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Abstract

This paper deals with robust flux observation of an
induction motor using both an analytical observer and an
artificial intelligence based one. Each developed observer
is used in the direct field oriented control scheme of a 30-
kW induction machine. The effectiveness of the proposed
schemes is checked via simulations on an induction motor
driven by a space vector voltage-source pulse width
modulation (PWM) inverter. The corresponding results of
the method combining optimal regulator with neural-
network estimator are compared with those achievable
with the standard PI control and a classical Luenberger
observer. Computer simulations and experimental tests
are presented to highlight the effectiveness of two
proposed observers.

1  INTRODUCTION
At the present time, the direct field oriented control
(FOC) technique is widespread used in high performance
induction motor (IM) drives [1], [2]. It allows, by means a
co-ordinate transformation, to separate the
electromagnetic torque control from the rotor flux one,
and, hence to manage induction motor as dc motor. Such
control method needs the knowledge of the rotor flux
which is not directly measurable. In order to avoid
expensive sensors, rotor flux observers are commonly
used, [4]. Being the effectiveness of the control strategy
based on a right rotor flux detection, the drive
performance is strictly connected to these of the rotor flux
observer. Therefore, the characteristics of the observer, in
terms of stability, accuracy and robustness, critically
influence those of the drive. In this paper, the attention is
focused on the developed observers based on rotor vector
equation. The Luenberger observer and its gains allow to
achieve reduced sensitivity to rotor resistance variations,
[5]. However there is sensitive to stator resistance
variations, which cause steady state and dynamic errors.
Advanced control based on artificial intelligence

techniques is called intelligent control. Unlike classical
control, intelligent control strategy may not need the
mathematical model of the plant. In this work, the
application of the neural network techniques on power
electronics and electrical drives is described. An artificial
neural network (ANN) is designed as an adaptive flux
observer for a vector controlled induction motor drive. In
particular, the neural observer, which estimates just
unavailable part of the state vector, is well suited for
providing fast and accurate flux estimation, with
increased robustness against parameter variations and
reduced hardware (or computational) complexity, [3],
[14]. The design procedure is generally based on the
assumption of perfect matching between the nominal and
actual machine model. This is not the case in real
operating conditions, and, for this reason, some parameter
uncertainty must be taken into account when the observer
performance is evaluated.

This paper is organised as follows. In Section II, the
classical Luenberger observer is described. Section III
presents the neural network structure. In Section IV, the
effectiveness of the proposed scheme is discussed via
simulation results. Section V presents the final remarks.

2  THREE-PHASE INDUCTION MOTOR PROBLEM
STATEMENT

The motor was supplied from a high-frequency ac
resonant link via an IGBT-based bi-directional inverter.
The success in achieving a rotor-flux-regulated and rotor-
flux-oriented induction machine drive depends on how
well the rotor flux magnitude and angle can be estimated.
The whole closed-loop scheme of the considered field
oriented-controlled (FOC) induction motor with state
feedback is represented in Fig.1.
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Figure 1. Schematic of electric drive

The DSP-based implementation block of the closed-loop
observer, with associated analogue and digital interface
circuitry is used. The DSP controller evaluates the current
and voltage model rotor fluxes, schedules in a speed
regulator, a flux regulator and the closed-loop observer.
The standard proportional integrator (PI) controllers
ensure the regulation of the torque and the flux to their
constant reference values and provide the synchronous
reference currents. A suitable feedback gain matrix,
which depends on the rotor speed multiplies the outputs
of the integrators, the synchronous currents and the
estimated flux. The obtained synchronous reference
voltages are transformed into the stationary ones by
means of the rotation matrix, which uses the
instantaneous phase of the estimated rotor flux. Then, the
observer has to reconstruct precisely not only the rotor
flux modulus but also the phase to obtain an accurate
estimated motor torque. The PI parameters are selected by
trial and error in order to achieve the torque and flux
control with the minimum transient and overshoot. Here
the design procedure of the observer is carried out directly
in discrete time, based on the discretised motor model.
The discretized form of the motor is derived through
Euler-transformation method, truncation at the second
term, to avoid possible instability phenomena that may
occur.

The second field-oriented control scheme where the
rotor flux is estimated by using a robust neural network
observer is proposed. The controller provides the
synchronous stator voltages, whereas the neural network
observer estimates the flux needed for the state feedback.

2.1. The system under investigation
As is well known, the implementation of FOC technique
needs the knowledge of the rotor fluxes, which are, in
general, difficult to measure. In order to overcome this
problem, a rotor flux observer, usually based on the

measurements of stator voltages, stator currents, and rotor
speed, can be designed. Once the estimation problem has
been solved, all motor state variables (measured and/or
estimated), i.e. the stator currents, the rotor fluxes and the
rotor speed may be used in order to design a feedback
controller.

A fast prototype simulation model of a three-phase
induction motor is used to provide the experimental data
under several reasonable assumptions. The modelling of
induction motor in normal operating conditions has been
achieved in the reference frame (dq) thanks to Park
transformation in order to validate the control signal. The
experimental setup consists of a 15 kW, 260/380 V,
nominal speed 2312 rpm, nominal power 15kW, nominal
voltage 67 V, nominal current 173.53 A, nominal
frequency 81.3 Hz, 2 pole pairs, delta-connected squirrel-
cage induction motor. Moreover, we consider a space-
vector PWM inverter, the dc input voltage of which is
equal to 1.5 kV, and it operates in asynchronous mode
with a switching frequency of 4 kHz. The mechanical
load was provided by a separately dc generator feeding a
variable resistor. The dynamic model of the induction
motor is described by the equations:
 (stator equation):
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diRv s

sss
λ

+⋅= ,                                                    (1)

(rotor equation):

rr
r

rr j
dt

diR λω
λ

⋅⋅−+⋅=0 ,                 (2)

(flux equations):

rrsss

srsr

rsss

kiL

iMiL
iMiL

λσλ

λ
λ

⋅+⋅⋅=

⋅+⋅=
⋅+⋅=

           (3)

+ VBAT -

COMMANDS
ACCELERATION AND BRAKE

SPEED
SENSOR

TMS320F240
DSP Controller

INDUCT

INVERTER

Signal conditioning
level adjust

filtering

SPEED

LINE CURRENTS AND
DC LINK VOLTAGE

SWITCHING
FUNCTIONS

3

3

2

Signal conditioning
level adjust

filtering



Figure.2 .Rotor flux direct field oriented control  schematic
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2.2 Luenberger rotor flux observer
The classical Luenberger observer is first proposed in
order to reconstruct the flux variables which are difficult
to measure. The control is normalised. The vectorial state
model of the motor using as variables the stator currents
and rotor flux is:
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where:
[ ]Trrss iix βαβα λλ= ,                                      (7)
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The continuous-time Luenberger observer is described
by:
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where the superscript ^ denotes the estimated quantities
and G is the observer gain matrix which is a function of
the rotor speed. The discretized form of the motor is
derived through Euler-transformation method, truncation
at the second term, to avoid possible instability
phenomena that may occur. In this way, the stability of

the proposed observer is provided, even at high speed
without a heavy computational effort.
The discretised state model of the motor is:
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Here the design procedure of the observer is carried out
directly in discrete time, based on the discretised motor
model.
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The discrete matrix obtained using the Taylor series
expansion truncated to the second power term are the
following:
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The gain matrix of the discrete time Luenberger observer
is computed directly in discrete time domain to provide
stability and a proper dynamic performance of the
observer. The Gd matrix has been calculated by
considering the polynomial characteristics of the matrices
Ad and (Ad-GdC). The coefficients of the Gd matrix are
often calculated in order to impose the proportionality
between the motor poles and the observer poles.
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Thus if the proportionality constant between the observer
poles and the motor poles (hd=Pob/Pmotor) is hd<1 the
observer will be stable (since the motor is a stable system)
and it will have a faster dynamic response than the motor.
The feedback gains are calculated off-line for different
constant rotor speed values and then interpolated for on-
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line operation. Note, that, at every sampling time, the
discrete time observer matrixes must be real time
evaluated, since they depend on the measured speed ω(k).
Although the truncation to the second power term of the
motor model usually leads to quite complicated
expressions, the main advantage of such solution is that
the discretized observer remains stable and faster than the
motor, even at very high speed.

In Fig.3 the trajectories of the motor poles and of the
observer poles are shown in the case of two different
values of proportionality constant, hd. The speed range is
(-9000, +9000) rpm, the sampling frequency is 4 kHz and
the hd is 0.995 and 0.96, respectively. It can be seen that
the proposed observer poles remains inside the unity
circle and are shifted to the left respect to the motor poles.

Figure 3. The trajectories of the motor poles and of the observer poles for two different values of hd.

3  NEURAL NETWORK STRUCTURE
Recently, neural networks have been proposed as a
valuable alternative to the above-mentioned solutions [6].
Some of the advantages offered by the use of neural
networks as observers for induction motors are as
follows:
• their almost instantaneous response;
• the simple modifications needed in order to be adapted
to parameter variations;
• the good robustness properties also achievable without
on-line adaptation mechanisms, when employed for
vector control schemes.

For the neural network estimator design, a suitable
training set, based on the simulations of the PI-controlled
induction motor, is generated in order to also preserve the
estimation accuracy in the presence of parameters
variations or uncertainties. In other words, we simulated
the whole scheme presented in the previous section in an
ideal environment, in which the rotor fluxes are assumed
to be measurable. In a connectionist fuzzy-neural
estimator, the input and output nodes of the ANN
represent the input and output signals and in the hidden
layer, the nodes take the roles of membership functions
and rules.

The approach consists in using a Non-linear
Autoregresive Model with Exogenous inputs (NARX)
network which has the advantage of a faster learning
system’s dynamic over the multilayer perceptron network.
Beside this a greater memory capacity due to recursive

topology is provided. The choice of a recurrent network is
a way to introduce a memory effect in the decision; the
decision at time t depends not only on the actual residual
value but also on the precedent decision. The NARX
general model can be expressed in the form,
y(t)=f (u(t), u(t-1),...,u(t- nb), y(t-1),..., y(t- na))            (15)
where u(t) and y(t) represent the input and the output of
the system at time t; nb and na are input and output orders
and f is a non-linear function.
During training, the NN is confronted with pairs of input
(features) vectors and of output vectors (desired
classification results) to adjust the connection strengths
(weights) between the neurones in different layers. This
supervised learning is complete when the network is
capable to classify correctly all trained positions. In the
NN field, gradient-based techniques are widely used to
adjust value weights for optimal performances. An
example is the famous Backpropagation Through Time
algorithm where dependencies of the derivative move
backward in time; it is a simply and efficient method of
computing the gradient of an error criterion with respect
to the weights via the chain rule. In the designed
configuration, presented in the Fig.4 the inputs to the
fuzzy-neural network were the monitored values of the
direct- and quadrature-axis stator voltages and stator
currents. The outputs signals represents the predicted
values of the direct- and quadrature-axis stator currents
and rotor flux. voltages and stator currents.
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Figure 4 Recurrent neural network structure

4  SIMULATION RESULTS
In the case study, the simulation results show the
performances of the proposed solutions, both during
transient and steady-state operating conditions. For this, a
speed control has been simulated using the field-oriented
control (FOC) method and the designed observers for the
rotor flux estimation. The observer logic is generated in C
code, then compiled and integrated in Matlab/Simulink as
MEX file. Closed-loop observer shows an improvement
during speed transitions and, more importantly, allows
further improve performance.

The actual system equipped with a TMS320F240 fixed
point DSP having 20MHz clock frequency. For all  test

conducted, the sampling period has been set to T=0.25
ms. The comparison between the evolutions of
Luenberger observer discretized by Euler method
implemented in the driver and the neural one is reported
in Fig.5. Some slight modifications are inserted in these
simulations to accommodate the training set richness and
the parameter variations in the case of neural observer. In
particular, random signals uniform in the interval of 10%
of the reference voltages, are added to the stator voltages
in order to ensure the richness of the training set in the
neighbourhood of the desired operating conditions.
Therefore, the initial conditions of the stator currents, the
rotor fluxes, and the rotor speed have been set to zero. It
has been observed that DSP-based estimators and ANN-
based estimators perform comparably.

Figure 5. Three-phase stator currents and voltages in the presence of neural network observer.

Figure 6 Step response of the PI (currents/speed) induction machine drive
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Figure 7. The real and estimated rotor flux by the Luenberger observer.

Figure 8. The real and estimated rotor flux by the neural network observer

Fig.7 and Fig.8 show the flux module and the comparison
between the estimated module and the measured one in
both cases of Luenberger observer and neural observer.

5  CONCLUSIONS
This paper takes a comparative look at rotor flux
estimators both from analytical and heuristic points of
view. This produces results both for optimal design of
DSP algorithm implementation , and for analysis of the
powers the fuzzy-neural networks have. A classical
Luenberger observer and a neural network adaptive flux
observer was proposed for speed control of induction
motor. Computer simulations and experimental tests have
provided similar results in terms of the speed performance
and the quality of output signals. The space vector control
scheme in its analytical variant  has been implemented on
a Texas Instrument DSP, TMS320F240, with sampling
frequency at 4kHz. With the actual DSP, a larger number
of neurones can be implemented, and the system is more
flexible, because changing network weights is easier. A
low-cost fast implementation of the proposed control
system can be simply done by using analogue neural
network chips.
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