
Compiling Parallel Lisp for a Shared Memory

Multiprocessor

M.D. Feng W.F. Wong C.K. Yuen

Dept. of Information Systems and Computer Science,

National University of Singapore,

Lower Kent Ridge Road,

Singapore 0511.

Republic of Singapore.

Abstract

There is a commonly held idea that although Lisp is a good lan-

guage for prototyping and software development, it is often too inef-

�cient to be useful in actual implementation. Advances in compiling

Lisp have begun to change this notion. However, the situation is less

clear in the case of parallel Lisp dialects. In this paper, we report on

our experience in implementing a compiler for a parallel Lisp dialect we

called BaLinda Lisp for a shared memory multiprocessor. For a class

of problems, our compiler was able to achieve performances on Lisp

programs that are near, if not equal to, their imperative (C) equiv-

alents. However, on other problems, the situation is less than ideal.

We investigate this phenomenum and outline the future challenges in

realizing a production strength parallel Lisp compiler.

1

1 Introduction

For symbolic computation, the major `workhorse' has been the Lisp family

of programming languages. However, there is a common view that while

Lisp is a good language for prototyping and software development as well as

symbolic computation, it is ine�cient in actual implementation. Advances

in compiling Lisp have begun to disprove this. Attention has turned also

to the possibility of performing symbolic computing on multiprocessors by

parallelizing Lisp, though research has still to reach the stage of maturity

as compared to, say, parallel Fortran.

In this paper, we report on our experiences in constructing a compiler

for the parallel Lisp dialect BaLinda Lisp which runs on a SPARC-based

shared memory multiprocessor. The reported work extends our earlier work

on compiling BaLinda Lisp for a distributed environment [3]. The compiler

�rst uses a series of transformations to transform and optimize the code and

then generate SPARC assembly codes.

In this paper, we �rst show that our compiler's performance is superior

to previous implementations. To this end, we tested a number of programs.

For comparison, the same programs were executed on a distributed net-

work of Transputers. In addition, we also executed the C equivalent of

these programs as well as the equivalent code generated by Scheme->C,

a public domain translation software that generates C codes from Scheme

programs. Results will be presented and discussed. We shall also try to

compare our compiler with Mul-T [10], despite some di�culty in comparing

the implementations on machines of divergent characteristics. It is shown

that BaLinda Lisp is at least competitive to the other parallel Lisp dialects.

Our second aim is to outline some of the problems in making parallel

Lisp competitive to other parallel programming languages. While on certain

programs, our compiler performed very well, it was disappointing on others.

We shall o�er some reasons which perhaps will point to the challenges ahead

2

for parallel Lisp research.

2 BaLinda Lisp

BaLinda Lisp is a sequential Lisp dialect augmented with the Linda [2] tuple

operations. The system assumes a shared data space containing multi-�eld

records or tuples. A task puts a tuple into the tuplespace using an OUT

command:

(OUT exp1 exp2 ... expN)

where each expression de�nes a value of any type, whether numerical, logical,

text or even array/list. Tuples are not accessed by name or address, but by

content, using the IN or RD commands:

(IN exp1 exp2 ... expM ? name1 name2 ... nameN-M)

(RD exp1 exp2 ... expM ? name1 name2 ... nameN-M)

These will retrieve from the tuplespace an N-�eld tuple whose �rst M �elds

match the result of the M expressions in the IN/RD, and then store the values

of the last N-M �elds into the N-M variables speci�ed in the IN/RD. IN causes

the tuple to be removed from the space, while RD leaves it for others to

access. If no matching tuple can be found, the task executing the IN/RD is

suspended until another task OUT's the required tuple.

However, we have decided to eliminate the EVAL construct from the set

of Linda operations included in BaLinda Lisp. Instead parallel tasks are

spawned o� with the EXEC construct. The following

(<pre-expression>

(EXEC <expression>)

<sibling-expressions>)

<post-expressions>

3

causes <expression> to be executed in parallel with <sibling-expressions>.

When both complete, execution proceeds to <post-expressions>. This

frees the programmer from the compulsory generation of a tuple upon com-

pleting an EVAL which we did not �nd useful and indeed somewhat bother-

some.

In addition to Linda operations, BaLinda Lisp introduces speculative

processing in the COND construct. However, this is not within the scope of

this paper and we refer the reader to [14] for further discussions on this and

other issues of the language.

3 Previous Works

The compilation techniques pioneered in research done on compiling Scheme

have been important to our work. In particular, the work on RABBIT [12],

ORBIT [9] and HARE [13] compilers has been in
uential on our work.

On parallel Lisp research, a number of parallel Lisp dialects has been

proposed. A good compilation of papers on the subject is found in [7].

With the exception of Multilisp [4], performance results for implementations

of most of the parallel Lisp dialects are scarce. One work which is closely

related to ours is the modi�cation of the ORBIT compiler to compile Mul-

T [10], a variant of Multilisp for the Encore Multimax multiprocessor. The

programming model for Multilisp and Mul-T is the future and is therefore

very di�erent from BaLinda Lisp. Despite the di�erences in platform, we

will show evidence that our implementation is faster than Mul-T.

While the above works are signi�cant and important, none provides us

with evidence that parallel Lisp can be a viable competitor to conventional

parallel imperative languages. In this paper, we shall explore this possibility

by examining the state of the art in compiling Lisp both as a sequential as

well as a parallel language. We shall then investigate the problems involved

using our compiler for BaLinda Lisp as the subject.

4

4 Compiling to the Abstract Machine

BaLinda Lisp programs are �rst compiled to an abstract machine. The

idea of using an abstract machine is to allow for portability across a num-

ber of platforms. So far we have been able to port the compiler to a dis-

tributed memory multiprocessor, namely a network of Transputers, as well

as a shared memory multiprocessor, which is what will be reported in this

paper. Details of the abstract machine is described in [3].

The actual compilation is done in a number of phases which are by now

quite commonly found in Lisp compilers :

1. Macro expansion phase. Most of the syntax analysis of the compiler

is done in this phase. Derived expressions are transformed into their

equivalent primitive expressions. For example, COND is transformed

into a sequence of IF expressions. In addition, parallel and tuplespace

operations are transformed into primitive expressions which corre-

spond to the abstract machine instructions.

2. Conversion to CPS form. Macro expanded expressions are converted

in equivalent continuation-passing style [12] expressions. The advan-

tages of the CPS conversion is that code becomes regularized and tail

calls are made explicit.

3. Optimization. In this phase various optimization transformations are

applied. These include �-reduction, boolean expression short-cutting,

constant test evaluation and test result propagation, constant folding

and redundant subexpression elimination.

4. Closure analysis. This determines if a variable is to reside in the heap

or the stack and decides what sort of information is to be stored in

the environment.

5. Abstract machine code generation. Finally, abstract machine code is

5

generated. The abstract machine is an accumulator-based stack ma-

chine. Its instruction set corresponds roughly to the primitive expres-

sions of BaLinda Lisp.

To these phases, one can attach a �nal code generation phase to generate

actual machine code from the abstract machine code.

5 Compiling for a Shared Memory Multiproces-

sor

The compiler compiles BaLinda Lisp codes for a Sun SPARCserver 1000

with 8 CPUs, running at 50 MHz, 512MB of RAM and 20GB of disk space

running under SunOS 5.3 operating system. This is a shared memory mul-

tiprocessor which supports both the traditional Unix Inter-Process Commu-

nication constructs as well as multithreading with lightweight processes.

Run Time

Master

Run Time

Slave

Scheduler

Run Time

Slave

Down
channel

Up
channel

Up
channel

Up
channel

Down
channel

Down
channel

Processor 0 Processor 1

Task Queue

Processor (p−1)

Figure 1: The Runtime Environment.

Fig. 1 shows the runtime environment of BaLinda Lisp. There are p

logical processors. All but one execute the slave program which is one of

6

the results of the compilation. This is the compiled user program linked

with the support runtime routines. All the slave programs have identical

codes. There will be one processor speci�cally designated to run the master

program. The user can choose to program in a SPMD (Single Program

Multiple Data) style, in which the master will be exactly the same as the

slaves, or in a `master-slave' style, in which case the master program will be

di�erent. In the latter, the master typically divides up work which is then

given to the slaves for execution.

Each processors is linked up with the scheduler via two logical one-way

communication channels. The scheduler has two main functions. First, when

a processor (i.e. either the master or one of the slaves) performs an EXEC, the

function to be EXEC'ed and its arguments are sent to the scheduler which then

determines which of the processors is idle and will send this EXEC request

via the down channel to that processor for execution. An idle processor will

�rst send a message to the scheduler informing it of its status and then waits

on the down channel for work from the scheduler. Upon receiving work, it

will look up a symbol table for the address of the function to invoke and will

then invoke the function using the arguments received via the down channel

from the scheduler.

The tuplespace, which is shared among all processors, is also imple-

mented in the scheduler. Using the channels, tuplespace operation requests

are sent from the processors to the scheduler which will perform the search

and match operations, and return the result(s) via the channels to the re-

questing processor.

On the Sun SPARCserver 1000, each logical processor is bounded to a

physical processor with the scheduler, which is not frequently invoked, exist-

ing as an unbounded process free to run on any physical processor scheduled

under the operating system. It turned out that the strategy used to imple-

ment the logical channels is crucial to performance as this is heavily used

during parallel and tuplespace operations. We tried several strategies in-

7

cluding sockets, pipes and shared memory with semaphores. Each improved

on the performance of the former. Finally we settled on spin-locking using

assembly level atomic operations, namely the SWAP instruction of the SPARC

instruction set, on shared memory which gave us the best performance. Ta-

ble 1 compares various methods of implementing some basic operations.

The Ping-Pong program involves four IN and OUT operations. The empty

EXEC attempts an EXEC on a function which returns immediately. As a com-

parison, we listed the corresponding timing for the implementation using

Transputers. The Transputer system [6] which we shall quote throughout

this paper consists of 1 root T805 running at 25 MHz with 17 T800 running

at 20 MHz. Each Transputer has 4 bidirectional hardware communication

channels operating at 10 Mbits/sec data rate. All of the timings reported

in Table 1, however, involves only two processors. An important caveat for

all our benchmark numbers is that the SPARCserver 1000 we used typically

have over 100 users logged in. While we tried our best to take the timing

measurements when the system workload is low, seldom is there less than

10 users logged in. The times reported are the real time returned by the

Unix gettimeofday system call. The lowest observed time is reported.

Unix Pipes Shared Memory Shared Memory Transputer

with Semaphores with SWAP

Ping Pong 8.5 2.5 0.14 1.9

Single IN 4.9 1.3 0.07 0.6

Empty EXEC 9.3 3.9 0.121 1.7

Table 1: Implementation Strategy for Logical Channels. (Time in Millisec-

onds)

While the Transputer has a slower clock than the Sun SPARCserver 1000,

it does have hardware support for its channel operations which makes them

fast. Despite this we were able to achieve about 10 times better performance

8

on our shared-memory implementation. We note that an empty EXEC takes

about 121 �sec. The equivalent operations takes 220 �sec and 470 �sec in

Mul-T and Portable Standard Lisp on the BBN Butter
y machine [10]. In

our view, 121 �sec for EXEC is still not fast enough. However, the BaLinda

Lisp programming model generally gives rise to medium to large granularity,

thereby alleviating the impact of slower task creation. We shall elaborate

this point further in the next section.

6 Performance Results and Comparisons

In this section, we shall discuss the performance of our compiler. We shall

�rst try to establish the performance of our compiler on sequential codes

without
oating point arithmetic operations. Integers, together with a two

bit tag, can be represented directly by a word as a cons cell pointer, making

them very e�cient to operate on. We shall then discuss the performance of

our compiler on parallel code. Lastly, we analyze the performance problems

of our implementation and outline the future work to be done.

6.1 Performance on Sequential Integer Code

Table 2 shows the performance of the two versions of the compiler in com-

piling sequential code. The aim is to ascertain that the compiler generate

good sequential code. The benchmarks used include Tak(24 16 8), Fibonacci

(n = 30) and Quicksort (n = 4096). The comparison is done with :

� the compiler on the Transputer (which must be taken with care as the

two machines di�er signi�cantly);

� the Scheme->C compiler [1] which translates Scheme programs to C

with all optimization options on and compile with \�O2" for GCC C

optimization;

9

� and the sequential C equivalent programs compiled with the native

SPARCompiler C 2.0.1 with the \�xO4" optimization option turned

on.

BaLinda Lisp BaLinda Lisp Scheme->C C

on SPARCserver on Transputer

Fibonacci 1.155 6.428 1.211 1.205

Tak 0.761 6.889 0.819 0.751

Quicksort 0.017 0.199 0.073 0.015

Table 2: Performance Compared to (Time in Seconds)

As can be seen, our compiler produces code with very competitive per-

formance even against straightforward C equivalents. This is due mainly to

the advances in compiling techniques for Lisp.

Program 1 Processor 2 Processors 4 Processors 8 Processors

(Speedup) (Speedup) (Speedup)

Fibonacci (n = 34) 7.92 5.36 2.70 1.34

(1.47) (2.94) (5.91)

Fibonacci (n = 35) 12.78 8.66 4.36 2.26

(1.47) (2.93) (5.65)

Fibonacci (n = 36) 20.57 13.75 6.92 3.34

(1.50) (2.97) (6.17)

4 by 4 Puzzle 63.67 41.46 27.02 12.42

(1.53) (2.36) (5.13)

Table 3: Performance on Two Parallel Lisp Benchmarks (Time in Seconds)

10

6.2 Performance on Parallel Code

Having established that our compiler produces quality sequential integer

code, we now assess its performance on parallel code, in particular its ability

to speed up execution of programs by harnessing parallelism.

Table 3 shows the performance of BaLinda Lisp on two parallel Lisp

benchmarks. The �rst is the naive calculation of the Fibonacci number

from the de�nition. For 8 processors, we were able to get a speedup of 6.

The next program solves a 4 by 4 tile puzzle given in [8]. The programs were

implemented without using tuplespace operations. Rather, parallel tasks are

spawned and, when necessary, results are waited for.

No. of BaLinda Lisp BaLinda Lisp Mul-T Transputer

Processors N = 11 N = 12 N = 11 N = 11

(Speedup) (Speedup) (Speedup) (Speedup)

1 1.45 7.90 33.2 19.75

2 0.98 5.40 16.6 10.64

(1.5) (1.5) (2.0) (1.85)

4 0.461 2.82 8.5 5.52

(3.2) (2.8) (3.9) (3.6)

8 0.289 1.33 4.3 2.88

(5.0) (5.9) (7.9) (6.9)

Table 4: Performance on N queen problem (Time in Seconds)

Table 4 shows the performance of the N queen problem with N = 11.

This version of the program �nds all solutions. To obtain large granularity,

we controlled the number of subtasks generated within the program itself.

This is done by controlling the decision to do an EXEC or not. As a result,

for N = 11, the number of tasks generated is 6, 12 and 18 respectively

for the 2, 4 and 8 processor con�guration. We compared this to the Mul-T

implementation of the same problem on an Encore Multimax multiprocessor.

11

In the Mul-T version, the number of tasks created was 121. However, the

Mul-T version did achieve better speedups. By increasing the problem size

to N = 12, we were able to improve the speedup somewhat.

6.3 Performance Bottlenecks

The ultimate aim of any work in the area of parallel Lisp is to produce

e�cient implementations that can compete with conventional imperative

(parallel) programming languages. We have shown that our implementa-

tion can, for integer sequential code, rival that of even C. Our parallel

implementation is also competitive when compared to other parallel Lisp

implementations - bearing in mind that in BaLinda Lisp, Linda-based syn-

chronization, which is more general than future is supported. But how does

it fare against something like parallelized C code? What are the perfor-

mance bottlenecks in implementing BaLinda Lisp? In an attempt to answer

this question, we translated a well-known shared memory parallel processing

benchmark mp3d, written in C, into BaLinda Lisp. This is a program found

in the SPLASH shared memory parallel benchmark suite [11] that uses the

Stanford particle method to examine rare�ed
ows over objects in a simu-

lated wind tunnel. While the reader may object to the use of a numerical

benchmark for testing Lisp, we found that we were able to locate important

performance bottlenecks using this benchmark.

The translation was tedious but relatively straightforward. The main

problem was the use of record structures and pointers in the C version.

We used Lisp arrays to emulate records, though this did make debugging

di�cult. The sequential BaLinda Lisp and C versions gave exactly the

same runtime statistical outputs thereby verifying the correctness of the

translation. However, the same cannot be said about the parallel versions.

For reasons unknown to us, the runtime statistics di�er slightly between

runs. The parallelized C version uses Unix's shared memory and the mutual

12

exclusion and conditional variable synchronization mechanisms supported

by SunOS 5.3.

BaLinda Lisp Parallel C version Slowdown Factor

Sequential 4.022 0.393 10.23

8 processors using tuples 101.218 0.905 111.8
8 processors using mutex

and conditional variables
8.781 0.905 9.70

Table 5: Performance on mp3d (Time in Seconds)

Table 5 shows the performance of the BaLinda Lisp version versus the C

version of mp3d using the input \test.geom" which comes with the SPLASH

benchmark suite. The timing is for 40 time steps of 3000 molecules. We �rst

note that the parallelized C version of the program is some 2.3 times slower

than the sequential version. A quick check revealed that some processors can

wait up to 5 times the computation time in the function move (which takes

up 93% of the time in sequential execution) for a barrier synchronization.

We attribute this to the small problem size and the multiuser nature of our

platform. The parallel BaLinda Lisp version using tuplespace operations is

some 25 times slower than the sequential version and more than 100 times

slower than the parallel C version. We therefore looked for possible reasons

to account for this.

While it is di�cult to investigate the actual program to account for

the loss in performance, we used a small set of kernel loops to con�rm our

suspicions about where the possible bottlenecks are.

The �rst suspect for causing the loss in performance is tag checking. The

dynamic typing nature of Lisp makes it necessary to do runtime type check-

ing by inspection of tags attached to data. Since most machines nowadays

do not support hardware tag checking, we have to do this time consuming

operation in software. The �rst row of Table 6 shows the time taken to

13

BaLinda Lisp C Slowdown Factor

Adding 1000 single precision
oating point

numbers (including loop overheads)
5.77 0.26 22.19

Summation of a 100 x 100 array of integers 3.66 0.46 7.96

Entering and leaving an empty critical region

1000 times using tuplespace operations
61.87 0.55 112.5

Entering and leaving an empty critical region

1000 times using mutex and cond. var.
0.697 0.55 1.27

8 Processor Barrier Synchronization using tu-

plespace operations
41.53 0.67 61.99

8 Processor Barrier Synchronization using

mutex and cond. var.
0.606 0.67 0.90

Table 6: Measuring the Performance Bottlenecks (Time in Milliseconds)

add 1000 single precision
oating point numbers. The BaLinda Lisp ver-

sion which requires tag checking is more than 22 times slower than the C

equivalent.

The next bottleneck we identi�ed is in array access. mp3d, for example,

uses three dimensional arrays. In C, the address can be computed readily

and with a single memory access, the desired element can be obtained. Lisp

only support one dimensional arrays (also called vectors). To get higher

dimension arrays, one must use vectors within vectors. In this scheme, to

access an element in the d dimension, d memory accesses must be done.

The second row of Table 6 re
ects the cost of using two dimensional array

in BaLinda Lisp by summing up a 100 by 100 array of integers. This is 7.9

times slower than the equivalent C loop. An important contributing factor

is probably the cache.

Last but not least, we measured the cost of synchronization. In SunOS

5.3, a critical region can be implemented using the simple mutex_lock and

mutex_unlock functions. In BaLinda Lisp, we use a pair of tuple IN and OUT

to achieve the same e�ect. The cost of these two mechanisms are measured

14

and reported in the third row of Table 6. It takes 0.5 �sec to do a pair of

mutex_lock and mutex_unlock while it takes 112 times more or 61.8 �sec to

enter a critical region using a pair of tuple IN and OUT. However, the reader

should bear in mind that while for simple locking, the tuple operations

are not as fast, they are meant to o�er a more general synchronization

mechanism that includes atomic exchange of arbitrary information. When

we also used the same mutual exclusion and conditional variable mechanism

in BaLinda Lisp, we achieve nearly the same performance as the C version,

as shown in the 4th row of Table 6. This points out that for \pure" task

synchronization and mutual exclusion, e�cient system functions should be

provided and tuple operations are not appropriate.

The cost of tuple operations a�ecting the e�ciency of barrier synchro-

nization using tuplespace operations is shown in the last row of Table 6. Us-

ing a O(log p) barrier algorithm, BaLinda Lisp is still some 61.9 times slower

than using simple locks and conditional variables. The timing reported is

the lowest observed. In general, the timing of the barrier is extremely sen-

sitive to workload. This is probably the most serious source of performance

degradation in mp3d. When we replaced all locks and barriers with the

same mutual exclusion and conditional variable mechanisms used in the C

version, we were able to achieve signi�cant improvements in speed as shown

in the �fth row of Table 5 where the BaLinda Lisp version is less than 10

times slower than the parallel C version. This is in line with the last row of

Table 6 which shows that by using mutual exclusion locks and conditional

variables, we can achieve the same performance (barring the di�culty in

obtaining an accurate timing) in barrier synchronization. In this case, the

loss in performance for the parallel BaLinda Lisp version is due solely to the

problems associated with the sequential BaLinda Lisp version of mp3d.

15

7 Future Work

We believe that not only have we identi�ed the major performance bot-

tlenecks, we were also able to quantify their impact on performance. It is

therefore a challenge to remove these bottlenecks in order to enhance Lisp's

status as a parallel programming language.

On the �rst problem of tag checking, works in the area of type inference

on dynamic typed languages [5], of which Lisp is one, will prove useful. We

hope to incorporate such optimizations in our future versions of the compiler.

The second problem concerns the use of regular data structures such as

arrays and records in Lisp. In its original form, Lisp's data structure of

list and atoms is meant to be general. However, for performance as well

as programmability, we see no choice except to extend Lisp to explicitly

support data structures such as arrays and records. Works in this area is

already underway in the Lisp community.

Another performance issue in sequential Lisp is that of garbage collec-

tion. Currently, our compiler uses a very simple mark and sweep algorithm.

With increasing memory size, the frequency of garbage collection decreases.

Still, we would like to investigate this matter further in the future.

On parallel processing, although the use of tuplespace o�ers a clean con-

ceptual model for parallel programming, the implementation challenges are

many. However, this is to be expected as high level constructs are often

di�cult to implement e�ciently. We shall be looking into revamping the

implementation model of our tuplespace and optimization of tuplespace op-

erations, which is still a subject that requires much research. Also neglected

in this study was speculative processing and its optimization, which certainly

is another major area of work.

16

8 Conclusion

In this paper we have presented a compiler for the BaLinda Lisp parallel

Lisp dialect. BaLinda Lisp supports the generative communication model of

Linda which provides the user with a high level parallel programming model

that is easy to use.

For sequential codes not involving
oating point arithmetic, we were

able to achieve performances compatible with that of optimizing C compil-

ers. For parallel code, we demonstrated that relatively good speedups can be

achieved. By using a shared memory numerical benchmark, we studied the

problems that remains in trying to achieve performance compatible to tra-

ditional imperative languages. Although it may be argued that the example

used falls outside the problem domain that Lisp is intended for, we were able

to identify and quantify performance bottlenecks which, if removed, will no

doubt be bene�cial across the board. Much work remains to be done but

it does seems to us that the idea of Lisp, sequential or parallel, running as

competitive alternative to parallel C, say, may not be an impossible dream

after all.

References

[1] J. F. Bartlett, `SCHEME->C : a portable Scheme-to-C Compiler', DEC
Western Research Lab. Research Report 89/1, Jan 1989.

[2] N. Carriero and D. Gelernter, `Linda in context', Comm. ACM, 32, pp.
444-58, 1989.

[3] M. D. Feng, `Compilation and Run-time Environment of Parallel Lisp
on Distributed Systems', National University of Singapore PhD. Thesis.
1994.

[4] R. H. Halstead, `Multilisp : A Language for Concurrent Symbolic Com-
putation', ACM Trans. on Prog. Lang. and Sys., vol. 7, no. 4, pp. 501-
538. Oct 1985.

[5] F. Henglein, `Global Tagging Optimization by Type Inference', 1992
ACM Symp. on Lisp and Func. Prog., pp. 205-215. 1992.

17

[6] Inmos Limited. Transputer Instruction Set : A Compiler Writer's
Guide. Prentice-Hall 1988.

[7] T. Ito and R. H. Halstead, Jr. (ed) Parallel Lisp : Languages and
Systems. Lecture Notes in Computer Science 441. Springer-Verlag 1990.

[8] R. E. Korf, `Depth-�rst iterative-deepening : an optimal admissible tree
search', Arti�cial Intelligence, vol. 27, pp. 97-109. 1985.

[9] D. A. Kranz, `ORBIT : An optimizing compiler for Scheme', Yale Uni-
versity Technical Report YALEU/DCS/RR-632. Feb 1988.

[10] D. A. Kranz, R. H. Halstead and E. Mohr, `Mul-T : A High Performance
Parallel Lisp', ACM SIGPLAN '89 Conf. on Prog. Lang. Design and
Implementation. pp. 81-90. Jun 1989.

[11] J. P. Singh, W.-D. Weber and A. Gupta, `SPLASH: Stanford Parallel
Applications for Shared-Memory', Computer Architecture News, vol.
20, no. 1, pp. 5-44. 1992.

[12] G. L. Steele, `RABBIT : A compiler for Scheme', MIT AI Lab. TR 474.
May 1978.

[13] D. Teodosiu, `HARE : An optimizing portable compiler for Scheme',
ACM SIGPLAN Notices, vol. 26, no. 1, pp. 109-120. 1991.

[14] C. K. Yuen, M. D. Feng, W. F. Wong and J. J. Yee, Parallel Lisp
Systems: A Study of Languages and Architectures, Chapman and Hall,
1993.

18

