Компенсация реактивной мощности в электросетях предприятий

http://www.compensation.ru/compensation/inconcerns

Большинство электроприемников (двигатели, электромагнитные устройства, осветительное оборудование и др.), а также средства преобразования электроэнергии (трансформаторы, различные типы преобразователей) в силу своих физических свойств требуют для работы кроме активной энергии, однонаправлено поступающей из сети в электроприемник, некоторой реактивной мощности (РМ), которая в течение половины периода основной частоты сети направлена в сторону электроприемника, а в другую половину периода - в обратную сторону. Несмотря на то, что на выработку РМ, активная мощность, а следовательно и топливо непосредственно не расходуется, ее передача по сети вызывает затраты активной энергии, которые покрываются активной энергией генераторов (за счет дополнительного расхода топлива). Кроме того, передача РМ загружает электрические сети и установленное в них оборудование, отнимая некоторую часть их пропускной способности. Например, если предприятие потребляет 4 единицы активной энергии и генерирует 3 единицы реактивной энергии, сеть оказывается загруженной на 5 единиц, а потери в ней возрастают с величины пропорциональной 42 = 16 единицам, до величины, пропорциональной 42+ 32 = 25 единицам. В результате сеть загружается на 25 % больше, а потери в ней становятся на 56 % больше по сравнению с режимом передачи только активной энергии [1]. В то же время реактивная энергия может производиться непосредственно в месте потребления. Подобная практика широко распространена во всем мире и известна под термином "компенсация реактивной мощности" (КРМ) - одного из наиболее эффективных средств обеспечения рационального использования электроэнергии. Так, по данным VDEW (Association of German Power Supply Companies), в распределительных электросетях Германии, благодаря КРМ (до средневзвешенного значения cos?=0,9), в 1999 году было сэкономлено порядка 9 млрд. кВт•ч активной энергии, что составило более 20% от суммарного (36,4 млрд. кВт•ч) объема транзитных потерь [2].

В общем случае, в энергосистемах для КРМ применяются синхронные компенсаторы и электродвигатели, а так же конденсаторные установки (КУ).

Синхронные компенсаторы могут работать в режиме генерирования (режим возбуждения) и потребления РМ (недовозбуждение). Большие единичные мощности (МВ•А) и худшие [3] по сравнению с КУ технико- экономические показатели, особенно в диапазоне небольших (до 10 МВ•А) мощностей компенсации, практически исключают использование в сетях подавляющего числа предприятий синхронных компенсаторов. Синхронные электродвигатели (СД) в режиме перевозбуждения также способны генерировать РМ, величина которой, определяется загрузкой СД по активной мощности. Как показывают исследования, учет зависимости стоимости годовых потерь электроэнергии, обусловленной генерацией РМ и влияние на компенсационную мощность загрузки СД, делает использование для КРМ низковольтных СД любой мощности, а также высоковольтных СД мощностью до 1600 кВт неэкономичным [3].

В тоже время, поскольку системы КРМ для снижения потерь, вызываемых перетоком РМ, необходимо располагать как можно ближе к нагрузке, КУ являются наиболее распространенным средством КРМ именно в промышленных системах электроснабжения. На сегодняшний день в сетях отечественных потребителей для КРМ установлено порядка 30 млн. квар конденсаторов, из которых 18-20 млн. квар включаются и отключаются вручную [1]. При этом доля низковольтных (до 1 кВ) конденсаторов составляет 75-80 % от общего объема.

Такое широкое применение конденсаторных установок (КУ), как для индивидуальной, так и для групповой компенсации, объясняется их преимуществами по сравнению с другими существующими в промышленности способами КРМ: небольшие, практически постоянные в зоне номинальной температуры окружающей среды, удельные потери активной мощности конденсаторов, не превышающими 0,5 Вт на 1 квар компенсационной мощности, т.е. не более 0,5% (для сравнения: в синхронных компенсаторах это значение достигает 10% номинальной мощности компенсатора, а в синхронных двигателях, работающих в режиме перевозбуждения - 7% [3]); отсутствие вращающихся частей; простота монтажа и эксплуатации; относительно невысокие капиталовложения; большой диапазон подбора требуемой мощности; возможность установки в любых точках электросети, бесшумность работы и т.д. Кроме того, в отличие от компенсаторов и синхронных двигателей, КРМ с помощью конденсаторов позволяет расширить функциональные возможности устройств компенсации. Так фильтрокомпенсирующие КУ одновременно осуществляют КРМ и частичное подавление присутствующих в компенсируемой сети гармоник, искажающих синусоидальность напряжения, а симметрирующие установки на базе конденсаторных батарей (при соответствующим конструктивном исполнении) позволяют производить одновременно КРМ и симметрирование нагрузки сети.

С помощью КУ возможны следующие виды компенсации:

1. Индивидуальная (нерегулируемая) - КУ размещаются непосредственно у электроприемников и коммутируются одновременно с ними. В этом случае выключатель электроприемника одновременно является и выключателем КУ. Предпочтительна при компенсации единичных, постоянно присоединенных в течение длительного времени мощностей свыше 20 кВт [3]. Недостатки данного вида КРМ - зависимость времени подключения КУ от времени включения электроприемников и необходимость согласования емкости КУ с индуктивностью компенсируемого электроприемника для предотвращения возникновения резонансных явлений или применения специальных схем подключения (переключения со "звезды" на "треугольник", подразумевающее параллельное подключение к обмоткам двигателя трех однофазных конденсаторов).

2. Групповая (также нерегулируемая). Применяется при КРМ нескольких индуктивных нагрузок, присоединенных к одному распределительному устройству с общей КУ. Увеличение коэффициента одновременности включения нагрузки снижает мощность и повышает эффективность работы КУ, которая может устанавливаться на стороне 0,4 кВ или 6(10) кВ. Недостатки - раздельная коммутация КУ и неполная разгрузка распределительных сетей предприятия от РМ.

3. Централизованная (как правило, регулируемая). Для узлов нагрузки с широким диапазоном изменения потребления РМ. Регулирование мощности КУ может осуществляться в функции реактивного тока нагрузки, но для этого КУ должна быть оборудована специальным автоматическим регулятором, а ее полная компенсационная мощность (равная РМ установленных конденсаторов) разделена на отдельно коммутируемые ступени. Такие комплектные КУ называются автоматизированными. Данный тип КУ производит КРМ в соответствии с ее фактическим потреблением. Современные автоматические микропроцессорные регуляторы РМ западноевропейских производителей (в первую очередь Германии, Италии, Чехии, Финляндии, Франции) по надежности работы аналогичны широко известным потребителям маркам телевизоров "Sony" и фотоаппаратов "Kodak" [1]. Кроме управления ступенями КУ, автоматические регуляторы РМ позволяют производить измерение параметров качества электроэнергии компенсируемой сети с выводом результатов на жидкокристаллический дисплей регулятора (у большинства типов автоматических регуляторов, например "Prophi", BR6000, предусмотрена также опция передачи через интерфейс результатов измерения в память компьютера).










ДонНТУ > Портал магистров ДонНТУ > Реферат | Библиотека | Ссылки | Отчет о поиске | Индивидуальное задание