary

We don’t want to leave the impression that GA’s are a magic combination of a Black Box
and a Silver Bullet; they’re not. Casting a particular problem into a GA requires making
crucial decisions about how to represent the problem domain and how to implement the
basic reproductive operations. In our example here, we had to decide how to deal with the
permutational degeneracy of our goodness function: all of the permutations of a particular
set of actual rays have the same goodness. We also had to consider whether or not the
GA crossover operation would be allowed to give rise to a child structure in which some
specific ray appeared more than once: the smallest singular value for any set of actual rays
with duplications is exactly zero. The point here is not how we actually dealt with these
issues, but rather that the issues themselves are extremely important to the efficiency of
GA’s , and can easily make the difference between success and failure.

On the other hand we believe that global optimization techniques in general, and GA’s
in particular, will see increasing use. This popularity will reflect the increasing power
of computing hardware (which makes large numerical efforts ever more practical), the
increasing complexity of geophysical inverse calculations (particularly in the application
of a prioriinformation), and the fascinating possibilities raised by the existence of global
optimization algorithms such as these.
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Chapter 12

Monte Carlo, Statistical Mechanics and
Combinatorial Optimization

12.1 Statistical Mechanical Foundations

As we shall see there is a deep connection between optimization by simulated annealing
and the equilibrium statistical mechanics of systems of particles in a heat bath. In order
to fully explain this connection it is necessary to begin with a brief excursion into classical
statistical mechanics.

In Newtonian mechanics, the state of a system of point particles can be completely spe-
cified by giving the position and momentum of each particle. There are three independent
coordinates or degrees of freedom for each of the N particles, for a total of 3V degrees of
freedom. Thus the state of such a system can be completely specified as a point in a 6V
dimensional Euclidean space I' (the phase space) whose axes are the coordinates and mo-
menta. The dynamical evolution of the system, governed by Hamilton’s equations, then
amounts to a path in phase space—a nonintersecting path since if the potential energy is
reasonably behaved, the solutions of Hamilton’s equations are unique except for isolated
equilibrium configurations. The level surfaces of the Hamiltonian (H = E, where E is a
constant) are 6N — 1 dimensional hypersurfaces F of constant energy E in I-space. For
example, the energy of a single mass-oscillator system in 1-d is just %mv2 + %ka, SO in
this simple case the energy surface F is just the boundary of an ellipse in the plane. If
the energy of a system is constant, then all of its trajectories will lie on the appropriate

surface O F.

For conservative mechanical systems the Hamiltonian is equal to the total energy, and
dH/dt = 0 along paths in phase space. In addition to the energy, there will be other
constants of the motion. One could, for example, imagine simply integrating Hamilton’s
equations to achieve 6 N — 1 additional constants of the motion. These constants of the
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motion (or integrals) are said to be “isolating” or “not isolating” according to whether
they define whole surfaces in I'-space or not. Isolating integrals, in a sense, trap the
trajectories, preventing them from moving freely about the energy surface. A system is
said to be ergodic (or metrically transitive) if there are no isolating integrals other than the
energy [Rei80]. In the example of the harmonic oscillator, it is clear that every trajectory,
no matter where it starts, must travel completely around the ellipse. Thus the energy is
the only isolating integral for the single oscillator system.

An idea central to almost all of statistical mechanics is that for a system in thermal
equilibrium, all states with the same energy are equally probable. Thus the probability
that the state of a system will lie in a given neighborhood B on the energy surface is
simply the ratio of the area of the neighborhood to the area of the entire energy surface.
In symbols this is expressed as

p(B)= =2, (12.1.1)

(As we shall see, this is essentially the canonical ensemble of Gibbs.) As a result, if we
plot the trajectory for any initial configuration (except for a set of measure zero) we will
eventually see this path come arbitrarily close to any point on the energy surface. In other
words, if we cover the energy surface with disjoint open sets of arbitrarily small size, and
wait long enough, the trajectory for almost any initial configuration of the system will
eventually intersect all of the sets. Thus we can see intuitively that ergodicity and thermal
equilibrium are intimately connected. The connection is made formally by Birkhoff’s
[Bir31] ergodic theorem® which says that a system is ergodic if for any integrable function
on I'-space, the spatial or phase average of the function over JF equals its temporal
average.? Reichl [Rei80] gives examples of the application of this theorem to some simple
systems.

For any macroscopic system, the number of particles N is unimaginably large; yet the
measurable, thermodynamic state of our system can be described by a few variables such
as temperature, pressure, flow velocities, volume, and so on. Thus from the thermody-
namic viewpoint we know virtually nothing about the microscopic details of the system.
The way out of this difficulty was provided by Gibbs, who had the insight that rather than
concentrating on the time evolution of a single path in phase space, which would require
specifying the initial positions and momenta of roughly 10** molecules (per mole), one
ought to look instead at an ensemble of identical systems (identical with respect to the
imposed macroscopic conditions) each of whose states moves in accord with Hamilton’s
equations. In other words, since our knowledge of the state of the system at any instant is
almost nonexistant, we must use a probability density to specify it. A probability density
for a single system can be represented by an ensemble of systems, each given by a point

!The original ergodic hypothesis of Boltzman ([Bol71b] and [Bol71a]), that the trajectory passed
through every point of 9F, was shown to be untenable by Rosenthal [Ros13] and Plancherel [Plal3].

2le., JrAlg, p)pdpdg = limp_, % fOT A(q(t), p(t)) dt, assuming p is normalized.
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in ['. Assuming the points in I' are very dense, we can use a continuous density p, where

p(qlv"'7Qf7p17"'7pf7t)d(h"'devdpl"'dpf f: 1727"'73N (1212)

is the number of systems contained in the I volume element

(91,1 +dgi) -+ (ps.py + dpy) (12.1.3)

at time t. In time, the points in the ensemble move through phase space as a fluid flows.
And since systems are by definition conserved, p is constrained by the the continuity
equation

dp
V.pv =0 12.1.4
5 TV = (12.1.4)
where v = (¢4, ..., G5, P1, ..., ps). Further, from Hamilton’s equations
OH OH
4G = 5 Pi= =5 12.1.5
T Op; T 0 ( )
it follows that the “fluid” flow is incompressible:
0q; ap;
Vev= =0. 12.1.6
° Z dq; * Z opi ( )
This incompressibility gives rise to Liouville’s theorem % = 0, or in terms of Poisson
brackets, % = —[p, H].

The precise form of the probability density p depends on the choice of thermodynamic
variables. The constant energy ensemble is called the “microcanonical.” For this case

plg,p) = 8(H — E) (12.1.7)
where § is the Dirac distribution.?

The constant temperature ensemble is called the “canonical” ensemble. The canonical
probability density is derived by considering a very large system in diathermal contact
(i.e., allowing the transport of heat but not mass) with a small one. The large system
is called the “heat bath” and acts to fix the temperature of the smaller system. Since
the effects of the smaller system will be concomitantly small, the probability density can
be developed as an expansion using the Hamiltonian of the second system as a small
parameter. It turns out that a direct expansion is too restrictive, but that a logarithmic
expansion is quite widely applicable ([Bec67], Ch. 37). The result is

plg,p) = CemMHan/hst (12.1.8)

3The normalization for this density can be shown to be [pdqdp = f VH] where dA is an element of
the surface H = E. ([Bec67], Ch. 32)
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or in terms of an energy distribution
p(E) = Qu(E)e ks (12.1.9)

where k is Boltzman’s constant, C' and () are normalizations, and w is the density of
states. (Cf. [Bec67] for more details on the definition of w, which is potentially subtle as
it depends on whether or not particles are distinguishable, i.e., whether particles can be
exchanged without affecting the number of states.) There are many alternative derivations
of (12.1.8) and (12.1.9). Reichl ([Rei80], Ch. 9.B.2) extremizes the Gibbs entropy via
Lagrange multipliers and Weiner ([Wei83], Ch. 2.7) calculates p directly by its definition
in terms of phase space volume in the limit as the number of particles in the heat bath
goes to infinity.

The temperature, actually kBLT, is defined to be the logarithmic derivative with respect to
energy of the larger system’s density of states. In thermodynamics the energy of a system
is a function of its temperature. But in statistical mechanics, energy and temperature
are coupled by a basic uncertainty relation. If a system is closed, then its energy is well
defined (microcanonical ensemble) and the temperature is defined, subject to fluctuation,
in terms of the logarithmic derivative of the density of states. On the other hand, if the
system is in equilibrium and in contact with a heat bath, T" is well-defined and the energy
is known only approximately according to (12.1.9). The reason T is well-defined is that
since the heat bath is a large system (as large as we want) its temperature fluctuations
can be neglected.

12.2 Annealing As Global Optimization

Annealing is the process whereby a solid in diathermal contact with a heat bath is brought
to its melting point by raising the temperature of the heat bath; after the molecules of
the melted phase are allowed to arrange themselves randomly, the material is gradually
cooled, step-by-step, to its freezing point. It is important that each time the temperature
of the heat bath is lowered slightly, the material is allowed to come to thermal equilibrium.
Eventually the material is frozen into a stable, low energy state corresponding to some
periodic arrangement of the molecules in a lattice.* If the cooling is done too rapidly,
defects (any violation of the symmetry of the lattice such as vacancies or dislocations)
are frozen in, thus weakening the material. And if the cooling is done instantaneously, a
process known as quenching, the system will likely freeze into an metastable, amorphous
state.

If we plot the Hamiltonian of a system H(p,q) (p and ¢ represent all of the generalized
momentum and position coordinates) as in Figure 12.1, then a geometrical interpretation
of annealing is that it is a way of moving the system around the energy surface until it lies

‘However, there are systems known as spin glasses where this does not apply. The study of these
strange beasts 1s an active area of research both for condensed matter theorists and global optimizers.
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Figure 12.1: The hypothetical energy surface of a system with a two dimensional phase
space. This surface has numerous local minima.

within the basin of attraction of the global minimum and then freezing it. Now, since the
system can exchange energy with the heat bath, its temperature is subject to fluctuations,
as previously discussed. Therefore the state of the system is not constrained to lie precisely
on the surface H = constant but will lie within some shell H —6H < H < H+6H. As
the temperature goes to zero, the volume of phase space accessible to the system goes to
zero as well, as all of the most probable states are concentrated near zero energy.

As we have seen, a system in a heat bath at equilibrium and at constant temperature is
governed by the canonical ensemble of Gibbs ([Bec67]; [Rei80]). In this ensemble, the
probability that for a given temperature T' the energy will be F is given by the Boltzman

distribution
( —b ) (12.2.1)
exp T 2.

1
Prob{H = K} = 20T
where kjz is Boltzman’s constant and the normalization factor Z is called the partition
function.® The exponential factor is such that at very low temperatures only the lowest
energy states are likely. Thus annealing is one of nature’s ways of finding the min-
imum (global or near-global) of a complex function, the Hamiltonian. This is not to say
that nature always finds the global minimum, even through annealing. Many systems
are known to exist in long-lived metastable states associated with local minima of the
Hamiltonian. In fact the lifetime of a state associated with an energy barrier AFE > kT
is approximately

T =T exp(AFE/ksT) (12.2.2)

where 7,,, defines the macroscopic time scale (¢f. [Sew86], Ch. 6). Because of the expo-
nential, 7 can be quite large.

Invariably Z; from the German Zustandssumme
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12.3 Markov Chains and Monte Carlo Methods

The connection between annealing and optimization is made by assuming that the ob-
jective function of our optimization problem can be interpreted as the Hamiltonian of a
system in a heat bath. That being the case, simulated annealing offers a constructive
method for finding the global minimum of such objective functions.

We begin by choosing an initial point w at random in the domain of the objective function
2. We assume for now that there are finitely many points in {2—so-called combinatorial
optimization—a restriction which is not at all severe since we can always map the domain
onto a hypercube with as many nodes as are necessary to accurately represent the solution.
(I.e., we can assume that Q is an undirected graph.) We then construct a random walk
from this starting point { X}, that is, a sequence of Q-valued random variables forming
a Markov chain M with stationary, or time-independent, transition probabilities

P(w,w') = Prob{ X1 = o'| X} =w} w,w €. (12.3.1)

P(w,w’) is a conditional probability; it is the probability that state at step k 4 1 will be
w’ given that the state at step k was w. By definition, a Markov chain is a random walk
in which the higher order conditional probabilities all equal P(w,w’):

Prob{ X1 = /| X} = w| X1 = w1} =

Prob{ X1 = | Xy = w[Xp—1 = 01| Xy—z = wa} = (12.3.2)

P(w,w’).

To illustrate, consider the following simple example from Isaacson & Madsen [IM76]. Toss
a fair coin repeatedly. Let X, denote the number of heads at the n-th toss. This defines
a Markov chain with a bidiagonal transition matrix having 1/2 on the main diagonal and
1/2 on the superdiagonal. If we want to know where the chain is at any instant, we
need to know where it started: let ag = (oo, o1, ..., a,—1) be the initial state, subject to
Yoo = 1. If we have deterministic knowledge of the state of the system, one of the «;
will be one and the rest zero. After one time step the state of the system will be given by

a1 = CloP. (1233)

After two time steps

ag = a P = aoP?. (12.3.4)

And so on. Thus in matrix language, the evolution of this stationary random walk is
governed by the Chapman-Kolmogorov identity: P*™ = P'P™ where an element of the
left side Pfj’m represents the probability of going from state ¢ to state j in [ + m steps.
For some stochastic matrices, the long-time probability of ending up in a particular state

is independent of the starting point. This implies that the rows of P™ converge to a single
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vector m such that 7P = m. In particular, this will be true for ergodic processes. For
more details see [IM76].

In our case the transition probabilities are assumed to be locally uniform and reversible.
Local uniformity means that P(w,w’) is equal to zero if w’ is not in the neighborhood of w
and equal to one over the number of states in the neighborhood if it is. Local reversibility
means that P(w,w’) = P(w’,w), which in turn makes P a doubly stochastic matrix.® Now
any stochastic matrix obviously has 1 as an eigenvalue. Further, for any such matrix P,
the left eigenvector of unity is an equilibrium distribution (invariant probability vector:
7P = 7) of the associated Markov chain ([IM76], corollary to Theorem IV.2.1). If the
Markov chain is not ergodic, then this equilibrium distribution will be associated with a
subset of the chain only (an irreducible positive persistent chain). Given the definition
of our Hamiltonian as the objective function of an optimization problem, it is clearly
plausible to assume ergodicity; i.e., that every state of the chain can be reached from
every other state. In the Markov chain nomenclature, ergodicity is called irreducibility.

There can be no other nontrivial positive left eigenvectors of P since
)\$:$'P:>)\Z$Z’:ZZ$]‘P]‘Z':Z$]‘ (1235)
4 t g J

whence if #; > 0 then A = 1 and, conversely, if A # 1 then the elements of x must sum to
0. The multiplicity of the eigenvalue 1 is equal to the number of irreducible closed subsets
of the chain ([IM76], Ch. 4): once again, assuming ergodicity simplifies the discussion.

From this stationary random walk we construct a temperature dependent family of Markov
chains M(T'), the nonstationary transition probabilities for which are given by

‘ n | Plw,w)e=AE/EBT) when AE >0
P(Tsw,0) = { P(w,w’) when w # w’ and AE <0 (12.3.6)
and
P(Tiw,w)=1-= > P(T;w,w"), (12.3.7)
w!'#w

where AF = F(w')— E(w). In words, we accept unconditionally any step which decreases
the energy, and we accept conditionally a step which increases the energy if a number
chosen at random with uniform probability on [0,1] is less than the Boltzman factor.
Were it not for the ability of the method to accept unfavorable steps, the first part of
(12.3.6), the random walk would immediately become trapped in a local minimum near
the starting point. Equation (12.3.7) is necessary to ensure proper counting; if we do not
count moves from w to w’ which are forbidden, then we erroneously reduce the number
in state w relative to w' [MRR*53].

A stochastic matrix is a matrix whose elements are all non-negative and whose rows sum to one. The
rows, therefore, may be interpreted as probability densities. A doubly stochastic matrix is one in which
both the rows and columns sum to one. One can show by induction that if P is stochastic, then P™" is as
well, for any n.
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If the temperature T' is fixed, then we are describing the Monte Carlo method of Metropolis
et al. [MRR*53]. These authors show that the method does indeed choose configurations
with a probability equal to the Boltzman probability. More precisely, they show that
if local reversibility holds at infinite temperature (i.e., in the absence of the Boltzman
factors), then the equilibrium distribution of (12.3.6)—(12.3.7) is

P’ (Tiw) = ﬁexp (— i](;;)) : (12.3.8)

This is an example of importance sampling. We could achieve the same result by sampling
the domain uniformly and weighting with the Boltzman factor. But most of these samples
would contribute very little to the distribution. The beauty of the Metropolis algorithm
is that we preferentially sample those points which are most likely to contribute.

Equations (12.3.6)—(12.3.7) are by no means the only stochastic matrix that we could
choose. Allen and Tildesley [AT87] discuss other examples and the means of characterizing
their relative efficiency. Although Metropolis and Ulam were the first to use the term
“Monte Carlo” [MU49], random sampling of probability distributions goes back at least
to the turn of the century. From Allen and Tildesley [AT87] we learn that Student (nom
de plume of W.S. Gosset [Stu08]) computed the correlation coefficients of his distribution
by random sampling. In 1901, the Italian mathematician Lazzerini experimentally verified
Buffon’s needle problem by dropping some 3400 needles, thereby (fortuitously, it turns
out) estimating pi to be 3.1415929 (cf., [Ped58]). And Lord Kelvin [Kel01] had some 5000

random trajectories generated to study elastic collisions.

A basic result from probability theory relates the fluctuations in ensemble averages to the
size of the sample. If states of the system are chosen according to (12.3.6) — (12.3.7) then
ensemble averages of a given quantity A are, after n Monte Carlo steps, related to the
expectation of A in the canonical ensemble by

<A>Gibbs = <A>sy5tem + O(n_l/z). (1239)

For details, see [Chu60].

12.3.1 Historical Digression: Stanislaw Ulam, John von
Neumann, and the Monte Carlo method

Stanislaw Ulam was born in 1909 in Lwéw, Poland. He was educated at the Polytechnic
Institute of Lwow where his mathematical teachers were the likes of Kuratowski, Mazur
and Banach. According to Ulam, Banach “enjoyed long mathematical discussions with
friends and students. I recall a session with Mazur and Banach at the Scottish Café that

lasted seventeen hours without interuption except for meals”.
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Ulam began his frequent visits to the US in the late 1930’s thanks in part to the good
offices of John von Neumann at Princeton. He was fortunate to be on one such visit when
war broke out in Europe. He remained in the US, except for brief trips, until the end of

his life.

Although the first published account of the Monte Carlo method is the paper by Metropolis
and Ulam [MU49], Ulam and von Neumann had exploited the ideas for several years in
their work at Los Alamos. Here is Ulam’s own account of the development of Monte
Carlo methods from some remarks he made in 1983 [Coo].

The first thoughts and attempts I made to practice [the Monte Carlo
method] were suggested by a question which occurred to me in 1946 as I
was convalescing from an illness and playing solitaires. The question was
what are the chances that a Canfield solitaire laid out with 52 cards will come
out successfully? After spending a lot of time trying to estimate them by pure
combinatorial calculations, I wondered whether a more practical method than
“abstract thinking” might not be to lay it out say one hundred times and
simply observe and count the number of successful plays. This was already
possible to envisage with the beginning of the new era of fast computers and |
immediately thought of problems on neutron diffusion and other questions of
mathematical physics, and more generally how to change processes described
by certain differential equations into an equivalent from interpretable as a
succession of random operations. Later ... [in 1946, I] described the idea to
John von Neumann and we began to plan actual calculations.

By early 1947, von Neumann had already begun to carry out Monte Carlo calculations
of neutron diffusion. And by 1948 Ulam reported to the Atomic Energy Commission
about the application to such things as comic rays and the solution of Hamilton-Jacobi
differential equations.

About his good friend, whom he called “Johnny”, Ulam had this to say:

His immense work stands at the crossroads of the development of exact
sciences....His ideas also advanced immeasurably the attempts to formalize the
new, strange world of physics in the philosophically strange work of quantum
theory. Fundamental ideas of how to start and proceed with the formal modes
of operations and the scope of computing machines owe an immense debt to
his work, though they still today give hints that are only dimly perceived
about the workings of the nervous system and the human brain itself.
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12.4 Simulated Annealing

The generalization of the Metropolis Monte Carlo method to simulated annealing involves
beginning the calculation at a relatively high temperature (7. ), sufficiently high that all or
most unfavorable steps are accepted, and gradually lowering 7" until unfavorable steps are
accepted with vanishingly small probability (7p), at which point, the system is effectively
frozen. In this case the Markov chain has nonstationary transition probabilities

P(T;w,0') = Prob{Xj + 1 = J'| X}, = w} ww' €0 (12.4.1)

where the set {To < T), < T} comprises the annealing schedule.

The simulated annealing algorithm thus described (the simplest, “homogeneous” form
of the algorithm) is known to converge asymptotically with probability 1 to the global
minimum; a proof is given by [vVLLA87]. This form of the algorithm is due to [KGV83] and
has been extensively tested on a number of difficult combinatorial optimization problems
such as the traveling salesman problem. Many generalizations exist which allow one
to take advantage of special knowledge of the objective function. For example, if the
objective function possesses a global minimum which is substantially deeper than the
local minima, then the generalized simulated annealing algorithm of [BJS86] may be
very effective. These authors let their temperature depend on the current value of the
objective function. If the global minimum is zero, then it is unlikely that the random
walk will escape from the global minimum once it is entered. If the global minimum is
not known a priori to be zero, then they suggest a scheme for achieving approximately
the same result by shifting by the current smallest value of the objective function.

12.5 Calculating the Annealing Schedule

The success of simulated annealing will depend to a large degree on how the annealing
schedule is chosen. Lower the temperature too fast and, as in physical annealing, the
system will likely freeze in a local minimum. Lower the temperature too slowly and the
computational performance will be unacceptable. In inverse scattering problems, each
evaluation of the objective function requires solving a forward scattering problem; in the
examples that we shall address this requires computing synthetic seismograms. Therefore
relatively efficient convergence is important. The most widely used annealing schedule is
the logarithmic schedule

1o

O =a+n

(12.5.1)

where ¢ is the time-step along the Markov chain. [GG84] show that a sufficient condition
for asymptotic convergence of the annealing is that the schedule not be faster than this.
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Specific Heat

Temperature

Figure 12.2: Hypothetical specific heat curve showing the critical temperature.

A much faster schedule has recently been proposed by Szu and Hartley [SH87]:

1o
T(t) = ——. 12.5.2
(0= (125.2)
We have implemented both of these schedules and will compare their results; but our
hope is that by appealing to the detailed physics of phase transitions and the theory of
Markov chains, we can calculate efficient annealing schedules automatically. Recent work
in [NS88] and [Mat89] points the way in this direction.

The critical temperature in real annealing is the melting point of the system. At this
point a phase transition occurs as the system either gains (freezing) or loses (melting)
long-range order. Thus one may be able to determine the presence of freezing or melting
by looking, for example, at the critical behavior of the specific heat. Figure 12.2 shows a
hypothetical example of a phase transition. For a real example, see [EGST89].

The specific heat, as well as other thermodynamic quantities such as the entropy and
the Helmholtz potential, can be calculated from the partition function and the first and
second moments of the Hamiltonian, increasingly accurate approximations of which are
accumulated at each step of the procedure. The specific heat, for example, is just

o(T) = 8];(TT)

(12.5.3)

where E is the expectation value of the objective function. It can be shown that C'(T) =
0%/ T?* where o is the variance of the energy at equilibrium. The Helmholtz free energy
(or Helmholtz potential) is

F(T)=E(T)-TZ(T) (12.5.4)
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This potential is a natural choice for studying equilibria in the canonical ensemble because
of the minimum principle: The equilibrium value of any unconstrained internal parameter
in a system in diathermal contact with a heat bath minimizes the Helmholtz free energy
at the constant temperature of the heat bath [Cal60].

What we need to quantify are:

e How far from equilibrium is the system’s distribution.

e How rapidly the temperature can be changed between steps.

On the one hand, we know that the specific heat relates the changes in internal energy to
changes in temperature. On the other, we know from Markov chain theory that the rate
of change of the energy with time is governed by the eigenvalues of the stochastic matrix
P. Relating these two rates gives an implicit expression for the annealing schedule.

Nulton and Salamon [NS88] provide a rigorous mathematical discussion for this line of
argument, speculated upon heuristically by Kirkpatrick et al. [KGVS83], by analyzing
approximately the discrepancies between the calculated distribution of X}

pr(w) = Prob{X} = w} (12.5.5)

and the equilibrium distribution (12.3.8). This discrepancy is a measure of how far from
equilibrium the system is. They measure this discrepancy in terms of the function =
where

[1]

0(, ]2
_y lel) — ) (12.5.6)
- Po(w)
The function = generates a Riemannian metric (ds* = Z(p, p + dp)) on probability space
“which quantifies the separation between the system [p] and the target [p°] as the measure
of statistical uncertainty associated with their distinguishability” [NS88]. If it is assumed
that the system itself is a canonical distribution, and if the perturbations from p° are
small then

== (0E)/o(E°)? (12.5.7)

where E and E° are the expectation values of the energy in the system and target distri-

butions, 6 = I — E°, and

(B =3 [E(w) - E°] (). (12.5.8)

w

Now the specific heat governs changes in energy with respect to changes in temperature,
while the rate of change of energy with respect to time at constant temperature is the
relaxation rate of the stationary process. To relate them [NS88] assume that

db —1

b n). (12.5.9)
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This is plausible since the relaxation of a stationary Markov Chain is asymptotically
exponential. From this and (12.5.7), and using C(T') = 0?/T?, it follows that

% R (v@ + ,/(J(T))_1 (12.5.10)
where (T) =1+ (T/ZC)% and v = 4/=(p° p).

Equation (12.5.10) is implicitly the annealing schedule. It remains to be seen in practice
whether the assumptions involved in (12.5.9) will be justified in practice, although it seems
reasonable for slow annealing schedules. In order to utilize (12.5.10) in practice we need
to be able to calculate the specific heat ' and the stationary relaxation rate e. Calculating
C is straightforward using C' = ¥?/T', since one readily accumulates approximations to
E and E?. The stationary relaxation rate ¢ is more difficult. From the Perron-Frobenius
theory ([Sen81]; [IM76]) we know that e is related to the penultimate eigenvalue of P. But
for a realistic problem, say 100 unknowns and 100 lattice points for each unknown, P is of
order 1001°° < 1001°°. On the other hand, since  has the topology of a hypercube we know
that only 2 x 100 x 1001 of these elements will be nonzero. Relying on the principle of
importance sampling, it is at least plausible to suppose that a reasonable approximation
to € can be computed at each Monte Carlo phase of the procedure. (For example, one
may use Lanczos’ method or conjugate gradient [Sca89].) Nulton and Salamon [NS8§]
provide an alternative method of estimating e approximately, which we have tentatively
implemented. An analysis of the validity of this approximation will be the subject of a
future report. For starters, however, there is an easy way of achieving approximately the
same end within the framework of any of the conventional annealing schedules, and that
is to make an accurate calculation of the specific heat function and use that to identify
the critical temperature where the quasi-static annealing should begin. (We simply plot
the specific heat and look for peaks.) To do this you must make an ensemble of trail
annealing runs to get accurate statistics. We usually do at least 10 and take the ensemble
average of the individual specific heat functions. Once this is done, any sufficiently slow
annealing schedule appears likely to work.

12.6 Surfaces and Volumes in High-dimensional
Spaces

The discussion of optimization/sampling of functions of many dimensions brings up a
result from statistical mechanics that never ceases to fascinate, as it is highly counter-
intuitive. It concerns spaces of very high dimensionality. These arise in statistical mech-
anics where it is theoretically convenient to consider an entire system of N particles as
representing a point in something called phase space. For each particle there are 3 spatial
coordinates and 3 momemta, for a total of 6N coordinates. You can well imagine that
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with Avogadro’s number of molecules in a reasonable-sized sample of a gas, that phase
spaces get pretty big.

OK, so no matter what the dimension, we can say that the volume of a sphere of radius
r in v dimensions is

where (', depends only on the dimension.

So the volume of a spherical shell V; of thickness s is given by

V= V(r) = V(r—s) = Co(r’ — (r— s)") = V(r) (1 - (1 - f)) .

7

Now for s/r <1 and v > 1 we have
Vi = V(r) (1 — e_”/r) )

So imagine what happens if v is on the order of 10?° or more: the total volume of a
sphere is already contained in an unimaginably thin skin below the surface of
the sphere.

And how about that constant €, above? Not that it matters to the argument, but you
never know when you’re going to need the volume of an n—dimensional sphere, so here’s
how you do it.

Consider the r-dimensional integral

o e 242
J:/ / ewl wvdwl...dxy‘
— 00 — 00

As bad as this may look, it turns out to be easy to compute.

J:{/OO e d:z;} = gv/?

On the other hand, we can express J in spherical coordinates

%] 5 oo d Qy
J :/ e, dr = Ql,/ 67777”/2_1—77 = —I'(v/2)
0 0 2 2

where Q,, is the surface of the v-dimensional sphere and I' is the gamma function. (For
even arguments, the gamma function is equal to the factorial.) Comparing these two

results we have

0 - 2 _ 2702 o)
CT(v/2)  T(v/2)  (v/2—-1)!

assumeing v is even, which we may safely do.
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On the other hand we have directly that

R v/2
VAR = [ 70, dr = R T
0 v (v/2)

This result comes up frequently in conversation at the tonier cocktail parties, so don’t be
afraid to inject it into conversations with your friends and family.
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