
LISP AND SYMBOLIC COMPUTATION: An International Journal, 7, 283–305 (1994)
c 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

TS/Scheme: Distributed Data Structures in LispSURESH JAGANNATHAN suresh@research.nj.nec.com

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540

Abstract. We describe a parallel object-oriented dialect of Scheme called ts/scheme that provides a simple
and expressive interface for building asynchronous parallel programs. The main component in ts/scheme’s
coordination framework is an abstraction that serves the role of a distributed data structure. Distributed data
structures are an extension of conventional data structures insofar as many tasks may simultaneously access and
update their contents according to a well-defined serialization protocol. The semantics of these structures also
specifies that consumers which attempt to access an as-of-yet undefined element are to block until a producer
provides a value.ts/scheme permits the construction of two basic kinds of distributed data structures, those accessed by content,
and those accessed by name. These structures can be further specialized and composed to yield a number of other
synchronization abstractions. Our intention is to provide an efficient medium for expressing concurrency and
synchronization that is amenable to modular programming, and which can be used to succinctly and efficiently
describe a variety of diverse concurrency paradigms useful for parallel symbolic computing.

Keywords: Symbolic Computation, Parallelism, Distributed Data Structures, Coordination, Object-Oriented
Computing

1. Introduction

Many parallel dialects of Lisp express concurrency via a lightweight process construc-
tor such as future[16], and model process communication via dataflow constraints that
exist between a future instance and its consumers. These dataflow constraints may be
enforced implicitly via strict operations which are passed a future as an argument (e.g., as
in MultiLisp[16] or Mul-T[24]), or explicitly via a primitive wait operation on futures (e.g.,
touch in MultiLisp, or the future-wait procedure in QLisp[15]). In either case, task com-
munication is tightly-coupled with task creation: tasks1 can only initiate requests for the
value of an object if the identity of the object is known. Because of this constraint, multiple
tasks cannot collectively contribute to the construction of a shared data object without using
other explicit (low-level) synchronization primitives such as locks or monitor-like abstrac-
tions (e.g., qlambda[12] or exlambda[19]). Thus, while amenable to fine-grained parallel
algorithms in which synchronization is predicated on the values generated by tasks upon
termination, future-style process abstractions are not convenient for expressing algorithms
in which tasks have no manifest dependencies with one another, but which nonetheless
must communicate data.

A distributed data structure[7] is one alternative abstraction for expressing concurrency
that addresses some of these concerns. A distributed data structure is a concurrent object
that permits many producers and consumers to concurrently access and update its contents
via a well-defined synchronization protocol.

284 SURESH JAGANNATHAN
We have built a dialect of Scheme called ts/scheme that incorporates first-class dis-

tributed data structures as a basic data type. ts/scheme uses distributed data structures
specified in terms of tuple-spaces as its main coordination device. The semantics of
tuple-spaces described here shares broad similarity with tuple-spaces found in the Linda
programming model[6], but differs in a number of significant respects as we describe below.
Generally speaking, the utility of the tuple-space abstraction derives from a simple interface
that usually requires only small perturbations to sequential code to build parallel programs,
and an appealing metaphor for parallel programming in which task communication is
anonymous, and totally decoupled from task synchronization.

There are four basic operations that can be performed on tuple-space structures: read a
tuple, remove a tuple, deposit a tuple, and deposit a process-valued tuple. (A tuple is a
heterogeneous ordered collection of values.) The first two are blocking operations that are
permitted to execute only if the desired element exists in a tuple-space. The last defines a
task creation operation.

The semantics of distributed data structures currently found in language models such as
Linda have several attributes that make them difficult to use as a foundation for large-scale
modular parallel programming. First, distributed data structures are not first-class entities;
thus, all shared data is restricted to reside in one global repository. Second, Linda provides
no mechanism to build synchronized abstractions of named heterogeneous collections (e.g.,
records or objects). All shared data in Linda must be represented in terms of tuples whose
fields are accessible by content, not by name. This restriction is a severe one for many
kinds of symbolic applications. Third, the restrictive blocking semantics in Linda makes
it difficult to use tuple-spaces as the basis for a building a concurrent object-oriented
framework in which shared data is organized into a user-definable inheritance hierarchy.
A natural inheritance model for tuple-spaces would permit tuple references made in tuple-
space T to be resolved in T ’s parent(s) if T contains no suitable matching element. Finally,
current implementations provide no mechanisms for programmers to easily annotate their
programs to make the manipulation of tuple-spaces more efficient. Annotations to limit the
size of a tuple-space, for example, are not part of the Linda language model. In general,
this inability significantly limits the range of optimizations typically available to optimizers
or program restructurers.

The extensions we propose are motivated by issues of modularity and expressivity; the
design of the runtime system is influenced by our interest in using tuple-space objects as
a concurrency device for fine-grained parallel computing2. Our intention is to preserve
the cognitive simplicity of the tuple-space abstraction while enhancing its expressivity and
implementability in several important respects. We enumerate the salient aspects of our
system below, and elaborate on these points in the sections following:

1. Tuple-spaces are first-class objects: they can be defined explicitly, bound to variables,
passed as arguments to (and returned as results from) procedures.

2. Tuple-spaces are comprised of two distinct components: a binding repository that
defines a collection of bindings, and a tuple repository that defines a collection of
tuples. Elements in a tuple repository are accessed by content, not by name; elements
in a binding repository are accessed by name only.

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 285

3. Tuple-spaces adhere to an object-oriented protocol. Even though the intended use of
a tuple-space (e.g., as a vector, queue, set, etc.) can be specified by the programmer,
the interface to any tuple-space is specified exclusively by the read, write, remove, and
spawn operations described above. Thus, all tuple-space instances define the same
operations regardless of their internal representation.

In addition, tuple-spaces can be organized into an inheritance hierarchy. If a tuple-
space T is specified to be the parent of another T 0, a read or remove operation sent toT 0 that is not satisfiable by T 0 is resolved by T and its parents. The ability to organize
tuple-spaces into hierarchies makes ts/scheme a flexible concurrent object-oriented
language.

4. There is no distinction between tasks or data in bindings or tuples. Thus, programs can
deposit tasks as well as data; processes can match on either. The runtime system uses
the uniformity of process and data to implement an efficient dynamic scheduling and
throttling policy for fine-grained parallel programs.

The next section provides a description of the language, and gives an informal semantics
of tuple-spaces and the operations permissible on them. Section 2.6 gives an example of
how tuple-spaces may be used to build concurrent object-based systems. Section 3 gives
a brief overview of Sting[22], [23], a high-level operating system kernel for symbolic
computing on which ts/scheme is implemented. Section 4 provides benchmark results.

2. The Language

Concurrency and coordination is introduced in ts/scheme via the make-ts primitive
procedure. When applied, this procedure returns a reference to a new tuple-space object.

Tuple-spaces are first-class elements in ts/scheme. Giving first-class status to tuple-
space objects supports modular parallel programming[13], [21]. By permitting tuple-spaces
to be denoted, programmers may partition the communication medium as they see fit. To
encapsulate a set of related shared data objects, we deposit them within a single tuple-
space; this tuple-space can be made accessible only to those tasks that require access
to these objects. Other tasks need not be aware of these objects, and ad hoc naming
conventions need not be applied to ensure that data objects are not mistakenly retrieved by
tasks which do not need them.

2.1. Tuple Repositories

Tuple repositories are manipulated via operations that deposit, read, remove tuples as
described below. Tuples are defined using the tuple constructor, [: : :].(rd TS [tuple-template] body) reads a tuple t from TS’s tuple repository that

matches tuple-template and evaluates body using the bindings established as a
consequence of the match. Assuming TS is defined by the expression, (make-ts),
this operation blocks until a matching tuple is encountered in TS.

286 SURESH JAGANNATHAN
For example, the expression:(rd TS [?x 2 ?y] (+ x y))
reads a tuple from TS whose second field is 2, binds the first field to x and the third
to y and evaluates their sum. X and y are referred to as formals. Because Scheme
supports latent polymorphic types, the system enforces no static type constraints
on the matching procedure. Thus, a tuple with non-numeric first and third fields
is an acceptable target for a match operation on the above template. Such a match
results in a runtime error.

Besides ts/scheme objects, constants, and formals, a tuple template may also
specify a “don’t care” value that matches against any object. Thus, we can write:(rd TS [?x 2] x)
to read a four tuple in TS whose fourth field is 2; the contents of the first two fields
in the matched tuple are ignored.

Tasks reading a tuple from TS have exclusive access to TS only while bindings for
a template’s formals are being established; all locks on TS are released prior to the
execution of body.(get TS [tuple-template] body) has a semantics similar to rd except that it atom-
ically removes its matched tuple from TS’s tuple repository after establishing all
relevant bindings.(put TS [tuple]) deposits tuple into TS’s tuple repository; the operation completes
only after the tuple is deposited. Blocked rd or get operations that match on tuple
are resumed as a consequence of this operation. Formals are not permitted in
a tuple deposited by put. Tasks have exclusive access to TS until the operation
returns.

Although not specified in the semantics, the implementation of ts/scheme de-
scribed here gives higher priority to resuming blocked readers than blocked re-
movers. Thus, when a tuple is deposited on which a number of readers and
removers are blocked, all blocked readers, and at most one blocked remover are
resumed. This implementation maximizes the number of threads resumed by a
tuple deposition operation.(spawn TS [tuple]) creates a lightweight process for each field in tuple and returns
immediately thereafter. Thus, the expression:(spawn TS [(f x) (g y)])
deposits a two-tuple into TS’s tuple repository. These fields are lightweight tasks
computing (f x) and (g y). Once both tasks complete, the tuple quiesces to a
passive (data) tuple containing the values yielded by these tasks. In the above
example, both f and g are assumed to be lexical closures and their applications
evaluate in the environment in which they are defined, and not in the call-time
dynamic environment in which they are instantiated.

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 287Rd and get operations can match on process-valued tuples. We defer discussion of
this feature until Section 3.

Tuple-spaces are represented as Scheme objects, obey the same storage semantics as any
other object, and may be garbage collected if there exist no outstanding references to them.

Since it is expected that communication among tasks in ts/scheme will be performed
exclusively via the tuple operations given above, the meaning of a program in which
tuple referenced objects are mutated is unspecified. For example, the following program
fragment need not raise an error, but its meaning is ill-defined:(let ((foo (make-vector 1))(TS (make-ts)))(vset foo 0 'hello)(spawn (make-ts) [(put TS [foo])(rd TS [?x] (vref x 0))])(vset foo 0 'goodbye))
The result of the rd operation will be either the symbol hello or the symbol goodbye. The
semantics does not constrain an implementation to make a copy of foo when it is deposited
into TS; programmers should not rely on such implementation details, however, in writingts/scheme code.

2.2. Immutable Tuple Spaces

A tuple-space T can be “closed” via the operation (close-ts T). A closed tuple-space
is an immutable object – no further tuples can be deposited into it, and no tuples may be
removed from it. In terms of implementation, no synchronization is required to access the
elements of a closed tuple-space.

An operation that attempts (a) to read a non-existent tuple from a closed tuple-space, or
(b) to write a tuple into a closed tuple-space induces a runtime error. Furthermore, tasks
blocked in a tuple that becomes closed will never become unblocked.

2.3. Bindings

A significant point of departure ofts/scheme from other distributed data structure systems
is its fundamental support for bindings as a basic unit of communication. Tuple-spaces
as described thus far encapsulate an anonymous collection of data values retrieved as a
consequence of a pattern-match operation. While useful for expressing recursive, self-
relative or associative data structures (e.g., lists, vectors, streams, queues, etc.), the tuple
repository abstraction is a poor fit for building other kinds of named structured objects
such as modules, classes, or records. Despite obvious differences in their semantics, these
objects all fundamentally manipulate bindings of labels to values. Modular programming
in general, and symbolic computing in particular, makes heavy use of such structures.
Consequently, ts/scheme seriously supports the construction and access of bindings in
its coordination substrate.

288 SURESH JAGANNATHAN
Binding tuples and templates are defined using the binding constructor, f: : : g. These

objects are manipulated by the same tuple operations described above.

Bindings are orthogonal to ordinary data and reside in a tuple-space’s binding repository.
When used as an argument to a put or spawn operation, a binding tuple has the form:f (x1 E1) (x2 E2) : : : (xn En) g
Each of the xi are labels, and each of theEi are expressions. When used in conjunction with
a put operation, for example, the expressions are first evaluated to yield values v1, v2,: : : , vn. Each label/value pair, (xi, vi) is then deposited into the specified tuple-space’s
binding repository.

For example, the expression:(let ((bar 2)(bam 3))(put ts f (foo 1) (bar bar) (bam 4) g))
atomically deposits three bindings into ts – the first binds the identifier foo to 1; the second
binds the identifier bar to its value in the lexical environment; the third binds the identifierbam to 4. Bindings for these labels deposited by the above put supersede previously
established bindings for these same labels.

We can similarly deposit process-valued bindings:(spawn ts f (foo (f x)) (bar (g y)) g)
This expression deposits two bindings into tuple-space initially bound to two tasks (com-
puting (f x) and (g y) resp.) The values yielded by these tasks ultimately replace the
references to the tasks themselves; thus when the task computing (f x) completes with
value v, the binding of foo to the task object is replaced with a binding of foo to v.

A binding template takes the form,f ?x ?y : : : ?z g
where x, y, : : : z are labels. When evaluated in the context of a rd or get operation, e.g.,(rd ts f ?x1 ?x2 : : : ?xn g E)
each label xi acquires a value as defined by its binding in ts’s binding repository; these
bindings are then used in the evaluation of E. E is evaluated only after all formals in the
binding template have acquired a value, i.e., only after bindings for all the xi have been
deposited into ts. The order in which bindings in a tuple are established is unspecified.

For example, evaluating the expression,(rd ts f ?foo ?bam g (+ foo bam))
introduces a new scope with two names, foo and bam. The binding values for these
names are the values extant at the time the name-lookup in ts’s binding repository occurs.
Either the binding for foo or bam can be established first. During the interval between the
establishment of the first and second bindings, other threads can access and manipulate ts.

Using bindings, one can build concurrent analogues of sequential named structures. For
example, the following program fragment creates a tuple-space that behaves as a shared
record object:

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 289(let ((ts (make-ts)))(put ts f (foo 1) (bar 2) g)ts)
If this object is named R, the expression,(rd R f ?foo g foo)
behaves as a field selection operation, and the expression,(get R f ?foo g(put R f (foo new-value) g))
deposits a new binding for foo into R. Tasks that read bindings from R block if the desired
bindings are absent.

Bindings add two important pieces of functionality to a coordination model. First,
they acknowledge the importance of named objects in symbolic computing, and elevate
such structures as bona fide shared coordination entities. While named structures can be
simulated using just tuples, e.g.,(put ts ['foo 1])(put ts ['bar 2]): : :(rd ts ['foo ?x] x)(rd ts ['bar ?y] y),
supporting bindings directly simplifies implementation and adds expressive power. Using
symbols as above to represent bindings provides no protection against name clashes, and
requires a global protocol that fixes the representation of bindings in terms of tuples.

Second, given first-class tuple-spaces, the ability to inject and read bindings provides the
necessary flexibility to build a robust object system with tuple-spaces as the representation
structure for abstract user-defined objects. We elaborate on this point in Section 2.6.

2.4. Types

The tuple repository component of a tuple-space may be represented as semaphores, sets,
bags, vectors, protected variables, streams, queues or tasks. The type specification is a
reflection of the intended use of the repository; in the absence of any type annotation, the
elements in a tuple repository are represented via associative hash tables.

Regardless of the annotation affixed to a tuple-space, its interface remains uniform
although the structure of tuples applied to tuple operations may be restricted. Thus, if TS
has type type/var,(define TS (make-ts type/var))
the operation,(rd ts [100] : : :)
is ill-defined since protected variables are not intended to be accessed by content, whereas
the operation(rd ts [?x] : : :)
is well-defined, and returns the value of the protected variable.

290 SURESH JAGANNATHAN
Similarly, tuples deposited into a tuple-space represented as a vector must be of the form[i, v] where i is an integer index. Rd and get operations must operate over templates of

the form, [i, ?v]; in the default case, these operations block if no value has been deposited
into index i of the corresponding vector. During compilation, annotations are used to help
type-check tuple operations in certain well-defined instances; thus, the following expression
raises a compile-time error provided TS is not assigned in the let body:(let ((TS (make-ts type/var))): : :(put TS [1 2 3]) ;;; ill-formed use of TS: : :)
2.5. Attributes

A tuple-space can be associated with a set of attributes that specify properties of its
implementation. There are several important attributes and attribute classes over tuple-
spaces available in ts/scheme:

1. size: A size attribute defines an upper-bound on the number of tuples and bindings that
can occupy a tuple-space. A tuple operation whose evaluation would violate this bound
signals a runtime error.

2. parent: A parent attribute augments the semantics of tuple access by enabling tuple-
spaces to follow an inheritance protocol on match failure. The expression:(define TS (make-ts (ts/parent Parent)))
creates a tuple-space TS with parent Parent. Rd or get operations on TS which fail to
find a suitable matching tuple (or binding) perform their search on Parent; a match
(or binding) failure in Parent causes search to resume in its parent and so forth. The
executing task blocks in TS if all tuple-spaces in a parent chain have been examined,
and no matching tuple is encountered.

Allowing tuple-spaces to be linked together in this fashion elevates their utility to that
of full-fledged objects that can be made to share common data. As we describe in
Section 2.6, such capability permits the realization of a concurrent object-based system
using tuple-spaces as the basic object constructor.

3. Daemon attributes: A daemon attribute is a procedure that is invoked whenever a
specified tuple operation is applied on a tuple-space. These attributes are of the form:(ts/type constructor proc) where type is one of put, rd, get or spawn, constructor
is either data or binding, and proc is an expression that yields a procedure of one
argument.

Attributes are evaluated only after the appropriate operation has completed; thus ats/put daemon is invoked only after a tuple has been deposited; daemon attributes are
always applied to a tuple representation structure.

For example, the following program fragment creates a tuple-space TS that implicitly
maintains a copy of all binding tuples that are deposited into its tuple repository:

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 291(define copy (make-ts))(define TS (make-ts (ts/put binding (lambda (tuple) (put copy tuple)))))
Although other expressions may rd or get binding tuples from TS, copy serves as
a log of all binding tuples deposited into TS; such tuples extracted from TS are not
automatically extracted from copy.

Daemon attributes are also useful for building simple extensions to the core set of tuple
operations. For example, the following fragment maintains a counter of the number of
tuples currently found in TS; since tasks have exclusive access to a tuple-space while
depositing a tuple or establishing bindings, no synchronization is required to access
this counter:(define TS-count 0)(define TS (make-ts(ts/put (lambda (tuple) (set! TS-count (+ TS-count 1))))(ts/get (lambda (tuple) (set! TS-count (- TS-count 1))))))

Attributes are defined when a tuple-space is created. Certain attributes (such as size) are
immutable, but others (such as parent) can be side-effected.

2.6. Examples

Figures 1 and 2 give two examples of ts/scheme programs.
The first program describes an implementation of I-structures[4]. As found in Id, I-

structures are write-once arrays; an attempt to read an unwritten element of an I-structure
causes the accessing expresssion to block until a value is written. The use of tuple-spaces
as the representation object for I-structures lets us generalize their functionality in some
important respects; the implementation described here is similar in some respects to the
definition of M-structures discussed in [5]. The implementation provides four operations
on I-structures:

1. (make-I-structure size) creates an I-structure vector. An I-structure vector is repre-
sented as a tuple-space with two bindings. The first binds elements to a tuple-space
that will hold I-structure values. The second binds status to a tuple-space vector of
length size used to determine if an I-structure cell has a value.

2. (I-ref rep i) returns the value of the ith I-structure component of rep, blocking if the
structure is empty.

3. (I-set rep i v) atomically sets the ith element of rep to v provided that this element
has not already been previously written. The tuple-space bound to status is used to
synchronize multiple writes to an I-structure.

4. (I-remove rep v) is an operation that demonstrates the use of tuple-spaces as content
addressable data structures.

Given a value v and an I-structure rep, I-remove creates a new thread that re-initializes
all I-structure elements that contain v. The thread repeatedly removes a tuple in rep’s

292 SURESH JAGANNATHAN
(define (make-I-structure size)(let ((rep (make-ts)))(put rep f (elements (make-ts)) g)(put rep f (status (make-ts (type/vector size))) g)(let -*- ((i 0))(cond ((= i size) rep)(else (rd rep f ?status g(put status [i '#f]))(-*- (+ i 1)))))))(define (I-ref rep i)(rd rep f ?elements g(rd elements [i ?v] v)))(define (I-set rep i v)(rd rep f ?status g(get status [i ?state](cond (state (error ``I-structure currently written''))(else (rd rep f ?elements g(put elements [i v]))(put status [i '#t]))))))(define (I-remove rep v)(spawn (make-ts)[(rd rep f ?elements ?status g(let -*- ()(get elements [?i v](get status [i](put status [i '#f])))(-*-)))]))
Figure 1. A generalized implementation of I-structures using first-class tuple-spaces.

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 293elements tuple-space that contains v, setting the appropriate status field to false. In the
implementation shown, these threads run forever, but it is straightforward to augment
their functionality such that they terminate upon a user-specified condition.

The program shown in Fig. 2 is a concurrent object-based definition of a point andcircle abstraction. Instances of these abstractions are represented as tuple-spaces that
hold bindings for all relevant methods. A point object defines two methods, one to
compute the distance of the point from the origin, and another to determine whether the
current point is closer to the origin than a point provided as an input.

Circles inherit the ClosertoOrig method found in points,but redefine a new DistfromOrig
procedure. Note that a call to ClosertOrig with an instance of a circle as the self argument
will cause the definition of DistfromOrig found in circles, not the one defined for points, to
be used. Thus, this implementation realizes a late-binding semantics found in object-based
systems such as Smalltalk[14] or Self[34].

These definitions define a concurrent program[1], [3], [36] – there may be many methods
in point and circle instances evaluating simultaneously. For example, the following
fragment returns a procedure which when applied to a circle instance creates several
concurrent threads manipulating both circle instance C and point instance P:(let ((C (make-circle a b r))(P (make-point x y)))(lambda (my-C)(spawn (make-ts) [(f (send C DistfromOrig))(g (send C ClosertoOrig my-C))(send P Update-x new-x)(send P Update-y new-y)])))
Methods in C and P may all evaluate simultaneously with one other; thus, C’s distance from
origin, and its distance relative to my-C are computed in parallel. Similarly, P’s x and y
coordinate are updated concurrently as well. As with ordinary tuples, bindings are accessed
and manipulated in well-defined atomic steps.

The system naturally supports dynamic inheritance[8], [26]. Given a point instance, we
can deposit a new method simply by applying a tuple operation to the object:(put point-instance f (new-method-name new-method) g)
Operations which send messages to new-method-name block until the depositing task
executes the above tuple operation.

Simple analyses of ts/scheme program structure can reduce the overheads involved
in manipulating bindings considerably. One important optimization that may be applied
occurs if the set of bindings deposited into a binding repository is statically known. For
example, consider the following expression:(let ((TS (make-ts)))(put TS f(a 1) (b 2)g)(spawn (make-ts) [(f TS) (g TS)]))
If neither f nor g deposit bindings into TS other than a or b, we might implement TS’s
binding repository as a two-field record with labels for a and b. Get operations on a orb reinitialize the corresponding record slot; subsequent rd or get operations on this slot
block until a new binding-value is deposited.

294 SURESH JAGANNATHAN
(define (make-point x y)(let ((obj (make-ts (ts/parent default-object))))(put obj f (x x) (y y)(Update-x(lambda (self new-x) (get self f?xg(put self f(x new-x)g))))(Update-y(lambda (self new-y) (get self f?yg(put self f(y new-y)g))))(DistfromOrig(lambda (self)(rd self f ?x ?y g(sqrt (- x y)))))(ClosertoOrig(lambda (self p)(< (send self DistfromOrig)(send p DistfromOrig))))) g)obj))(define (make-circle a b r)(let* ((super (make-point a b))(obj (make-ts (ts/parent super))))(put obj f (radius r)(Update-radius(lambda (self new-radius)(get self f ?radius g(put self f(radius new-radius)g))))(DistfromOrig(lambda (self)(max (- (send super DistfromOrig)(rd self f ?radius g radius))0))) g)obj))(send Object Method . args) �(rd Object f ?Method g (apply Method Object args))
Figure 2. A concurrent object program using tuple-spaces as the object representation.

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 295

For object-based programs in which bindings are only created at the time the object is
instantiated and the parent hierarchy is not modified once established, compiling binding
repositories as records can lead to other optimizations. Consider the following program
fragment:(define O (make-ts (ts/parent P)))(put 0 (M1 method 1)(M2 method 2): : :(Mn method n))
Deciding an efficient representation for O’s binding repository requires knowledge of the
set of potential bindings in P and O. For example, if the threads accessing O manipulate only
bindings for M1, M2, : : : , Mn, rd and get operations on O’s bindings are translated into
expressions that use offsets into a record representation containing these bindings. If the
same analysis is applied to O’s ancestors, references to ancestor methods sent in messages
to O can be compiled into offsets in the appropriate record containing the method definition;
such records define the representation of the binding repository for tuple-spaces such as O
and P. This approach of customizing the representation of binding repositories based on
their use is similar to strategies employed in other optimizing compilers for late-binding
languages[8], [31].

3. Runtime Support

Efficient runtime implementation of first-class tuple-spaces requires at the minimum (a)
cheap creation and management of lightweight tasks, (b) flexible scheduling policies that
can be dynamically instantiated to support different programming paradigms, (c) support
for fine-grained parallel computing via efficient process throttling and scheduling protocols,
and (d) storage management capabilities sensitive to tuples and tuple-spaces.Sting is an operating system kernel for high-level symbolic programming languages
that provides these capabilities. Details of the system are given in [22], [23]. The system
is implemented entirely in Scheme with the exception of a few operations to save and
restore thread state, and to manipulate hardware locks. Tuple-space operations translate to
operations on threads and ordinary Scheme data structures.

Threads and virtual processors are two novel abstractions in the Sting design that
support distributed data structures.

Threads define a separate locus of control. They are represented as a small Scheme
object closed over a procedure which executes as a separate lightweight task. Storage for
threads is deferred until the thread is actually about to execute; delaying storage allocation
improves program locality and permits some important runtime optimizations which we
describe below. When a thread is an evaluating state, it is associated with an evaluation
context or thread control block (TCB). TCBs contain dynamic state information,and storage
(e.g., stacks and heaps). All evaluating threads execute using separate TCBs unless data
dependencies warrant otherwise.

Besides threads, Sting supports the construction of first-class virtual processors (VPs).
Virtual processors abstract all scheduling, migration and policy decisions associated with

296 SURESH JAGANNATHAN
the management of threads. Virtual processors combine to form virtual machines which
define a single address space in which threads may execute. Virtual machines themselves are
mapped to physical machines which are faithful abstractions of an underlying architectural
platform. Sting assumes its physical processors execute on top of a shared memory or
shared virtual memory[25] substrate.

Thread control blocks are created in a LIFO pool associated with each VP. When a thread
terminates, its TCB is restored into the TCB pool of its VP. Every VP has a TCB threshold;
if exceeded, a certain fraction of TCBs are migrated from the VP to a global VP pool
associated with the virtual machine. Similarly, if a VP has no available TCBs, and one is
required, the global pool is first consulted before a new TCB is created. Recycling TCBs
improves runtime locality and minimizes overheads in running new threads.

Policy decisions such as thread scheduling, migration, load-balancing, etc. are encap-
sulated inside a thread policy manager. Virtual processors are closed over potentially
distinct policy managers. Since virtual processors are first-class, and since all policy
managers provide a standard interface3, programmers can dynamically close individual
virtual processors over distinct policy managers without loss of efficiency. Customizing
policy decisions permits applications with different runtime requirements to execute un-
der scheduling protocols tailored toward their specific needs. In particular, ts/scheme
programmers can build virtual machines whose processors are closed over policy man-
agers best suited for the paradigm being implemented (e.g., master-slave programs may
execute on VPs which schedule threads using a FIFO queueing discipline with preemption,
fine-grained result-parallel programs may execute under a LIFO non-preemptive scheduler,
etc.).

3.1. Efficient Support for Fine-Grained Active TuplesSting provides support for fine-grained parallel symbolic computing by permitting threads
to share evaluation contexts whenever data dependencies warrant. In a naive implementa-
tion, a thread T which accesses the value produced by another must block until the value
is generated. This behavior is sub-optimal – cache and page locality is compromised,
bookkeeping information for context switching increases, and processor utilization is not
increased since the original task must block until the new task completes.

Consider the following optimization: a procedure t associated with a thread, T that has
not yet started evaluating can be evaluated within the evaluation context of a thread S that
demands t’s value without violating the program’s semantics. The rationale is straight-
forward: since T has not been allocated storage and has no dynamic state information
associated with it, t can be treated as an ordinary procedure and evaluated using the TCB
already allocated for S. In effect, S and T share the same evaluation context. We refer
to such an operation as absorption. A thread is absorbed if its thunk and dynamic state
execute using the stack and heap associated with another already evaluating thread.

Thread absorption is therefore tantamount to a dynamic demand-driven evaluation strat-
egy for scheduled threads – any thread that requires the value of another that has not yet
started evaluating can directly demand its value without blocking. A scheduled thread is

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 297

not constrained to be demanded before it can evaluate, however; such a thread can execute
independently of its relationship with any other thread provided that resources are available.

Consider a task P that executes the following expression:(rd TS [x1 x2] E)
where x1 and x2 are non-formals. Assume furthermore that an active tuple is deposited
into TS as a consequence of the operation,(spawn TS [E1 E2])
This operation schedules two threads (call themTE1 andTE2) responsible for computingE1
andE2. If bothTE1 andTE2 complete, the resulting (passive) tuple contains two determined
threads. Recall that because there is no distinction in ts/scheme between active tuples
(i.e., tuples with process-valued fields) and passive tuples (i.e., tuples containing only
Scheme values), an active tuple is a valid argument for a match operation.

If TE1 has not yet begun evaluating at the time P executes, however, P is free to
absorb it, and then determine if its result matches x1. If a match does not exist, P may
proceed to search for another tuple, leaving TE2 still in a scheduled state. Another task
may subsequently examine this same tuple and absorb TE2 if warranted. Similarly, ifTE1’s result matches x1, P is then free to absorb TE2 . If either TE1 or TE2 are already
evaluating, P may choose to either block on one (or both) thread(s), or examine other
potentially matching tuples in TS. The semantics of tuple-spaces impose no constraints on
the implementation in this regard.

Thread absorption is similar in some respects to load-based inlining[16], [35] and lazy
task creation[28] insofar as it is a mechanism to throttle the creation of new lightweight
threads of control. Unlike load-based inlining, thread absorption can never cause processor
starvation or avoidable deadlock since it is applied only when a manifest data dependency
(i.e., a producer/consumer relationship) exists between two threads. Lazy task creation is
an optimization found in Mul-T[24] that inlines potential threads, but permits the inlining
operation to be revoked if processors becomes idle. In this scheme, a thread is created only
when a processor becomes available to evaluate it. Unlike thread absorption, the decision
to revoke an inlined thread is not based on runtime dataflow constraints, but exclusively on
processor availability.Sting’s combination of first-class threads and thread absorption allows us to implement
quasi-demand driven fine-grained (result) parallel programs using shared data structures.
In this sense, the thread system attempts to minimizes any significant distinction between
structure-based (e.g., tuple-space) and dataflow style (e.g., future/touch[16]) synchroniza-
tion. In this respect, ts/scheme addresses a major criticism of Linda and other related
systems insofar as programmers may ignore many details concerning process granularity
and work distribution in their programs without compromising performance. In imple-
mentations of systems such as C.Linda, the inability to minimize the number of actual
evaluation contexts created in a program by exploiting data dependencies between active
tuple writes and reads severely limits the kind of algorithms which can be efficiently sup-
ported; a C.Linda program that spawns n tasks will evaluate them in n separate contexts.
No thread absorption will be performed, and threads that attempt to read the tuples holding
these threads will block until they complete.

298 SURESH JAGANNATHAN(define (queens n d)(let try ((d d)(rows-left n)(free-diag1 -1)(free-diag2 -1)(free-cols (- (ashl 1 n) 1)))(let ((free (logand free-cols(logand free-diag1 free-diag2))))(let loop ((col 1))(let ((my-try (lambda (d)(try d(- rows-left 1)(+ (ashl (- free-diag1 col) 1) 1)(ashr (- free-diag2 col) 1)(- free-cols col)))))(cond ((> col free) 0)((= (logand col free) 0)(loop (* col 2)))((= rows-left 1)(+ 1 (loop (* col 2))))(else(let ((Q (cond ((> d 0)(let ((Q (make-ts type/var)))(spawn Q [(my-try (- d 1))])Q))(else (my-try 0))))(other-solns (loop (* col 2))))(+ (cond ((zero? d) Q)(else (rd Q [?v] v)))other-solns)))))))))
Figure 3. A fine-grained tree-structured ts/scheme program.

Fig. 3 shows a fine-grained implementation of the well-known n-queens problems4. In
this formulation, a queen is placed on one row of the chessboard at a time. Threads are
then spawned to find all solutions stemming from the current configuration; threads are not
created after a specified cutoff depth in the tree is exceeded. Bit vectors are used to build
a compact representation, leading to fine thread granularity. Since there exist manifest
data dependencies among spawned threads in this example (a queen on one row needs to
know the positions of queens on all other rows), many scheduled threads can be absorbed,
limiting the overall storage requirements needed by this program. We provide benchmark
results for this program in Section 4.

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 299

3.2. Storage ManagementSting threads are closed over a private heap, private stack, and a shared heap. Data
allocated on private heaps is local to a thread, and can be garbage collected without
requiring synchronization with other threads[30]. Data which is shared among threads is
allocated on a shared heap. Whenever a reference to an object in a local heap escapes that
heap, the object is copied to a shared heap. Heaps and stacks are first-class objects.

The ts/scheme implementation allocates a shared heap for every virtual processor.
A thread executing on virtual processor V , allocates tuples on V ’s associated heap; no
locking is required if preemption is disabled during the allocation. Unlike private heaps,
this shared heap is garbage collected synchronously with respect to the group of threads
which access it. Any thread which attempts to access tuples found on this heap during
a garbage collection blocks until the collector is finished. In the abstract, when a tuple
references an object already allocated on some thread’s private heap, the object is copied to
some shared heap; this heap may be the virtual processor heap holding tuples, or a shared
heap associated with the thread’s group [22].

The runtime overhead associated with copying objects from local to shared heaps can be
reduced by having objects pre-allocated on a shared heap if it can be determined that they
will subsequently be referenced within a tuple operation. For example, in the following
code fragment,(let ((TS (make-ts))(v (make-vector 1000))): : :(put TS [v])TS)
it is reasonable to allocate v on a shared heap since v is referenced within the tuple deposited
into TS, and the lifetime of the vector bound to v is tied to the lifetime of TS. If the vector were
allocated on the private heap of the thread executing this fragment, v would be copied toTS’s shared heap during evaluation of the put operation; efficiency would be compromised
in this case. Compile-time analysis of data locality in threads is an important component
of future ts/scheme implementations.

4. Benchmarks

The sequential timings shown in Table 1 were measured on a 50 MHz Silicon Graphics
MIPS R4000 workstation with 96 megabytes of memory; the R4000 has 8 kilobyte primary
instruction and data caches, and a unified 1 megabyte secondary cache.

The multiprocessor timings were measured on an eight processor Silicon Graphics Pow-
erSeries shared-memory machine; each node consists of a 75 Mhz MIPS R3000 processor.
Because of Sting’s aggressive treatment of data locality, its separation of evaluation con-
texts from threads which use them, its use of thread absorption to increase dynamically
increase thread granularity, and the lightweight costs of tuple operations, we expect these
programs to scale well even on larger processor ensembles.

300 SURESH JAGANNATHAN
Table 1. Baseline times for tuple-
space operations.

Operation Time (�-seconds)

Create 40
100

Put 61
400

Rd 73
91

Put/Get 136
235

Ping-pong 750

Each tuple operation was timed on both a general fully associative tuple-space as a well
as a specialized one (for the timings, tuple-spaces created with a type/var annotation were
used); the smaller times shown for each operation are the times recorded for the specialized
operations.

Put/Get measures the cost of creating two tuple-spaces T1 and T2, and synchronously
depositing and removing a singleton tuple from them. Ping-pong creates two tasks closed
over two type/var tuple-spaces. Task A deposits a singleton tuple into tuple-space T1 and
waits for a tuple to be deposited into T2; Task B waits for a tuple to be deposited intoT1, and then deposits a tuple into T2. The time measured is the cost for (a) creating and
scheduling Sting threads for tasks A and B, (b) creating tuple-spaces T1 and T2, and (c)
depositing a tuple into T1 and removing a tuple from T2.

Tables 2 and 3 shows timings and relevant statistics for five benchmarks. The tuple
operations shown in Table 3 gives an indication of how much synchronization and commu-
nication occurs in the corresponding benchmark. The benchmarks were chosen to exercise
different aspects of both the language and runtime system. All benchmarks are struc-
tured not to trigger garbage collection. The super-linear speedups seen in the Hamming
benchmark are attributable to significant cache effects in the shared memory system since
doubling the number of processors effectively doubles the size of the primary cache. In
benchmarks which are storage intensive and which exhibit significant locality (such as
Hamming), cache behavior can be a dominating factor in the recorded timings.

N-Queens is the n queens problem shown in Fig. 3. The timings are shown for a 14x14
chessboard with a thread cutoff depth of logn + 1 where n is the number of processors.

Alpha-Beta is a parallel implementation of a game tree traversal algorithm. The program
does �=� pruning[11], [18] on this tree to minimize the amount of search performed. The
program creates a fixed number of threads; each of these threads communicate their �=�
values via tuple-spaces. The current “best” values for � and � cutoffs are consulted by
these threads up to some fixed depth in the search tree. The input used consisted of a tree
of depth 10 with fanout 8; the depth cutoff for communicating � and � values was 3. To

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 301

Table 2. Timing and efficiency ratios for a benchmark suite. The first row for each benchmark are wallclock
times measured in seconds; the second row are efficiency ratios. The efficiency of a program P on N processors
is defined as the percentage ratio of P ’s ideal performance on N processors over P ’s realized performance. We
define P ’s ideal performance on N processors to be P ’s single processor time divided by N .

Benchmark Timings and Efficiency

1 2 4 8

N-Queens 103.8 52.6 26.4 14.7
100 98.6 98.2 88.2

Alpha-Beta 108 57.6 31.9 16.7
100 93.7 84.6 80.8

Hamming 39.9 16.74 7.1 3.4
100 119.1 140 146

N-Body 751 363 251 137
100 96.7 75 69

Primes 219 112.6 58.1 34.1
100 97.4 94.4 81

Table 3. Tuple Operations on 8 processors.

Benchmark Tuple Operations

Put Get Rd Spawn

N-Queens 0 0 11167 11167
11108 (absorbed)

Alpha-Beta 23 20 597 11

Hamming 10367 7417 17405 8

N-Body 198630 191620 1165492 49

Primes 86752 43418 1819380 8

302 SURESH JAGANNATHAN
make the program realistic, we introduced a 90% skew in the input that favored finding the
best node along the leftmost branch in the tree.

Hamming computes the extended hamming numbers upto 1,000,000 for the first five
primes. The extended hamming problem is defined thus: given a finite sequence of primes
A, B, C, D, : : : and an integern as input, output in increasing magnitude without duplication
all integers less than or equal to n of the formAi � Bj � Ck � Dl � : : :

We structure this problem in terms of a collection of mutually recursive lightweight
threads that communicate via streams; each stream is implemented as a tuple-space. This
program is the most communication sensitive of the benchmarks presented,and also exhibits
the most thread locality.

N-body simulates the evolution of a system of bodies under the influence of gravitational
forces. Each body is modeled as a point mass and exerts forces on all other bodies in the
system. The simulation proceeds over time-steps, each step computing the net force on
every body and thereby updating that body’s position and other attributes. This benchmark
ran the simulation on 3500 bodies over six time-steps.

We implemented the two-dimensional version of the Barnes-Hut algorithm. The algo-
rithm exploits the idea that the effect of a cluster of particles at a distant point can be
approximated by one body whose location is the center of mass of the cluster and whose
mass is the sum of the masses in the cluster. It thus assumes that all bodies are contained
in a fixed sized cube (in the 3-dimensional case) or in a square (in the 2-dimensional case).

This program generates a number of relatively coarse-grained threads independent of the
actual input. Barrier synchronization is used to ensure that all forces are computed before
a new iteration is initiated. To optimize storage usage, a new set of threads is created on
every iteration; storage generated during one iteration becomes available to threads created
in subsequent ones; the overall aggregate storage requirements are thus minimized.

Primes computes the first million primes using a parallel master/slave version of the
Sieve of Erasthosenes algorithm. Workers compute primes within a given range, repeatedly
fixing on new ranges via synchronization objects represented as distributed data structures;
discovered primes are also recorded in a distributed data structure (represented as a vector
tuple-space) that is also used to determine the primality of numbers in chunks subsequently
examined.

5. Related Work and Conclusions

Besides C.Linda and ts/scheme, distributed data structures are available in a number
of explicitly parallel programming languages. Some notable examples are the blackboard
object in Shared Prolog[2], stream abstractions in Flat Concurrent Prolog[33], Concurrent
Smalltalk’s distributed objects[17] and its closely related variant Concurrent Aggregates[9],
and the I-structure in Id[4].ts/scheme is distinguished from these other efforts in several important respects. By
way of comparison, synchronization in other related languages takes place either through

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 303

process constructor primitives (e.g., future and touch in Mul-T[24], lightweight threads in
ML Threads[10], [29]) and shared objects (e.g., read-only variables in Concurrent Prolog,
constraint-based stores in Herbrand[32], process closures in Qlisp[12]). Task communica-
tion in ts/scheme, on the other hand, is decoupled from task instantiation. This attribute
makes it possible for tasks to initiate requests for the value of objects even if the object
itself has not yet been created, and to collectively contribute to the construction of shared
objects.

Concurrent object-oriented languages such as ABCL/1[36] or Actors[1] permit many
messages to be handled simultaneously by an object, but do so in a specialized framework.
In ABCL/1, concurrent objects behave as monitors insofar as an object may handle only a
single message at a time, and the state of an object is inaccessible to any task other than its
creator. Unlike monitors, ABCL/1 objects do not adhere to a bi-directional message passing
protocol – the sender of a message does not need to wait for a reply from the recipient
before continuing. The Actor model permits multiple threads of control or actors to exist,
but assumes all messages sent to an actor are handled in FIFO order. Like the systems
described above, and unlike ts/scheme, both ABCL/1 and Actors require objects to be
created before messages can be sent to them. This is because synchronization structures
in these systems are defined to be implicitly part of a task’s state. Both systems also
assume a message-passing copy protocol; all shared data must be encapsulated inside a
concurrent object. Furthermore, neither ABCL/1 nor Actors easily support an inheritance
structure among objects; such a structure is conveniently expressed in ts/scheme since
programmers can construct inheritance trees using tuple-spaces.ts/scheme is an attempt to increase the flexibility of distributed data structures in the
context of a highly-parallel symbolic programming environment. First-class tuple-spaces
contribute to modularity and fit naturally in the programming style supported by Scheme
and related higher-order languages. Permitting bindings to reside as elements in a tuple-
spaces elevates tuple-spaces to the status of a first-class (parallel) environment[20] without
affecting the semantics of data tuples and repositories. Attributes and type information
give programmers flexibility to control the behavior of tuple-space objects, add greater
protection, and significantly simplify implementation. Permitting read and remove op-
erations on tuple-spaces to fail and default to a specified parent allows programmers to
build concurrent object-based programs. We argue that these extensions add only slight
conceptual overhead to the basic model, but provide significant expressivity advantages,
and present a very efficient platform for building modular asynchronous parallel programs.

Acknowledgments

TheSting kernel on which ts/scheme runs was implemented by James Philbin. Monika
Rauch implemented several of the benchmarks, and has been a major user of the system;
Henry Cejtin contributed several useful suggestions to improve the quality of this paper.

304 SURESH JAGANNATHAN
Notes

1. A task or thread is a lightweight process that executes in the same address space as its parent.

2. We consider a program to be fine-grained if it defines tasks whose execution cost, in the absence of any
compile-time or runtime optimizations, is roughly proportional to the execution cost of the operations needed
to create them.

3. The interface must provide operations to insert a thread into a thread queue, get a new runnable thread, etc..

4. This solution is adapted from [27].

References

1. Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
Mass., 1986.

2. V. Ambriola, P Ciancarini, and M. Danelutto. Design and Distributed Implementation of the Parallel Logic
Language Shared Prolog. In Second ACM Symposium on Principles and Practice of Parallel Programming,
pages 40–49, March 1990.

3. Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented System. In Proceedings of the
European Conf. on Object-Oriented Programming, pages 234–242, 1987.

4. Arvind, Rishiyur Nikhil, and Keshav Pingali. I-Structures: Data Structures for Parallel Computing. ACM
Transactions on Programming Languages and Systems, 11(4):598–632, October 1989.

5. Paul Barth, Rishiyur S. Nikhil, and Arvind. M-Structures: Extending a Parallel, Non-strict, Functional
Language with State. In Proceedings of the ACM Symposium on Functional Programming and Computer
Architecture, pages 538–568, August 1991. Published as Springer Verlag LNCS 523.

6. Nick Carriero and David Gelernter. Linda in Context. Communications of the ACM, 32(4):444 – 458, April
1989.

7. Nick Carriero, David Gelernter, and Jerry Leichter. Distributed Data Structures in Linda. In Proceedings
of the 13th ACM Symposium on Principles of Programming Languages, January 1986.

8. Craig Chambers and David Ungar. Customization: Optimizing Compiler Technology for SELF, A
Dynamically-Typed Object-Oriented Programming Language. In ACM SIGPLAN ’89 Conf. on Program-
ming Language Design and Implementation, pages 146–160, June 1989.

9. Andrew Chien and W.J. Dally. Concurrent Aggreates (CA). In Second ACM Symposium on Principles and
Practice of Parallel Programming, pages 187–197, March 1990.

10. Eric Cooper and J.Gregory Morrisett. Adding Threads to Standard ML. Technical Report CMU-CS-90-186,
Carnegie-Mellon University, 1990.

11. Raphael Finkel and John Fishburn. Parallelism in Alpha-Beta Search. Artificial Intelligence, 19(1):89–106,
1982.

12. R. Gabriel and J. McCarthy. Queue-Based Multi-Processing Lisp. In Proceedings of the 1984 Conf. on Lisp
and Functional Programming, pages 25–44, August 1984.

13. David Gelernter. Multiple Tuple Spaces in Linda. In Proceedings of the Conf. on Parallel Languages and
Architectures, Europe, pages 20–27, 1989.

14. Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. Addison-Wesley
Press, Reading, Mass., 1983.

15. Ron Goldman, Richard Gabriel, and Carol Sexton. QLisp: An Interim Report. In Parallel Lisp: Languages
and Systems, pages 161–182. Springer-Verlag, LNCS 441, 1990.

16. Robert Halstead. Multilisp: A Language for Concurrent Symbolic Computation. ACM Transactions on
Programming Languages and Systems, 7(4):501–538, October 1985.

17. Waldemar Horwat, Andrew Chien, and William Dally. Experience with CST: Programming and Imple-
mentation. In ACM SIGPLAN ’89 Conf. on Programming Language Design and Implementation, pages
101–109, June 1989.

18. Feng-hsiung Hsu. Large Scale Parallelization of Alpha-Beta Search: An Algorithmic and Architectural
Study with Computer Chess. PhD thesis, Carnegie-Mellon University, 1990. Published as Technical Report
CMU-CS-90-108.

ts/scheme: DISTRIBUTED DATA STRUCTURES IN LISP 305

19. Takayasu Ito and Manabu Matsui. A Parallel Lisp Language PaiLisp and its Kernel Specification. In Parallel
Lisp: Languages and Systems, pages 58–100. Springer-Verlag, LNCS 441, 1990.

20. Suresh Jagannathan. A Programming Language Supporting First-Class, Parallel Environments. PhD thesis,
Massachusetts Institute of Technology, December 1988. Published as LCS-Technical Report 434.

21. Suresh Jagannathan. Customization of First-Class Tuple-Spaces in a Higher-Order Language. In Pro-
ceedings of the Conf. on Parallel Languages and Architectures, Europe, pages 254–276. Springer-Verlag,
Springer-Verlag, LNCS 506, June 1991.

22. Suresh Jagannathan and James Philbin. A Customizable Substrate for Concurrent Languages. In ACM
SIGPLAN ’92 Conf. on Programming Language Design and Implementation, June 1992.

23. Suresh Jagannathan and James Philbin. A Foundation for an Efficient Multi-Threaded Scheme System. In
Proceedings of the 1992 Conf. on Lisp and Functional Programming, June 1992.

24. David Kranz, Robert Halstead, and Eric Mohr. Mul-T: A High Performance Parallel Lisp. In Proceedings
of the ACM Symposium on Programming Language Design and Implementation, pages 81–91, June 1989.

25. Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Transactions on
Computer Systems, 7(4):321–359, November 1989.

26. Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems.
In Proceedings of the 1986 Conf. on Object-Oriented Programming, Systems, Languages and Architectures,
pages 214–223, 1986.

27. Rick Mohr. Dynamic Partitioning of Parallel Lisp Programs. PhD thesis, Yale University, 1991. Technical
Report YALEU/DCS/RR-869.

28. Rick Mohr, David Kranz, and Robert Halstead. Lazy Task Creation: A Technique for Increasing the
Granularity of Parallel Programs. IEEE Transactions on Parallel and Distributed Computing, 2(3):264–
280, July 1991.

29. J. Gregory Morrisett and Andrew Tolmach. Procs and Locks: A Portable Multiprocessing Platform
for Standard ML of New Jersey. In Fourth ACM Symposium on Principles and Practice of Parallel
Programming, pages 198–207, 1993.

30. James Philbin. An Operating System for Modern Languages. PhD thesis, Dept. of Computer Science, Yale
University, May 1993.

31. William Pugh and Grant Weddell. Two-Directional Record Layout for Multiple Inheritance. In Proceedings
of the ACM Symposium on Programming Language Design and Implementation, pages 85–92, 1990.

32. Vijay Saraswat and Martin Rinard. Concurrent Constraint Programming. In Proceedings of the 17th ACM
Symposium on Principles of Programming Languages, pages 232–246, 1990.

33. Ehud Shapiro. Concurrent Prolog: A Progress Report. IEEE Computer, 19(8):44–60, August 1986.
34. David Ungar and Randall Smith. Self: The Power of Simplicity. In Proceedings of the 1987 Conf. on

Object-Oriented Programming, Systems, Languages and Architectures, pages 227–241, 1987.
35. M. Vandevoorde and E. Roberts. WorkCrews: An Abstraction for Controlling Parallelism. International

Journal of Parallel Programming, 17(4):347–366, August 1988.
36. A. Yonezawa, E Shibayama, T Takada, and Y. Honda. Object-Oriented Concurrent Programming – Mod-

elling and Programming in an Object-Oriented Concurrent Language, ABCL/1. In Object-Oriented Con-
current Programming, pages 55–89. MIT Press, 1987.

