CHAPTER III
PERMUTATION-COMPATIBLE DATA DISTRIBUTIONS

In this chapter, we discuss the data distribution of matrices for parallel matrix
multiplication. First, we present the definition of data distribution. We also discuss
two instances of data distributions (i.e., the block linear data distribution and the
block scattered data distribution) and give a general formula that can be used to
derive these data distributions by choosing different parameters. Then, we define the
notion of permutation compatibility, which is important for subsequently defining
the algorithmic compatibility requirement for our parallel matrix multiplication
algorithms. We discuss a permutation compatible data distribution (i.e., the virtual
2D torus wrap data distribution (Huss-Lederman, Jacobson, and Tsao 1993; Huss-
Lederman et al.1994)) for distributing matrices on two-dimensional process grids. We
also introduce a modified virtual 2D data distribution that can solve the potential
load imbalance problem induced by the virtual 2D torus wrap data distribution.
Finally, algorithmic compatibility is defined to ensure the correctness of our parallel

dense matrix multiplication algorithms.

Data Distribution Functions

Data distribution is formally defined by van de Velde (1994) and a detailed
definition of data distributions may be found in either (Skjellum 1990) or (Skjellum
and Baldwin 1991).

Definition 1: (Data Distribution Functions) A data distribution function,

K, is a one-on-one mapping, u(l,P,M) — (p,2), where I, 0 < I <

17

18

M, is the global name of a coefficient, P is the number of processes

among which all coefficients are to be partitioned; and M is the total

number of coefficients. The pair (p,:) represents the process p (0 <

p < P) and local (process-p) name 7 of the coeflicient I. The inverse

distribution function, u~*(p,, P, M) — I, transforms the local name (4),

of process p back to the global coefficient name (I). The cardinality

function, u!(p, P, M) +— m, determines the number of coefficients (m)

that belong to process p when M coefficients are distributed among P

processes using data distribution function u.

These mapping functions describe conversions between the global coefficient
space and the local process and index space. Therefore, a specific data layout can
be described by a set of data distribution functions. The data distribution functions
are the basic abstractions needed to implement the data-distribution-independence
(DDI) (van de Velde and Lorenz 1989; van de Velde 1990).

The block linear data distribution and the block scattered data distribution
are two instances of data distribution. The partition of the global coefficients is
performed in two steps. First, we partition the global coefficients into R blocks.
Each block may or may not be of the same size, depending on whether R is a divisor
of M. However, we try to partition M coefficients into blocks as the same size as
possible. If we select the block size as [%1 or L%J, the blocks may vary at most
one element. Furthermore, we choose to gather those blocks with slightly larger

size in low numbered processes without loss of generality. The size of tth block is

determined as follows:

[Z] : 0<t< (M modR)
|%] : (M modR)<t<R.

19

Second, we assign blocks to processes consecutively. Successive blocks are assigned

to different processes with a fixed stride s. The tth block is assigned to process p

according to the following expression?:

p = (sx (tmod P)+ ((j;) mod ged(P, s))) mod P (3.2)
(s x (tmod P) + ())

ged(P,s)
where s (1 < s < P) is the stride of panel space and ged denotes the greatest common
divisor function.

By selecting different values of block number R and stride s in Equation 3.1
and 3.2, we can obtain various data distributions, some of which are useful. For
example, if we select R = P and s = 1, we will get the linear data distribution. If we
select R = M and s = 1, we will get the scattered data distribution. Furthermore, if
we select other values of R and s, we will get block scattered data distributions with

different block sizes and strides.

Data Distributions on Two-Dimensional Topologies

Now, we consider the distribution of a matrix on a two-dimensional process grid.
A P x @ process grid Gpy g is numbered as (p,¢q) wherep=0...P—1,¢=0...Q —1.
Figure 3.1 shows a 4 x 3 process grid and the coordinate numbering scheme for each
process.

When an M x N matrix A is mapped onto a process grid Gpx g, we perform
the data mapping on both dimensions (i.e., the row and column dimensions)
independently with two instances of data distributions. In the row dimension, we
denote the mapping function as u(I, P, M) +— (p,2). While, in the column dimension,

we denote the mapping function as v(J,Q, N) — (q,7). Figure 3.2 shows the data

2This expression is a modified version of the formula defined by BiMMeR (Huss-Lederman et al.
1994).

20

distribution of a matrix A on a grid Gpyxo with the scattered data distribution on

the row dimension and the linear data distribution on the column dimension.

P Py P P

IS
g L | g L

Figure 3.1. Coordinate Numbering for a 4 x 3 Process Grid Gpxo

apo Qo1 Gop2 | @3 Qo4 Qo5 | Ao Q0,7
g0 A41 Qa2 | B3 Qa4 Qa5 | Qg Qa7
ago ag1 ag2 | 4g3 aga d4gs5 | dge @87
@10 @11 G12 | G413 Q14 Q15 | G1e Q1,7
aso 451 G52 | G53 Qa54 455 | G5 G577

a0 Q21 G292 | G23 Q24 G425 | Q26 Q27
go Qa1 G2 | Gg3 Qdg4a a5 | Gge Og7

azo 431 a32 | G433 434 435 | A3 @37
7o Q71 G722 | G73 Q74 Q75 | G7e Q77

Figure 3.2. The Data Distributions of a Matrix A on a Process Grid Gpxg

Permutation Compatibility for Matrix Multiplication

Permutation compatibility is the following property between two data
distributions, which is also discussed in the early work by Falgout et al.(1992; 1993).
Definition 2: (Permutation Compatibility) Two distributions u(e, P, M)

and v(e,Q), N) are permutation compatible if and only if M = N and

A (I, P M), P, M) = AJY(v(1,Q,M),Q, M)

21

VI = 0,...,M—1

where the associated linear distributions A, and A, have matching

cardinalities:

§ _ §
Au(p, P, M) = p'(p, P, M)
A(p,P,M) = vi(p, P, M)
Vp=20,...,P—1.
The concept of permutation compatibility is illustrated in Figure 3.3. Two

different data distributions, p(e,2,6) and v(e,3,6), are permutation compatible,

because the new orders of the global indices after distribution are identical.

0 0 0 0 0
1 2 2 2 1
o 1(e,2,6) A AR A AV T v(e,3,6) o
3 1 1 1 3
4 3 3 3 4
5 5 5 5 5

Figure 3.3. Illustration of the Concept of Permutation Compatibility

For the parallel matrix multiplication C = aAB + GC, matrix A is defined
to be an My x Ny matrix with a row distribution pa(e, P, M4) and a column
distribution v4(e, @, N4); and matrix B is defined to be an Mp x N matrix with a
row distribution pp(e, P, Mp) and a column distribution vg(e, @, Ng). Given these
definitions, we can now discuss the permutation compatibility problem between v4

and pup on a process grid Gpyg-

22

1. If both vs4 and up are block linear data distributions, v, and up are

permutation compatible on an arbitrary process grid Gpyg.

2. If both v4 and pp are block scattered data distributions, in the case of a square
process grid, v4 and pp are permutation compatible; however, in the case of

a non-square process grid, v4 and pp are not permutation compatible. Note

that the problem is caused by the different values of P and @ in Equation 3.2.

The permutation incompatibility of the block scattered distribution on non-
square grids causes problem for the parallel matrix multiplication of C = aAB +
BC, because our algorithms requires the permutation compatibility between v4 and
pB. The permutation compatibility requirement is the global BLAS compatibility
requirement (Falgout et al. 1992). If the column distribution of matrix A and the
row distribution of matrix B satisfy the permutation compatibility requirement, we
can utilize the optimal sequential assembly-coded version of xGEMM routines of
BLAS (Dongarra et al. 1990) as local multiplication engine. Otherwise, we cannot
use xGEMM routines. This can be resolved grossly by data remapping, but our
point is not to resort to remapping within the classification scheme; we wish to avoid

temporaries and excess communication as mentioned in (Bangalore 1995).

The Virtual Two-Dimensional Grid

For a non-square grid Gpyxg, we can view it as a a X a square virtual grid
(Huss-Lederman, Jacobson, and Tsao 1993; Huss-Lederman et al. 1994), where « is
the least common multiple of P and ¢). Then we can distribute matrices on this
a X a square virtual grid (Huss-Lederman et al. 1994). We modify the Equation 3.2

as follows to obtain the virtual 2D torus wrap data distribution:

p = (s X (t mod a) + ((i) mod gcd(a,s))) mod « (3.3)

ged(a,s)

23

If we choose the same block size and stride, v4 and pp will prove to be permutation

compatible. Furthermore, if we choose s = we will obtain the same scattered

B
data distribution as that obtained by Equation 3.2, but with local storage differences
(process-local permutations) that are not important.

We achieve permutation compatibility between v4 and pp by using the virtual
grid, but we introduce a potential load imbalance problem. When Ny (N4 = Mp for
correctness) is not evenly divided by ¢, the remainder blocks are assigned to different
virtual processes. However, these virtual processes may be in the same process, which
causes more blocks on some processes than on other processes. Figure 3.4 illustrates
the column distribution v4(e,6,27) and the row distribution pg(e,4,27) by using
the virtual 2D torus wrap data distribution. For the column data distribution

va(e,6,27), process 0 has one more element than the average. While for the row

data distribution pp(e,4,27), process 0 has two more elements than the average.

q= Local Column Index
ol 0 12 24 1 13 95 p= Local Row Index
112 14 26 3 15 0|0 12 24 1 13 25 2 14 26
214 16 5 17 113 15 4 16 b5 17
3|16 18 7 19 2|16 18 7 19 8 20
418 20 9 21 319 21 10 22 11 23
5110 22 11 23

Figure 3.4. The Virtual 2D Torus Wrap Data Distribution

We can modify the distribution strategy to solve this problem and this is an
important realization. After we use Equation 3.3, we actually obtain a new order
for the global coefficients. We can then partition this new order of global coefficients
into P parts so that each has [%1 or L%J coeflicients and consecutively assign them

to the processes. We call this the modified virtual 2D data distribution. Figure 3.5

24

shows the column distribution v4(e,6,27) and the row distribution pg(e,4,27) using

the modified virtual 2D data distribution, which achieves better load balance than

the virtual 2D torus wrap data distribution does, shown in Figure 3.4.

g = Local Column Index
0|0 12 24 1 13
1126 2 14 26 3
211 4 16 5 17
3|6 18 7 19
418 20 9 21
5110 22 11 23

W N = O

Local Row Index

0 12 24 1 13 25 2
14 26 3 15 4 16 5
17 6 18 7 19 8 20
9 21 10 22 11 23

Figure 3.5. The Modified Virtual 2D Data Distribution

Algorithmic Compatibility for Matrix Multiplication

Algorithmic compatibility is the property of data distributions of matrices A,

B, and C that ensures an algorithm in the present study can be used correctly.

The algorithms of matrix multiplication of the form C = aAB + BC require the

following algorithmic compatibility, which is also shown in the early work by Falgout

et al. (1992; 1993).

Definition 3: (Algorithmic Compatibility) Matrices A, B, and C are

compatible for the matrix multiplication algorithms if and only if

the column distribution of A is permutation compatible with the row

distribution of B; and both the row and column distributions of C' are

identical to the row distribution of A and the column distribution of B,

respectively.

If we view the parallel matrix multiplication, C =

AB, as PcCQ¢c =

(PaAQ4)(PeBQg), where P4 (resp, Pg and P¢) is a global permutation view

25

of A’s (resp, B’s and C’s) row distribution, and Q4 (resp, Qp and Q¢) is a
global permutation view of A’s (resp, B’s and C’s) column distribution, then the

compatibility definition above requires that @4 = PZ. This means that
PcCQc = (PaAQA)(PsBQg) = Pa(AB)Qp = P4CQp,

so that C' has A’s row distribution and B’s column distribution.

A principal goal of the design of the parallel matrix multiplication algorithms
presented in the study is data-distribution-independence (van de Velde and Lorenz
1989; van de Velde 1990). These algorithms do not require a specific data
distribution, such as the linear data distribution or the scattered data distribution.
When the data distributions of matrices A, B, and C satisfy the algorithmic
compatibility requirement, these algorithms can be used correctly. Otherwise, prior
redistribution of data is needed to ensure the correct result. The purpose of posing
the restriction on the data distributions of matrices A, B, and C is to utilize xGEMM
routines to achieve high performance. If performance issue were not considered, these
algorithms could support all of the data distributions by using element-by-element
multiplication instead of block-by-block multiplication, which would be extremely

slow.

