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A Neuro–Fuzzy-Based On-Line Efficiency
Optimization Control of a Stator Flux-Oriented
Direct Vector-Controlled Induction Motor Drive

Bimal K. Bose, Nitin R. Patel, and Kaushik Rajashekara

Abstract—Fuzzy logic-based on-line efficiency optimization control has
been described in the literature [1] for an indirect vector-controlled
induction motor drive. The purpose of this paper is to extend the
same control to a stator flux-oriented electric vehicle induction motor
drive and then implement the fuzzy controller by a dynamic back
propagation neural network-based controller. The principal advantage
of fuzzy control, i.e., fast convergence with adaptive step size of the
control variable, is retained. The neural network adds the advantage of
fast control implementation, either by a dedicated hardware chip or by
digital signal processor (DSP)-based software.

Index Terms—Drive, efficiency, fuzzy logic, induction motor, neural
network.

I. INTRODUCTION

Fuzzy logic and neural network techniques are now being increas-
ingly applied to power electronics and variable frequency drives.
One interesting application of fuzzy logic is on-line search-based
efficiency optimization control of a vector-controlled induction motor
drive [1]. The foundation of such a control can be described as follows
[2]. A machine is normally operated at the rated flux, in order to give
the best transient response. However, at light loads, the rated flux
operation gives excessive core loss, thus impairing the efficiency of
the drive. Since drives operate at light load most of the time, optimum
efficiency can be obtained by programming the flux. The on-line
efficiency optimization control on the basis of search, where the flux
is decremented in steps until the measured input power for a certain
load torque and speed condition settles down to the lowest value,
is very attractive. The control does not require any knowledge of
machine parameters, is completely insensitive to parameter changes,
and the algorithm is applicable universally to any arbitrary drive. The
control can be conveniently implemented by fuzzy logic [1], which
is described later [see Fig. 1(b)]. The principal advantage of fuzzy
control is the fast convergence with adaptive step size of the control
variable. This means that the machine flux decrementation starts in
the beginning with a large step size, which then gradually decreases
so that the optimum flux condition is attained quickly. The additional
advantage of fuzzy control is that it can accept inaccurate signals
corrupted with noise.

In this paper, the fuzzy efficiency optimization control is extended
to a stator flux-oriented direct vector-controlled electric vehicle (EV)
induction motor drive of 100-kW power. The fuzzy controller in-
put–output transfer characteristics are then used to train a feedforward
neural network with delayed feedback, which then replaces the fuzzy
controller in the drive system. The basic implementation of a fuzzy
logic controller by a static feedforward neural network is described in
[4]. In such an implementation, all the advantages of the fuzzy control
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are retained. Besides, the neural network adds the advantage of fast
computation, either by a dedicated hardware chip or by digital signal
processor (DSP)-based software routine. In a complex control system,
relief of such a heavy computational burden to the DSP appears
be very attractive. Extensive simulation study indicates excellent
performance of the neuro–fuzzy control.

II. CONTROL SYSTEM DESCRIPTION

Fig. 1(a) shows the system control block diagram incorporating
the proposed neuro–fuzzy controller. The power circuit of the EV
drive consists of a 300-V battery, IGBT bridge inverter and a 100-kW
(peak power) induction motor. Basically, it is a sensorless, stator flux-
oriented direct vector-controlled system [3], [5], where the developed
torque is being controlled in the outer loop. The advantage of stator
flux-oriented control is that it is primarily sensitive to stator resistance
variation, which can be compensated somewhat easily. Besides, near
zero speed, the stator voltage signal behind the stator resistance(Rs)

is somewhat larger and easier to process. However, the disadvantage
is that it introduces coupling, for which decoupling compensation
(idq) is required. The torque loop generates command for theiqs
(torque component of current) loop. The stator flux command	

�

s is
constructed by subtracting the neuro–fuzzy controller output(��	

�

s)

from the rated flux(	�

sr): The flux loop then generates theids
(flux component of current) command after adding the compensation
current(idq); as shown. Both torque and flux loops then generate the
voltage commands which are then rotated and pulsewidth modulation
(PWM)-controlled to drive the inverter.

III. N EURO–FUZZY CONTROL

Fig. 1(b) gives the detailed functional diagram of the neuro–fuzzy
controller indicated in Fig. 1(a). Note that this control becomes
effective only at steady-state condition, which can be detected by
the torque loop error and the frequency signals (not shown). In the
beginning, a complete fuzzy controller characterized by membership
functions of�Pd(pu); L�	s(pu) and� �

s (pu); and the correspond-
ing rule table was developed. The operation principle of Fig. 1(b)
can be described as follows. At a certain steady-state speed and load
torque conditions, the input dc power(Pd) is sampled and compared
with the previous value to determine the decrement�Pd: In addition,
the last stator flux decrement(�L	s(pu)) is reviewed. On these
bases, the flux decrement step�	�

s(pu) is generated from the fuzzy
membership functions and rule table through fuzzy inference and
defuzzification. The adjustable gainsSp andS	s; generated by the
scale factor computation block, convert the input variable and control
variable, respectively, to and from per-unit values, as indicated. The
scale factors are given by

Sp =A1 �

!e

!e(rated)
+ A2 (1)

S s =C1 �

!e

!e(rated)
+ C2 �

Te

Te(rated)
+ C3 (2)

where the symbols and constants are self-explanatory. The� s(pu)

decrementation stops at the minimumPd (or by the constraint of
stator current limit), since any additional� s(pu) in the same
direction will reverse the polarity of�Pd(pu): In fact, the on-line
search mechanism makes the operation oscillating about the minimum
Pd point. The output flux decrements(�	�

s) are summed and ramped
before coupling to the system in Fig. 1(a). The ramping of flux along
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(a)

(b)

Fig. 1. (a) Control system block diagram incorporating the neuro–fuzzy-based efficiency optimization controller. (b) Details of the neuro–fuzzy controller.

Fig. 2. Topology of feedforward neural network with delayed feedback.

with a high-gain torque loop heavily attenuates the pulsating torque.
If any transient condition of the drive is detected, the fuzzy control
is abandoned, and the rated flux is established to get the optimal
transient response. Note that at the minimumPd point with the stator
current limit condition, the drive cannot withstand any sudden load
torque jump because of the sluggishness of the flux loop response. For

the same reason, the increase of speed response is somewhat slowed
down. However, these limitations do not affect EV-type drives.

Once the fuzzy controller was developed, it was simulated with the
complete drive system and iteratively tuned until the best performance
was obtained. A dynamical feedforward neural network was then
trained to emulate the fuzzy controller.
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(a)
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(c)

(d)

Fig. 3. Time domain optimum efficiency search curves at speed(N) = 1000 r/min and torque (Te)= 4:5 N�m.

Fig. 2 shows the feedforward neural network topology, which
uses one hidden layer, and the respective number of neurons at the
input, hidden, and output layer are two, ten, and one. Basically,
it represents an input–output nonlinear pattern matching network
where the nonlinearity is introduced by hyperbolic–tan-type transfer
function (�) at the hidden and output layer neurons. The training
data were generated by simulating the fuzzy controller alone with
the corresponding input–output signals. NeuralWare Professional II+
software based on backpropagation training algorithm was used to
train the network. After extensive training, the fuzzy controller
was replaced by the neural network controller in the drive system
simulation, and its performance was then evaluated. Fig. 3 shows
the performance of the neural network controller at the operating
condition of 1000 r/min and load torque of 4.5 N�m. As the steady-
state condition is detected by the torque loop error and frequency, the
rated flux is decremented in steps. For constant speed and load torque
(i.e., for constant output power), the input dc power decreases, which
indicates the improvement of efficiency. Note that asids decreases

with flux, iqs increases, so that the developed torque always balances
the load torque. The flux decrementation steps progressively decrease
until optimum efficiency (i.e., minimumPd) condition is attained. At
steady state, the operation will oscillate about the optimum point.
At every decrementation of flux, a pulsating torque is likely to
develop which is not acceptable to EV drive. As mentioned before,
the ramping of flux signal along with high-gain torque loop practically
eliminates any pulsating torque. Other operating points were found
to give similarly good performance.

IV. CONCLUSION

The fuzzy logic-based on-line efficiency optimization control has
been extended to a stator flux-oriented vector-controlled induction
motor drive, and the controller is then translated to a dynamical
feedforward neural network. Such a neuro–fuzzy control combines
the advantages of fuzzy and neural controls. The control attains fast
convergence with inherent adaptive step size signals of fuzzy control.
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The neural network implementation permits fast computation and
can be implemented by a dedicated hardware chip or by DSP-based
software. Extensive simulation study verifies excellent performance
of the controller. The controller is being implemented in a laboratory
on a TMS320C30-type DSP and will be tested with a 100-kW EV
drive.
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Discussion on “Simulation of Power Electronic
Circuits Using Sparse Matrix Techniques”1

A. Chandrasekaran

In the above paper,1 the authors have claimed the speeding-up
of a modified nodal method developed by Sudhaet al. (Ref. [3]
in the above paper1) by using sparsity programming and resistance
modeling of the switches, instead of the inductor modeling used in
Ref. [3]. As a co-author of Ref. [3], I want to point out that Krishna
et al. have not implemented the algorithm in Ref. [3] in the proper
manner, while making comparisons for computational speedup. Even
though a binary-valued inductor model is used in Ref. [3], the value
of the inductor in the open condition of the switch is infinity, and
the so-called “elaborate matrix manipulations” mentioned by Krishna
et al. enable easy accounting of this fact. The matrix to be inverted
excludes the switches, and so no refactorization is necessary at any
stage of the solution. Krishnaet al. use a large value of inductance
or resistance for the open-switch model, and so the numerical values
of the matrix change for different switch status. They do not mention
the values used under open-switch conditions in the paper. If sparsity
methods are used in the algorithm given in Ref. [3], the computation
times can be reduced much more than what is given in the paper under
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discussion. Resistance switch model is used in the electromagnetic
transient program (EMTP) of Prof. Dommel. Krishnaet al. deserve
to be commended for implementing the sparse techniques in the
analysis.

Authors’ Reply

K. Vasudevan, P. S. Rao, and K. S. Rao

We thank Dr. A. Chandrasekaran for his comments and the interest
shown in our paper. Our response to his comments is as follows.

1) The algorithm of Ref. [3] of the above paper1 is implemented
by us as per the various steps outlined by the authors in Sections
2.3 and 2.4 of their paper. It is, indeed, mentioned therein that
sparsity techniques can be used to findAAA�1, the inverse of
matrix AAA. Hence, in our implementation of their algorithm,
sparsity techniques have, indeed, been used. In fact, the sparse
solution routines are the very same ones that have been used to
implement our algorithms, except for the change in the solution
routine, which, of course, is necessary.

2) The discusser mentions that, in their algorithm, “The matrix to
be inverted excludes the switches, and so no refactorization is
necessary at any stage of the solution.” Perhaps the discusser
is referring to the matrixAAA, which, indeed, is not affected by
switch states. This has been taken care of in our implemen-
tations, as discussed above. However, the matrix does need to
be calculated and inverted whenever switch states change. This
fact is clearly mentioned in two places (Sections 2.3 and 4) of
Ref. [3].

3) The values of inductances or resistances used for theOFF state
in the subject paper do not deserve any special mention. Any
arbitrary high values could be chosen, while taking care that
the solution procedure does not break down due to matrix
illconditioning. The discusser is correct in stating that the
numerical values of the system matrix keep changing with
changes in switch states.

4) The discusser’s comment that the electromagnetic transient
program (EMTP) uses the resistance model appears to be an
unfinished statement. The EMTP, as well as several other
programs, have used resistor models before. We have clearly
mentioned in Section IV-A of our paper that Ref. [1] mentions
several such cases.

In summary, we feel that all the salient points regarding the
algorithm of Ref. [3] have been taken care of in our implementation.
In our opinion, comparisons given in our paper, therefore, do give
a fair estimate of the computational times for the various algorithms
in question.
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