ДонНТУ | Портал магистров ДонНТУ | Биография | Автореферат | Ссылки | Отчет о поиске | Индивидуальное задание




Первоисточник материала: http://subscribe.ru/archive/tech.electrotech/200610/31110553.html


Частотное регулирование частоты вращения асинхронных электродвигателей

      Возможность управления частотой вращения короткозамкнутых асинхронных электродвигателей была доказана сразу же после их изобретения. Реализовать эту возможность удалось лишь с появлением силовых полупроводиниковых приборов - сначала тиристоров, а позднее транзисторов IGBT.
      В настоящее время во всём мире широко реализуется способ управления асинхронной машиной, которая сегодня рассматривается не только с точки зрения экономии энергии, но и с точки зрения совершенствования управления технологическим процессом. В промышленности и быту применяют двигатели переменного и постоянного тока.
      Исторически сложилось, что для регулирования скорости вращения чаще использовали двигатель постоянного тока. Преобразователь в данном случае регулировал только напряжение, был прост и дешёв. Однако двигатели постоянного тока имеют сложную конструкцию, критичный в эксплуатации щёточный аппарат и сравнительно дороги.
      Асинхронные двигатели широко распространены, надёжны, имеют относительно невысокую стоимость, хорошие эксплуатационные качества, но регуляторы скорости их вращения из-за сложности систем электронного регулирования частоты питающего напряжения стоили до начала 80-х годов дорого и не обладали качествами, необходимыми для широкого внедрения в индустрию.
      Быстрый рост рынка преобразователей частоты для асинхронных двигателей не в последнюю очередь стал возможен в связи с появлением новой элементной базы - силовых модулей на базе IGBT (биполярный транзистор с изолированным затвором), рассчитанный на токи до нескольких килоампер, напряжением до нескольких киловольт и имеющих частоту коммутации 30 кГц и выше.
      Существует два основных типа преобразователей частоты: с непосредственной связью и с промежуточным контуром постоянного тока.
      В первом случае выходное напряжение синусоидальной формы формируется из участков синусоид преобразуемого входного напряжения. При этом максимальное значение выходной частоты принципиально не может быть равным частоте питающей сети. Частота на выходе преобразователя этого типа обычно лежит в диапазоне от 0 до 25-33 Гц.
      Но наибольшее распространение получили преобразователи чаcтоты с промежуточным контуром постоянного тока, выполненные на базе инверторов напряжения.

Типы нагрузок

      Требования к электроприводу определяются диапазоном требуемых скоростей и типом нагрузки. Многие нагрузки могут рассматриваться как имеющие постоянный момент во всём диапазоне изменения скорости. К ним относятся, например, конвейеры, компрессоры и поршневые насосы.
      Некоторые виды нагрузки имеют переменную механическую характеристику, для которой момент нагрузки возрастает с увеличением скорости вращения. Типичным примером устройств с такой нагрузкой являются центробежные насосы и вентиляторы, чья механическая характеристика описывается уравнением квадратичной параболы, а значит, потребляемая мощность пропорциональна кубу скорости вращения.
      Из этого следует, что даже небольшое снижение скорости электропривода может дать значительный выигрыш в мощности - вот почему экономия электроэнергии является главным преимуществом использования управляемого электропривода для насосов и вентиляторов. Теоретически снижение скорости на 10% даёт тридцати процентную экономию мощности.
      Есть класс устройств (экструдеры, промышленные миксеры), у которых механическая характеристика близка к характеристике насосов и вентиляторов. Но особенность нагрузок такого типа состоит в наличии высокого пускового момента, который с увеличением скорости снижается, а затем, начиная с некоторого значения, характеристика становится квадратичной. Кроме того, существует и большое число нагрузок с совершенно уникальными механическими характеристиками. Поэтому в любом случае выбору электродвигателя и преобразователя частоты должен предшествовать этап анализа характера нагрузки и её механической характеристики.

Режимы управления электродвигателем

      В зависимости от характера нагрузки преобразователь частоты обеспечивает различные режимы управления электродвигателем, реализуя ту или иную зависимость между скоростью вращения электродвигателем и выходным напряжением. Режим с линейной зависимостью между напряжением и частотой ( U/f=const ) реализуется простейшими преобразователями частоты для обеспечения постоянного момента нагрузки и используется для управления синхронными двигателями или двигателями, подключёнными параллельно. Вместе с тем при уменьшении частоты, начиная с некоторого значения, максимальный момент двигателя начинает падать. Для повышения момента на низких частотах в преобразователях предусматривается функция повышения начального значения выходного напряжения, которая используется для компенсации падения момента для нагрузок с постоянным моментом или увеличения начального момента для нагрузок с высоким пусковым моментом, таких, например, как промышленный миксер.
      Для регулирования электроприводов насосов и вентиляторов используется квадратичная зависимость напряжения/частоты (U/f2=const). Этот режим, так же как и предыдущий, можно использовать для управления параллельно подключенными двигателями. Вместе с тем для повышения качества управления приводом требуется использование других, более совершенных методов управления. К ним относятся метод управления протокосцеплением (Flux Current Control - FCC) и метод бессенсорного векторного управления (Sensorless Vector Control - SVC). Оба метода базируются на использовании адаптивной модели электродвигателем, которая строится с помощью специализированного вычислительного устройства, входящего в состав управления преобразователя. Наиболее точное и эффективное управление обеспечивает режим векторного управления без датчика обратной связи по скорости (SVC).
      Если в двигателях постоянного тока имеются две обмотки (статорная, или возбуждённая и роторная, или якорная), что позволяет управлять раздельно скоростью вращения (ток возбуждения) и электромагнитным моментом (ток якоря), то в двигателях переменного тока с короткозамкнутым ротором имеется всего лишь одна статорная обмотка, через которую формируется возбуждающее магнитное поле и определяет вращающий момент. С этим и связаны все трудности управления электродвигателем.
      Выход остаётся один: необходимо управлять амплитудой и фазой статорного тока, то есть его вектором, однако для управления фазой тока, а значит, и фазой магнитного поля статора относительно вращающегося ротора необходимо знать точное положение ротора в любой момент времени. Эта задача может быть решена с использованием датчика положения, например, шифратора приращений. В такой конфигурации привод переменного тока по качеству регулирования становится сопоставим с приводом постоянного тока, но в составе большинства стандартных электродвигателей переменного тока встроенные датчики положения отсутствуют, поскольку их введение неизбежно ведёт к усложнению конструкции двигателя и существенному повышению его стоимости.
      Применение же современной технологии векторного управления позволяет обойти это ограничение путём использования математической адаптивной модели двигателя для предсказания положения ротора. При этом система управления должна с высокой точностью измерять значение выходных токов и напряжений, обеспечивать расчёт параметров двигателя (сопротивление статора, значение индуктивности рассеяния и.т.д.), точно моделировать тепловые характеристики двигателя с различными режимами его работы, осуществлять большой объём вычислений с очень высокой скоростью. Последнее обеспечивается применением в составе системы управления преобразователя специализированных интегральных схем ASIC.
      Векторное управление без датчиков обратной связи по скорости позволяет обеспечивать динамические погрешности, характерные для регулируемого привода с замкнутой обратной связью. Однако полное управление моментом при скорости, близкой к нулевой, невозможно без обратной связи по скорости. Такая обратная связь становится необходимой и для достижения погрешности регулирования менее 1%. Контур обратной связи при этом легко реализуется с помощью самого преобразователя частоты. Вместе с тем режим векторного управления не может быть использован для синхронных или реактивных синхронных двигателей, для группы двигателей, чья номинальная мощность меньше половины мощности преобразователя частоты или превышает его.

Режимы торможения электродвигателя и способы останова

      Самый простой способ останова - выбег электродвигателя. Двигатель отключается от питающей сети и останавливается по инерции. При этом время до полного останова не регулируется и определяется инерционными свойствами двигателя и его нагрузки.
      Регулируемое время торможения обеспечивает генераторный способ, заключающийся в том, что преобразователь с необходимой скоростью уменьшает выходную частоту до требуемого значения. При этом двигатель превращается в генератор, преобразую кинетическую энергию вращения в электрическую. В зависимости от типа выпрямляющего устройства энергия возвращается в первичную сеть либо накапливается в контуре преобразователя частоты. Во втором случае и в случае нагрузки с большим моментом инерции для рассеивания энергии может потребоваться применение внешнего тормозного сопротивления, подключение которого при возникновении опасного перенапряжения в промежуточном контуре преобразователя осуществляет специальная контролирующая схема.
      Таким образом, преимуществом генераторного торможения является предсказуемое время и плавность останова, высокий тормозной момент. Недостаток же заключается в том, что энергия выделяется в преобразователе, и в случае быстрого останова или большого момента инерции нагрузки для избежания перегрева встроенного резистора контура постоянного тока преобразователя необходимо использование внешнего сопротивления.
      Для того чтобы осуществить торможение постоянным током, или, иными словами, динамическое торможение, с обмотки статора двигателя снимают переменное напряжение и на одну или две фазы подают постоянное напряжение. При этом магнитное поле будет вызывать в начале замедление, а затем и удержание ротора в неподвижном состоянии. Преимуществом динамического торможения является выделение электрической энергии в роторе двигателя, что делает ненужным использование тормозного сопротивления, и плавным останов. Но поскольку выходная частота преобразователем не контролируется, то время торможения становится величиной неопределённой. Эффективность торможения в этом случае по сравнению с генераторным методом составляет 30-40%.
      При комбинированном способе торможения используется комбинация двух описанных способов, то есть на переменную составляющую выходного напряжения преобразователя накладывается постоянная составляющая. Этот способ торможения сочетает в себе преимущества обоих электрических способов торможения и позволяет эффективно тормозить электродвигатель за короткое время выделения тепла в преобразователе.
      Современные преобразователи частоты позволяют получать более 20 параметров состояния электропривода. Соответствующая обработка этих параметров позволяет проводить глубокое диагностирование как оборудования системы, так и протекающих процессов. Появляется возможность на только реагировать на возникшую аварию, но и предупреждать её, что для энергетических объектов значительно важнее. Создание системы с частотно-регулируемыми приводами, в которых управление частотой осуществляется наряду с контролем целого комплекса различных технологических параметров, позволяет снизить не только потребление электрической энергии, но и обеспечивает экономию потребления энергоресурсов всей системы.

Первоисточник материала: http://subscribe.ru/archive/tech.electrotech/200610/31110553.html



ДонНТУ | Портал магистров ДонНТУ | Биография | Автореферат | Ссылки | Отчет о поиске | Индивидуальное задание