

Distributed/Heterogeneous Query Processing in Microsoft SQL Server

José A. Blakeley Conor Cunningham Nigel Ellis Balaji Rathakrishnan Ming-Chuan Wu
Microsoft Corporation

One Microsoft Way, Redmond, WA 98052

Abstract
This paper presents an architecture overview of the
distributed, heterogeneous query processor (DHQP)
in the Microsoft SQL Server database system to en-
able queries over a large collection of diverse data
sources. The paper highlights three salient aspects of
the architecture. First, the system introduces well-
defined abstractions such as connections, commands,
and rowsets that enable sources to plug into the sys-
tem. These abstractions are formalized by the OLE
DB data access interfaces. The generality of OLE DB
and its broad industry adoption enables our system to
reach a very large collection of diverse data sources
ranging from personal productivity tools, to database
management systems, to file system data. Second, the
DHQP is built-in to the relational optimizer and exe-
cution engine of the system. This enables DH queries
and updates to benefit from the cost-based algebraic
transformations and execution strategies available in
the system. Finally, the architecture is inherently
extensible to support new data sources as they
emerge as well as serves as a key extensibility point
for the relational engine to add new features such as
full-text search and distributed partitioned views.

1. Introduction

The rate at which data, individual and corporate,
is being generated in diverse data sources is currently
much higher than our ability to collect it, catalog it,
and organize it inside database systems. Personal data
is generated and stored in multiple, diverse sources
(Word, Excel, mail messages, digital pictures) with
no easy mechanism to collect and organize them in a
single database. At a corporate level, acquisitions and
the continuous creation of business relationships and
partnerships forces organizations to create an infra-
structure that allows access to mission-critical data
stored in distributed and heterogeneous data sources.
Modern data intensive applications must adapt to the
inherent distribution and heterogeneity of data.
Therefore, it is no longer optional for modern data-
base management systems to provide efficient, built-
in capabilities to query and update heterogeneous and
distributed data. We need data management systems
that can provide efficient and flexible access to di-

verse data sources. This paper presents the architec-
ture of such capability in the Microsoft SQL Server
database system. The salient features of this architec-
ture are:
• A provider model based on the OLE DB data

access interfaces. OLE DB is a broadly deployed,
industry standard API that enables access to a
very large set of relational and non-relational
data sources [2][3][4][5]. OLE DB includes in-
terfaces that enable the exposure of data source
capabilities such as query, indexing, and statis-
tics which permit the query optimizer to decide
how much computation can be pushed to the re-
mote data sources vs. executed locally.

• Distributed and heterogeneous query and update
capabilities are natively built into the query
processor. This means all execution plans are
generated from cost-based decisions using a rich
set of algebraic transformation rules. This en-
ables the system to decompose the original query
into sub-expressions that can be pushed to the
participating data sources when their capabilities
allow it and it is cost-effective.

• The architecture is inherently extensible in two
key dimensions: (a) It supports new data sources
as they emerge. It suffices to build an OLE DB
provider that exposes the capabilities of the data
source and the new provider can be “plugged-in”
to the DHQP system. (b) It enables the extension
of the capabilities of the server itself. To date,
the full-text indexing and distributed partitioned
view features of the system have been built as
extensions to the DHQP.
Another aspect of the framework (not covered

in this paper) is tools support. The Microsoft Founda-
tion Class Library includes a set of templates that
facilitate the construction of OLE DB providers [16].
Assuming a system programmer is familiar with the
semantics of the OLE DB API, it takes a modest de-
velopment effort to build a working provider plug-
gable to the DHQP system using these templates.

The rest of the paper is organized as follows.
Section 2 introduces the system architecture and
some real world applications of SQL Server DHQP.
Section 3 describes the key OLE DB interfaces to
enable DHQP. Section 4 presents the distributed

http://citeseer.ist.psu.edu/

query processing infrastructure including optimiza-
tion and execution. Section 5 presents related work
and Section 6 concludes the paper.

2. Architecture and Scenarios

Figure 1 illustrates the general architecture of
the SQL Server distributed/heterogeneous query
processing system. In this architecture all data
sources, including SQL Server, expose their capabili-
ties and data rowsets through the OLE DB interfaces.

Figure 1 Distributed/Heterogeneous Query Process-
ing Architecture

It is conceivable to consider building a similar
system using other widely used data access interface
such as ODBC or JDBC as the “plug-in interface” to
other data sources. The key benefit of OLE DB over
ODBC/ JDBC is that the latter were designed funda-
mentally as interfaces to SQL data sources whereas
OLE DB is factored to expose only the native capa-
bilities of the data source. OLE DB can access both
SQL and non-SQL data sources such as ISAM,
search engines, personal productivity tools, e-mail
systems, and so on. In addition, OLE DB is the inter-
face used by SQL Server to access its local storage
engine, thus the code patterns to access data from
local and external sources are almost identical. SQL
Server uses the Microsoft Distributed Transaction
Coordinator [15] to ensure atomicity of transactions
across data sources. The following subsections show
example applications leveraging SQL Server’s
DHQP.

2.1. Distributed SQL-to-SQL Queries
SQL statements can reference local and remote

SQL Server tables and heterogeneous data sources in
the FROM clause via “linked servers”. Linked server
names associate a server name with an OLE DB data
source. These objects are referenced in SQL state-
ments using the four-part name convention: <linked-

server>.<catalog>.<schema>.<object>. For exam-
ple, if a linked server name of DeptSQLSrvr is de-
fined to reference a remote SQL Server machine, the
following statement references a table on that server:

SELECT *

FROM DeptSQLSrvr.Northwind.dbo.Employees

This technique can be used to create and reference a
wide range of data sources including other relational
sources (e.g., Oracle, IBM DB/2, Microsoft Access)
as well as other tabular data sources (Microsoft Excel,
text files, or other third-party data sources). SQL
Server also supports a technique to reference remote
sources in an ad-hoc manner. Details of ad-hoc con-
nections are beyond the scope of this paper.

For each data source accessed as a linked server,
an OLE DB provider for that source must be present
on the machine running SQL Server. The set of SQL
operations that can be used against a specific OLE
DB data source depends on the capabilities of the
OLE DB provider. For SQL-capable data sources, the
DHQP can “push” SQL statements containing joins,
restrictions, projections, sorts, and group-by opera-
tions to them when it is cost-effective.

2.2. Heterogeneous SQL-to-File System
Queries

The Microsoft Search Service supports full-text
searches over file system data. Various document
formats are supported for inclusion in full-text in-
dexes. There is an OLE DB provider for Microsoft
Search which allows SQL Server’s DHQP to query
documents and files stored in the file system. To en-
able this capability, users need to setup a full-text
catalog/index first by activating the index service on
the Windows machine and creating a new cata-
log/index over the directory containing the docu-
ments to be full-text indexed.

In the following example, a catalog named
DQLiterature is created over a document repository
containing various document types, e.g., MS Word,
MS PowerPoint, PDF, ZIP files, etc. For all third-
party document types, one needs to install necessary
IFilters to enable full-text search. The IFilter is an
interface for retrieving text and properties out of
documents. It provides the foundation for building
higher-level applications such as document indexers
and application-independent viewers [14]. The fol-
lowing query retrieves all the documents about “par-
allel database” or “heterogeneous query”:

SELECT FS.path

FROM OpenRowset('MSIDXS','DQLiterature';'';'',

 'Select Path, Directory, FileName, size,

 Create, Write from SCOPE() where

 CONTAINS(''"Parallel database" OR

 "heterogeneous query"'')') AS FS

2.3. Full-text queries on relational data
SQL Server leverages the full-text index and

query capabilities of the Microsoft Search Service to
provide a full-text search capability over textual data

OLE DB

Storage
Engine

SQL
Server

Search

Service

OLE DB

Access

OLE DB Provider for SQL Server

Network Library

Relational Engine

Metadata: Stats,
Linked Servers

Distributed
Heterogeneous

Query Processor

Database Application

OLE DB

Oracle

OLE DB

DB2

OLE DB OLE DB

and documents stored in SQL Server tables. These
full-text indexes are stored outside of the database
engine and queried using SQL Server DHQP. Figure
2 illustrates the general architecture of this integra-
tion. The SQL syntax was extended to enable con-
tent-based predicates and the DHQP leverages the
index service to derive efficient query plans. With the
full-text SQL extension it is possible to find related
words by searching over word stems. For example,
‘runner’, ‘run’, and ‘ran’ can all be equivalent in full-
text searches.

Relational Engine

Storage
Engine

OLE DB

Full-text
Provider

Query
Support

Search
Engine

Index
Engine

Microsoft Search Service

Full-text catalogs

Full-text indexes

SQL Server database

SQL Server
index

SQL Server
table

Communications Network

OLE DB Provider for SQL Server

Application

Relational Engine

Storage
Engine

OLE DB

Full-text
Provider

Query
Support

Search
Engine

Index
Engine

Microsoft Search Service

Full-text catalogs

Full-text indexes

Full-text catalogs

Full-text indexes

SQL Server database

SQL Server
index

SQL Server
table

SQL Server database

SQL Server
index

SQL Server
table

Communications Network

OLE DB Provider for SQL Server

Application

Figure 2 Integration of a full-text component with a
relational DBMS via OLE DB

There are two aspects to full-text support: index
creation and maintenance, and query support. Index-
ing support involves creation, update, and administra-
tion of full-text catalogs and indexes defined for a
table or tables in a database. Query support involves
processing of full-text search queries. Given a full-
text predicate, the search service determines which
entries in the index meet the full-text selection crite-
ria. For each entry that meets the selection criteria,
the query component of the search service returns an
OLE DB Rowset containing the identity of the row
whose columns match the search criteria, and a rank-
ing value. This rowset is used as input to the query
being processed by the SQL relational engine just
like any other rowset originating from tables or in-
dexes inside the server. The relational engine joins
this rowset with the base table on the row identity
and along with other predicates in the query evaluates
the execution plan that yields the final result set. The
types of full-text queries supported include searching
for words or phrases, words in close proximity to
each other, and inflectional forms of verbs and nouns.

2.4. Heterogeneous SQL-to-Email Queries
Consider a salesman who wants to find all email

messages he has received from Seattle customers,
including their addresses, within the last two days to
which he has not yet replied. This query involves
searching the mailbox file containing the salesman’s

email, as well as a Customers table stored in an Ac-
cess DBMS to identify customers. Microsoft DHQP
plus OLE DB enable the development of an applica-
tion that will access both information sources and
assist the salesman to answer this query, which can
be formulated in an extended SQL syntax as follows:

SELECT m1.*, c.Address

FROM MakeTable(Mail, d:\mail\smith.mmf) m1,

 MakeTable(Access,

 d:\access\Enterprise.mdb, Customers) c

WHERE m1.Date >= date(today(), -2) AND

 m1.From = c.Emailaddr AND

 c.City = “Seattle” AND

 NOT EXISTS (SELECT *FROM

 MakeTable(Mail, d:\mail\smith.mmf) m2

 WHERE m1.MsgId = m2.InReplyTo);

MakeTable is a table-valued function that trans-
forms the mail file (d:\mail\smith.mmf) into a stream
of rows, each representing a message. It also exposes
the Customers table from an Access database
(d:\access\enterprise.mdb). The function date()
takes a date and a number of days as arguments and
produces a date.

3. OLE DB: A Component Data Model

OLE DB is designed as a set of Component Ob-
ject Model (COM) [6] interfaces. This section pro-
vides a brief overview of OLE DB, focusing on the
pieces most important to building a DHQP. For de-
tails about OLE DB, please refer to [2],[3],[4] and [5].

3.1. Common abstractions
OLE DB is built on a small set of common ab-

stractions, along with a set of common extensions
that enable access to diverse data sources. By build-
ing on a set of common abstractions, OLE DB en-
ables generic components to operate on those abstrac-
tions as individual entities without needing to know
how the entities were generated or the details of what
they represent.

Figure 3 Hierarchy of Data Source, Session, Com-
mand, and Rowset Objects

OLE DB defines three object classes common
to any data provider; the Data Source Object, or DSO,
provides a common abstraction for connecting to the
data store, the Session object provides a transactional

Data Source

Session

Rowset

CreateSession()

OpenRowset()

IOpenRowset

IRowset

IDBCreateSession

CoCreateInstance()
IDBProperties
IDBInitialize

Command

CreateCommand()
IDBCreateCommand

ICommand

Execute()

Table 1 languages supported by various OLE DB providers

Type of Data Source Product Query Language
Relational Microsoft SQL Server Microsoft Transact-SQL
Full-text Indexing Microsoft Index Server Index Server Query Language
OLAP Microsoft OLAP Services MDX
Email Microsoft Exchange SQL with hierarchical query extensions
Directory Services Microsoft Active Directory LDAP

scope for multiple concurrent units of work, and the
Rowset object provides a common abstraction for
exposing data in a tabular fashion, as shown in Figure
3. All of the extensions built on OLE DB extend this
basic object hierarchy. For example, the command
object, discussed later, enables query requests on
query-capable providers.

3.1.1. Connection abstraction
The OLE DB connection model defines how data
providers are located and activated. The data source
object (DSO) and the session object are the basis for
the OLE DB connection model. To access a data
provider, a consumer must first instantiate a DSO.
The DSO exposes the IDBProperties interface,
which the consumer uses to provide basic
authentication information, IDBInitialize establishes
a connection with the data store, and
IDBCreateSession creates a session object which
supports a simple interface IOpenRowset to access
rowsets.

DSO supports interfaces used by DHQP to
query the capabilities of remote sources. These capa-
bilities include the interfaces, rowset properties (e.g.,
scrollability), transaction properties (e.g., isolation
levels), SQL dialects, command operations (e.g., left-
outer joins, text search operators), and security op-
tions.

3.1.2. The Rowset
A rowset is a unifying abstraction that enables OLE
DB data providers to expose data in tabular form.
Conceptually, a rowset is a multi-set of rows where
each row has zero or more columns of data. Base
table providers present their data in the form of
rowsets. Query processors present the result of que-
ries in the form of rowsets. This way it is possible to
layer components that consume or produce data
through the same abstraction. Rowsets are also used
to return metadata, such as database schema, sup-
ported data type information, extended column in-
formation and statistics. For details about common
abstractions of OLE DB, please refer to [2].

3.2. Common extensions
In order to be suitable as a primary interface to

DHQP, OLE DB defines a set of common extensions
on top of the base abstractions. The major extensions
include query support, ISAM navigation, hierarchical

navigation, heterogeneous data support, statistics,
and OLAP support [2]. By building these extensions
on the common abstractions, generic consumers can
view all data through the common abstractions while
special purpose consumers can access the domain-
specific functionality through common extensions.
In the following subsections, we will briefly describe
the DHQP related extensions ⎯ query syntax support,
ISAM navigation, heterogeneous data support and
statistics.

3.2.1. Query syntax support
This extension exposes the ability to issue a textual
command to a data store. The command object en-
capsulates the functions that enable a consumer to
invoke the execution of data definition or data ma-
nipulation statements such as queries or updates
against a relational database. Figure 3 depicts the
calling sequence.

Since OLE DB is designed to work with any
query-capable provider, it does not mandate a spe-
cific syntax or semantics for queries. It is entirely up
to the provider to define the language for formulating
queries. For example, currently there are OLE DB
providers for relational DBMSs, full-text search en-
gines, OLAP engines, directory services, email stores,
and spatial stores. Each of these query-capable stores
exposes a different query language. Table 1 lists
some of the query languages supported by various
OLE DB providers.

3.2.2. ISAM navigation
ISAM navigation supports basic indexing functional-
ity. This functionality allows services such as query
processors to efficiently access contiguous rows of
data within a range of keys. Through this extension,
SQL Server DHQP can generate query plans during
optimization to leverage these remote capabilities.
These indexed solutions will be costed and compared
with the costs of other solutions before the optimal
plan is chosen.

3.2.3. Heterogeneous data support
If results from different data sources share the same
schema, rowsets are well suited. However, for dis-
similar results, such as e-mail messages, calendar
entries, and spreadsheet data, which may contain dif-
ferent columns, a single rowset becomes a limitation.

Table 2 Interfaces of Data Source objects and DB Session objects
COM Object Interface Mandatory? Purpose

IDBInitialize Yes Initialize and setup connection and security context based on linked server properties
IDBCreateSession Yes Create a DB session object.
IDBProperties, IDBInfo Yes Get information about the capabilities of the provider,.

Data Source
Object

IDBInfo No Get quoting literal, catalog, name, part, separator, character, and so on.
IDBSchemaRowset No Get metadata about tables, indexes and columns.
IOpenRowset Yes Open a rowset on a table, index or histogram.

DB Session
Object

IDBCreateCommand No Use to create a command object (query) for providers that support querying.

In order to simplify navigation of rowsets con-
taining heterogeneous rows, OLE DB defines a row
object. Each row object represents an individual row
instance, which can be a member of a rowset or a
single result value. Consumers can navigate through
a set of rows viewing the common set of columns
through the rowset abstraction, and then obtain a row
object for a particular row in order to view row-
specific columns. In addition, hierarchies of row and
rowset objects can be used to model containment
relationships common in tree-structured data sources
via chaptered rowsets.

3.2.4. Statistics
Another supported extension allows remote sources
to pass statistical information (including histograms)
from remote sources into the optimizer to generate
more accurate cardinality estimates over remote op-
erations. This commonly provides order of magni-
tude improvements on cardinality estimates similar to
what is expected in local queries. Histogram Statis-
tics are exposed through an extension to the IOpen-
Rowset interface and can be implemented by any
provider. Cardinality information is exposed through
the schema rowset TABLES_INFO.

As a summary, the major OLE DB extensions to
DSOs and Sessions used to support DHQP are listed
in Table 2. For a complete list of extended interfaces,
see [13].

3.3. Categories of OLE DB providers
The set of distributed query capabilities sup-

ported against a linked server depends on the capa-
bilities of the OLE DB provider. Three commonly
seen providers are briefly discussed below.
Simple provider: A simple provider is an OLE DB
provider which supports only the mandatory OLE DB
interfaces of being able to connect and retrieve
named rowsets. In this case, DHQP provides all of
the querying functionality on top of this base pro-
vider.
Query provider: A query provider is an OLE DB
Provider which supports the ability to query the data
source through the ICommand interface. If the
query syntax is a proprietary syntax, then DHQP
supports only pass-through queries against this pro-

vider using the OpenQuery function [2]. If the pro-
vider supports a standard SQL syntax, then it is con-
sidered a SQL provider. In this case, the DHQP can
support the full SQL query language against remote
tables named through four-part names in SELECT
statements. The queries that are remoted depend
upon the syntax capability of the provider as reported
by its DBPROP_SQLSUPPORT remote OLE DB
property. This property indicates the level of SQL
support in the provider as one of: SQL Minimum,
ODBC Core or SQL-92 Entry/Intermediate/Full. The
DHQP constructs plans such that the provider’s ca-
pabilities are fully used while not overshooting its
limitations.
Index provider: If the provider supports indexes,
then the DHQP can generate plans that use these
indexes. Index support requires reporting metadata
on the indexes (through IDBSchemaRowset
interface), ability to open OLE DB rowsets on
indexes, the ability to seek (or setting a range) on the
index for given key values (using the IRowsetIndex
interface) and the ability to locate base table rows
using bookmark values retrieved from the index
(using the IRowsetLocate interface).

4. Distributed Query Processing

4.1. Distributed query optimization
In this section, we first introduce the Cascades

optimizer framework [9]: how different optimization
rules interact with one another in different optimiza-
tion phases, and how guidance and promise of each
rule help to improve the effectiveness and efficiency
of the rule engine. Then, we elaborate on how rules
specific to distributed queries work and how well
they fit into Microsoft SQL Server’s cost-based query
optimizer making remote data access as easy as ac-
cess to local data. Finally, we discuss distributed
partitioned views which are built on top of the func-
tionality of Microsoft SQL Server’s distributed query
processing to enable efficient query processing in a
federated database system.

4.1.1. Search framework
The SQL Server Query Optimizer is based on the
Cascades Framework. While this framework has

been discussed previously [9], this section provides a
brief overview of the important design characteristics
of this framework with respect to distributed and het-
erogeneous query processing. More specifically, this
section discusses the overall approach to representing
query operations, how the space of possible plans is
searched, and the mechanisms used to find a plan
efficiently. Additionally, some examples of specific
rules used in SQL Server are presented to demon-
strate how the implementation works.

The Cascades framework is a top-down cost-
based optimization technique using a rule engine to
enumerate possible alternatives of a query for com-
parison. Unlike some other optimizers, each operator
is represented as a unique node in a query tree. For
example, “A JOIN B JOIN C” would be represented as
two “joins” and three “get” operations instead of a
single node containing all joins. Relational operators
are sub-divided into the logical and physical
ones. “Join” would be an example logical operation,
while “hash join”, “loop join”, or “merge join” would
be corresponding physical operations.

Rules are used to search the space of possible
plans by matching one logical query pattern (the be-
fore-pattern) and introducing a new query pattern (the
after-pattern) as a result. Rules are also subdivided
into different categories based on their func-
tion. Simplification Rules perform heuristic tree re-
writes, generally early in the optimization process. In
this phase, logical trees are rewritten into simpler
logical trees. While some optimizers perform a sepa-
rate heuristic rewrite phase before optimization, Mi-
crosoft SQL Server uses the same rule framework as
the optimization phase for heuristic rewrites. Explo-
ration Rules enumerate equivalent logical alternatives
to a query pattern to be considered in the cost-based
optimization process. Join commutation (A Join B
≡ B Join A) is an example exploration rule. Imple-
mentation Rules generate physical alternatives for a
particular logical query tree. The implementation of
a logical “group by” into “stream aggregation” or
“hash aggregation” is one such rule. Physical im-
plementations are costed and compared to determine
the optimal query plan.

The rule engine uses additional structures as
part of the framework. A Memo is a structure to store
equivalent alternatives generated by Exploration and
Implementation Rules. Within the Memo, equivalent
alternatives are stored in groups, and a query tree is
represented using connections between groups in-
stead of operators. This design allows for rules that
match patterns without comparing whole trees. For
example, join commutation can be performed for
“Get(A) Join Get(B)” using the same rule as for “Fil-
ter(Get(A)) Join Filter(Get(B))”. When rules match a

pattern during the plan search, an alternative may be
generated and inserted into the Memo. If the new
alternative already exists in the Memo, nothing is
inserted (more importantly, no extra work is required
to re-search this portion of the possible query
space). If the alternative does not yet exist, it is in-
serted into the Memo with the top-most operator of
the alternative being inserted into the same group
where the root of the original pattern resides. This
means that the two query trees provide equivalent
outputs and may be interchangeable.

Properties are also derived within this frame-
work to further refine the notion of equivalent groups
within the Memo. Group Properties (which are
sometimes called logical properties) represent infor-
mation about all of the alternatives within a
group. For example, the set of output columns from
a group is considered to be a group property. Addi-
tional group properties include any columns in the
output that make up a key, the cardinality estimate
for that group, and constraint properties tracking the
domain for all active columns in the query. These
properties are derived only on logical operators in the
query tree. Alternatives within a group should, by
definition, have the same logical properties. Physical
Plan Properties represent particular physical details
about the output of a particular physical plan. Sort is
the most well-known physical property. These are
computed on physical operators and are useful to
determine if a physical implementation delivers the
proper physical characteristics to other operators in a
query tree. Special rules called Enforcer Rules can
be used, in some cases, to deliver missing physical
properties. For sort, an enforcer can insert a physical
sort operation to introduce order when needed. Prop-
erties are essential to guide the search of the plan
space and deliver exactly what semantics are needed
for each query.

Several additional concepts help make the
search of all possible plans as efficient as possi-
ble. Each operator contains a routine called Guid-
ance that enumerates rules that could match it. This
avoids unnecessary work to attempt to run rules
against an operator when they could never
match. Additionally, a Promise routine exists on
each rule to define how valuable this particular rule
could be to identifying an efficient alterna-
tive. Commonly used tricks such as pushing filters
towards the leaves of a query tree have a high prom-
ise, while less common or more expensive rules such
as generalized materialized view matching may have
a lower Promise.

Costing functions are also used to prune
searches that will yield physical alternatives that cost
more than existing physical solutions. Finally, rules

are split into different optimization phases consisting
of a round of exploration rules followed by imple-
mentation rules. Early phases have a restricted set of
rules enabled to attempt to find a good plan
quickly. If the cost of the best solution found after a
phase is acceptable, the solution is returned. Other-
wise, additional phases may be run in an attempt to
find a better solution. Currently, SQL Server has
three possible phases — transaction processing,
quick plan and full optimization. These different
strategies help provide a good plan as quickly as pos-
sible, and search for a better plan as needed.

4.1.2. Rules specific to distributed queries
The Cascades framework provides enough abstrac-
tion to allow adding remote rules (i.e., those rules
specific to distributed queries) as easily as local rules
(named “local rules”), and both can work seamlessly
together. Like local rules, remote rules can be cate-
gorized into exploration rules and implementation
rules. Examples of remote exploration rules are:
parameterization of the remote queries, grouping
joins based on locality, splitting and merging selec-
tion predicates based on predicate remotability, etc.
Parameterization enables pushing parameters into the
remote sources and opens up a large variety of alter-
native plans. The rule — “grouping joins based on
locality” — reorders the joins into groups of joins
based on the locality of the operand tables. Similarly,
the rule — “splitting/merging predicates” — splits
and collapses predicates based on the remotability of
the predicates. The rationale behind grouping the
operations based on their locality is to find solutions
of pushing the largest possible sub-tree to the remote
source (c.f. the implementation rule “build remote
query” below).

Examples of remote implementation rules are:
building SQL statements from trees to run on remote
sources, building remote scan/range/fetch, adding
spool on top of remote operations, etc. The rule —
“build remote query” —constructs a SQL statement
out of a logical query tree. Namely, it pushes the
SQL statement to the remote source and consumes
the data once the results are returned. A typical
scenario where a sub-tree is pushed to the remote
source is that the remote source is a fully capable
query processor. Being able to quickly identify a
sub-tree based on the locality of the operand tables
(c.f. above mentioned exploration rules) reduces the
optimization time and leverages the optimization
capability of the remote sources. However, although
there are rules to generate alternative plans based on
locality, it does not necessarily mean they are the
only solutions. The optimality of plans is determined
by their estimated costs. For example, both customer
and supplier in Example 1 are from the same remote

source. Figure 4(a) shows the plan of pushing the
join of customer and supplier to the remote server,
and Figure 4(b) show a plan of joining supplier first
to nation before joining to customer.

Example 1
SELECT c.c_name, c.c_address, c.c_phone

FROM remote0.tpch10g.dbo.customer c,

 remote0.tpch10g.dbo.supplier s, nation n

WHERE c.c_nationkey = n.n_nationkey AND

 n.n_nationkey = s.s_nationkey

Figure 4 Cost-based optimization

On a 10GB TPCH database, the SQL Server
optimizer chooses the plan shown in Figure 4(b),
since by joining supplier to nation first will avoid
having to send a large intermediate result set of “cus-

tomer join supplier” over the network. Our optimizer
does not simply rely on the heuristics of pushing the
largest sub-tree to the remote sources.

The rules — “build remote scan/range/fetch” —
implement remote table access via different access
paths. “Remote scan” is simply a sequential scan on
remote table. “Remote range” accesses a remote ta-
ble via indexes, and “remote fetch” accesses a remote
table via “bookmark” (the key). The rule — “spool
over remote operation” — implements a spool to
store a copy of the remote results for subsequent ac-
cesses within the same query context without having
to request the data from the remote sources again.

As described in the previous subsection, the
phases of optimization start with normalization of the
query tree, followed by three phases of exploration
and implementation. Whether to continue with the
next optimization phase or not depends on the esti-
mated costs of the query. In such ways, the optimizer
will not spend too much time on optimizing easy
queries, while for complex queries it will spend
longer time in order to find the optimal plan. How
the distributed query optimization fits into this
framework seamlessly will be discussed next.

4.1.3. Seamless integration of local and distrib-
uted query optimization

Two of the strengths of the Cascades framework that
make distributed query optimization as natural as the
local cases are 1) the separation of logical and physi-
cal operators, and 2) the interaction between group
properties and rules.

HashJoin

(b)

RemoteQuery
(Customer Join
Supplier
On nationkey)

Scan
(Nation)

HashJoin RemoteScan
(Customer)

HashJoin

RemoteScan
(Supplier)

Scan
(Nation)

(a)

At the beginning of optimization, both local and
distributed queries are algebrized in the same way,
i.e., the same logical operator is used no matter the
data source is local or remote, except that the remote
data sources are tagged with a flag indicating their
level of remotability. During the exploration phase,
the optimization rules match logical query sub-trees
and transform them into their equivalent logical
alternatives regardless of the remoteness. Through
the distinction between logical and physical operators,
most of the exploration rules designed for local query
optimization (local rules) are also directly applicable
to distributed queries, making the optimizer
framework simple and free from duplicates of the
same work. For example, the rules ⎯ reordering
joins, pushing the predicates before joins, removing
sub-queries, etc. ⎯ are all applicable to remote
queries. During the implementation phase, the
implementation rules will interact with group
properties and generate corresponding physical
operators. For example, “get(A)” can be imple-
mented as TableScan(A) in the local case, or as
RemoteScan(A) if A is a remote table.

Once a logical operator is implemented as a
physical operation, the costing functions are invoked
to derive the estimated execution costs of each physi-
cal operator. This works for both local and remote
operators. All needed here is to define the cost for-
mula for each remote operator. It is obvious that the
cost formula of an operation depends on how the
operator is implemented. However, in heterogeneous,
autonomous environments, it is sometimes impossi-
ble to reason about the detailed implementation of the
remote operator in addition to other non-deterministic
factors, like network latencies.

SQL Server DHQP defines a simple cost model
based on the output cardinality of a remote operator.
It aims at finding plans with minimal network traffic.
With the help of remote histogram rowsets via the
OLE DB interface, SQL Server optimizer chooses the
optimal plan which produces the minimal intermedi-
ate result sets, e.g., the plan shown in Figure 4(b).
This simple model works well in most of the cases
and is easy to extend.

Another important component in the distributed
query processing is the decoder. The decoder takes a
logical query tree as its input and decodes it into an
equivalent SQL statement. This is part of the imple-
mentation rule ⎯ “build remote query”. When com-
posing the SQL statement, the decoder responds to
different parameter settings of the connection to the
OLE DB provider in order to produce a SQL state-
ment which is compliant to the remote system, e.g.,
the SQL dialect the remote sources support, data col-
lation, etc. Additionally, SQL Server DHQP extends

OLE DB by defining additional properties that pro-
viders can implement to communicate capabilities to
Microsoft SQL Server. For example, providers can
indicate support for nested select statements, parallel
table scans, or specific syntactical details about date
literals beyond what is defined in SQL. This infor-
mation is used both in plan selection and by the de-
coder to more effectively remote queries (especially
to non-SQL Server systems).

4.1.4. Extensions to the Cascades Framework to
Support Distributed Query

Beyond the addition of specific remote query rules,
several modifications and extensions to the Cascades
framework are required to better facilitate distributed
query processing. For example, sub-queries are usu-
ally heuristically transformed into semi-joins in the
Simplification phase of optimization for local queries.
This avoids duplication of logic for handling semi-
joins and sub-queries. However, the un-rolling of
sub-queries over remote sources is delayed until the
exploration phase to simplify the process of decoding
a logical tree back into SQL.

Another framework modification is required to
properly generate remote queries in Cascades. If you
recall from Section 4.1.1, groups in the Memo store
equivalent alternatives for that portion of the query.
However, not all logical alternatives in a specific
group may be remotable. This can happen for any
number of reasons, but common causes include the
use of an abstract operator (such as a semi-join) with
no direct SQL corollary, the use of an operator not
supported in a previous version of the product, or
even cases when the decoder has not yet imple-
mented logic to generate SQL for a specific operator.
In these cases, the implementation rule that trans-
forms a logical tree into a remote SQL statement re-
quires special framework logic to pick any remotable
tree from the same group in the Memo. Since these
trees represent logically equivalent alternatives, the
SQL generated for them must, by definition, return
the same results.

A few practical changes to the framework help
improve the performance of specific user operations.
It is often beneficial to spool results from a remote
source if multiple scans of the data are expected.
This is implemented using a special “enforcer” rule
in the framework that spools a remote query’s results.
Additional logic is required to disable spools done for
local scenarios, such as Halloween Protection [10].

4.1.5. Application of Distributed Query Process-
ing in Federated Systems

The distributed query processing capabilities of SQL
Server were further extended to support efficient
processing of queries in a federated database system.
A federated database system is a set of loosely cou-

pled database systems all logically forming a single
database store. SQL Server announced this technol-
ogy in February 2000 by publishing the world record
TPCC benchmark using a federation of 32 Microsoft
SQL Server instances [17].

SQL Servers support for federated systems
builds on the following concepts: constraint property
framework, static and runtime pruning support, par-
titioned view support, algebraic re-writes of query
and DML operator trees, and delayed schema valida-
tion.
Constraint Property Framework Constraint prop-
erties leverage Microsoft SQL Server’s existing op-
timization property framework to support tracking
the domain of all scalar expressions. Domain restric-
tions track possible values for scalar expressions at
each point in the query tree. Each relational opera-
tion can modify the valid domain for a scalar expres-
sion, and this information can be leveraged by the
optimizer to make decisions on pruning the search
space, cardinality estimation, or constraint validation.

For example, if a integer column CustomerId
passes through a filter operator predicate “Cus-

tomerId > 50”, the optimizer updates the domain
property of the CustomerId column from],[+∞−∞ to

],50(+∞ . (In computer systems, the positive and

negative infinities depend on the data types.) This
mechanism also supports disjoint ranges by tracking
a set of range intervals for each scalar and then per-
forming appropriate interval operations. For example:
“CustomerId IN (1, 5) OR CustomerId BETWEEN 50

AND 100” would derive a domain property of
]100,50[]5,5[]1,1[∪∪ . Constraint properties can be

derived from any scalar expression in the query tree
including any constraints defined over columns in the
source tables.
Static and Runtime Pruning Support During op-
timization, the constraint property framework is lev-
eraged to infer if a plan sub-tree could produce any
results. Each Boolean expression can be evaluated at
compile time to see if the constraint properties of
expressions intersect.

For example, given the column CustomerId
with domain],50(+∞ . If there is an expression

“CustomerId = 20”, we can attempt to intersect the
domain of CustomerId with the domain of the con-
stant 20. Since there is no overlap between]20,20[
and],50(+∞ , the predicate can be reduced to a con-

stant false value. If the predicate appears in a select
or join operator, we can reduce the operator to a logi-
cal empty table operator using an exploration rule.

This reduction of expressions is only possible at
compile time when the domains of the input values
are known. In many cases, the domain of a predicate

is not known at compile time since most modern SQL
applications make use of variables in their queries.
In this case, a special filter operator is introduced into
the final execution plan ⎯ the “startup filter”.

A startup filter predicate can not contain any
references to columns or values in its input tree. This
allows the predicate to be evaluated before the sub-
tree of the filter has been executed. For example,
let’s consider the following query and its execution
plan with the startup predicate.

SELECT *

FROM Customer

WHERE CustomerId = @customerId

In this example, the table scan of Customer will
only be executed if the @customerId variable con-
tains a value in the domain of CustomerId.
Partitioned Views A partitioned view unions hori-
zontally partitioned data from a set of member tables
across one or more servers, making the data appear as
if from one table or domain. In a local partitioned
view, all participating tables and the view reside on
the same instance of Microsoft SQL Server. In a
distributed partitioned view, one or more tables re-
side on a different (remote) server instance.

Records in the partitioned view are distributed
across the member tables, each table representing a
single logical partition. The range of values in each
member table is enforced by a CHECK constraint on a
column designated as the partitioning column. Each
table must store a disjoint range of partitioned values.

For example, consider the Lineitem table of the
TPCH benchmark partitioned into seven tables based
on year of the CommitDate column. Each partitioned
table is stored at a different server. For example, on
one of the server, the partitioned table is defined as
follows.

-- on server1:
CREATE TABLE lineitem_92 (

[L_COMMITDATE] [datetime] NOT NULL

CHECK (L_COMMITDATE >= '1992-1-1' and

L_COMMITDATE <= '1992-12-31'),

 … -- additional column definitions)

Other partitioned tables — lineitem_93 to
lineitem_98 — are defined on different servers simi-
larly. Once the member tables are present, a SQL
view is created on each member server to union the
data from each partition into a single logical table.
This allows queries referencing the distributed parti-
tioned view to run on any of the member servers.
The system operates as if a copy of the original table

Filter(STARTUP(@customerId > 50))

Scan(Customers)

Filter(CustomerId = @customerId)

is on each member server, but each server has only a
member table and a distributed partitioned view. The
location of the data is transparent to the application.
The distributed partitioned view is defined as follows.

CREATE VIEW v_LINEITEM AS

SELECT * FROM server1.tpch10g.dbo.LINEITEM_92

UNION ALL

SELECT * FROM server2.tpch10g.dbo.LINEITEM_93

UNION ALL

SELECT * FROM server3.tpch10g.dbo.LINEITEM_94

UNION ALL

SELECT * FROM server4.tpch10g.dbo.LINEITEM_95

UNION ALL

SELECT * FROM server5.tpch10g.dbo.LINEITEM_96

UNION ALL

SELECT * FROM server6.tpch10g.dbo.LINEITEM_97

UNION ALL

SELECT * FROM server7.tpch10g.dbo.LINEITEM_98

Query Rewrite Support Once the partitioned view
is in place, the query optimizer leverages the con-
straint and dynamic plan pruning support to produce
efficient execution plans for the federation of servers.
Example 2 illustrates how this all works together.

Example 2
SELECT l.*

FROM v_lineitem l, remote0.tpch10G.dbo.customer c,

 remote0.tpch10G.dbo.orders o, nation n

WHERE l.l_orderkey = o.o_orderkey AND

 c_custkey = o_custkey AND

 c.c_nationkey=n.n_nationkey AND

 l.l_commitdate BETWEEN @date1 AND @date2

This query pulls data from one or two nodes in
the federation. Since the values of the requested
Lineitems are not known at compile time, the engine
must introduce startup filter expressions to dynami-
cally select the appropriate server for execution at
execution time. The execution plan is shown in
Figure 5.
Partitioned View DML Support An important part
of partitioned view support is the support for DML
(insert, update and delete) against the view as if the
client were operating over a local table. Microsoft
SQL Server leverages support for constraint proper-
ties, query re-write and dynamic plan execution to
provide support for transparent DML support over
partitioned views.

An update over a distributed partitioned view is
decomposed into one update against each partition
using the check-constraint logic. If the partitioning
key is updated, rows may move across partitions. As
such, the query optimizer must detect this could oc-
cur and produce a plan capable of deleting rows from
one server and then inserting them in another server.

Figure 5 DPV execution plan

Delayed Schema Validation When a plan is pre-
pared for execution, Microsoft SQL Server checks
the current schema DDL version numbers of all
schema objects participating in the plan. This
mechanism allows the server to recompile a plan if a
table has changed structure, an index added or
dropped since the plan was compiled. In a federated
system, the only way to check the schema on remote
servers is to perform a query to the remote server
node. The cost of checking schema on remote nodes,
even nodes which will not be used in the plan execu-
tion (due to parameter values) is cost prohibitive in
federated systems.

To address this problem, Microsoft SQL Server
introduced the concept of “delayed schema valida-
tion” for distributed servers. When enabled, this op-
tion causes the local (source) server to perform opti-
mistic schema checking. Rather than checking all
remote schema versions before starting query execu-
tion, the query starts execution and then only checks
the remote schema of this server which ultimately
participates in the query execution. Combining this
lazy validation with partition pruning, it provides
significant performance advantages for applications
using distributed partitioned views. If the remote
server has changed schema and the server executes a
portion of the plan, the plan is discarded from the
plan cache and a “schema changed” error is returned
to the calling application. If the application resub-
mits the query, the query is recompiled with the latest
schema version and execution continues.

4.2. Execution
A number of techniques improve the execution

time of a given distributed query plan. Connections
to remote sources are cached to avoid initialization
costs for each query. Especially in busy server work-
loads, this can remove seconds from the average
query time. Another simple technique to improve
execution time is to batch multiple rows together in

Execute(Server1,

Select * From tpch10g.

dbo.Lineitem_92

WHERE l_commitdate

between @date1 AND
@date2)

Filter(STARTUP
(@date1 BETWEEN
‘1992-1-1’ AND ‘1992-
12-31’) OR (@date2
BETWEEN ‘1992-1-1’

AND ‘1992-12-31’))

Execute(Server2,

Select * From tpch10g.

dbo.Lineitem_93

WHERE l_commitdate

between @date1 AND
@date2)

Filter(STARTUP
(@date1 BETWEEN
‘1993-1-1’ AND ‘1993-
12-31’) OR (@date2
BETWEEN ‘1993-1-1’

AND ‘1993-12-31’))

...
other

partitions

Union All

each call to a remote provider. This capability is
provided in OLE DB as part of the IRowset interface.
Providers either implement row batching natively, or
the functionality can be simulated using a service
component layer provided as part of the OLE DB
Service Components framework. Providers over
server databases typically can amortize the fixed
costs of a network I/O better over 50 or 100 rows.
These common techniques are generally supported by
most major providers used against Microsoft SQL
Server.

Overlapping I/O is also implemented in less ob-
vious places to improve performance. Distributed
Partitioned Views commonly store each source table
on a different remote source. Therefore, the execu-
tion plan must often open several commands. With-
out special provisions, these may be required to be
opened serially since the underlying wire protocols
for server providers may not support multi-
ple/asynchronous command requests. This function-
ality has been added into the upcoming Microsoft
SQL Server 2005 release to better facilitate queries
over multiple remote sources.

Updates are also optimized to perform better
against remote sources. In Microsoft SQL Server,
cursor-based updates are represented internally using
two scans against a table. The read cursor provides
row-ids to a write-cursor which makes the change to
the row [8]. This technique has benefits from allow-
ing the use of secondary indexes as the read-cursor to
provide rows in a particular order to faster processing
of batched, per-index maintenance operations. Mi-
crosoft SQL Server has an optimization to perform
the updates using a single cursor if the query meets
specific restrictions. This “in-place” update allows a
single exclusive (X) lock to be taken on the row in-
stead of a shared (S) lock in the read cursor followed
by an X lock in the write cursor. For queries requir-
ing no Halloween Protection [10] or sorting, this can
be a noticeable performance improvement. In-place
updates seamlessly work for remote sources against
Microsoft SQL Server. In some cases, these are ac-
tually required for the remote source to work prop-
erly. If the provider opens the read and write cursors
over the remote provider using different connections
(and thus different transactions), the S and X locks
can actually conflict and return an error. This opti-
mization therefore provides important performance
and functional guarantees for some remote sources.

5. Related work

Relevant work in this area includes work on ar-
chitectures and frameworks to support distributed and
heterogeneous query processing, and the optimization
techniques for DH queries.

Similar to OLE DB, IBM’s Garlic is a middle-
ware system designed to integrate data from different
data sources [7][11]. In addition to the exposure of
the query capabilities of the data sources, Garlic’s
wrappers also need to provide cost functions and op-
timization rules. Microsoft SQL Server DHQP, on
the other hand, relieves the responsibility of defining
optimization rules and the cost functions from the
OLE DB provider implementers. By doing so, it
lowers the entry bar for sources to plug into the Mi-
crosoft DHQP. In addition, one can implement a
minimal subset of OLE DB or one can extend the
model to meet the needs of emerging applications. In
addition, Microsoft SQL Server DHQP is fully inte-
grated into the Cascades cost-based optimizer
framework which enables the generation of efficient
query plans over diverse sources.

Regarding to distributed query optimization,
SDD-1 [1] from CCA deploys semi-join to efficiently
delimit the subset of the database that contains data
relevant to the query. IBM’s System R* [12] uses
dynamic programming for optimizing queries using
semi-joins and joins. Mermaid [18] makes use of
semi-joins to eliminate unnecessary relations. Others
can be found in [19]. All of the above previous work
tackles the problem in a distributed homogeneous
environment. Microsoft SQL Server DHQP, on the
other hand, deals with both homogeneous and het-
erogeneous distributed queries. The Microsoft SQL
Server Cascades optimizer implements dynamic pro-
gramming and memorization for efficient rule-based
exploration and cost-based pruning to find the opti-
mal plan.

6. Concluding remarks

In most organizations the diversity and volume
of data grow rapidly. To have efficient and extensi-
ble distributed query processing capabilities is essen-
tial to any database management systems.

The distributed, heterogeneous query processor
in Microsoft SQL Server implements an extensible
architecture, based on OLE DB, supporting robust
cost-based query optimization against remote data
sources. Tight integration with the existing Cascades
query optimization framework allows local and re-
mote queries to be treated identically for core optimi-
zation decisions while supporting extensions specific
to remote queries. Additionally, the query execution
framework has been extended to hide many of the
latencies seen in this class of distributed application.
This framework supports arbitrary third-party provid-
ers, and modern development tools enable someone
to write a simple provider which can integrate data
into the query processor.

The DHQP framework supports a number of
additional internal features using the same framework.
Full-text content indexing has been implemented by
plugging the Microsoft Index Server as an OLE DB
provider called from the DHQP, allowing rich text
searching over file system and table content. DHQP
supports scale-out partitioning through the use of
partitioned views over multiple remote sources. This
configuration set a TPCC record when it was first
introduced. Additional features can be built by third-
party vendors who wish to leverage the capabilities
of an existing query processor over external data.

References
[1] P. Bernstein, N. Goodman, E. Wong, C. Reeve, J.

Rothnie. Query Processing in a System for Distributed
Databases (SDD-1). ACM Transactions on Data Base
Systems, 6:4, Dec 1981.

[2] J.A. Blakeley, M. Pizzo. Enabling Component Data-
bases with OLE DB. In Component Database Systems.
K. R. Dittrich, A. Geppert (Eds.). Morgan Kaufmann,
2001.

[3] J.A. Blakeley, M. Pizzo. Microsoft Universal Data
Access Platform. SIGMOD Conference 1998.

[4] J.A. Blakeley. Data Access for the Masses through
OLE DB. SIGMOD Conference 1996.

[5] J.A. Blakeley. OLE DB: A Component DBMS Archi-
tecture. ICDE 1996.

[6] D. Box. Essential COM, Addison Wesley, 1998.

[7] M. Carey et al. Towards heterogeneous multimedia
information systems. Intl. Workshop on Research Is-
sues in Data Engineering, March 1995.

[8] C.A. Galindo-Legaria, S. Stefani, F. Waas. Query
Processing for SQL Updates. SIGMOD 2004.

[9] G. Graefe. The Cascades Framework for Query Opti-
mization. Data Engineering Bulletin 18 (3) 1995.

[10] Anecdotes. IEEE Annals of the History of Computing.
A. Fitzpatrick (Ed). 24(2): 86-93 (2002).

[11] L.M. Haas, D. Kossmann, E.L. Wimmers, J. Yang.
Optimizing Queries across Diverse Data Sources.
VLDB 1997.

[12] G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lind-
say, P. Selinger, P. Wilms. Query Processing in R*. In
Query Processing in Database Systems. W. Kim, D.
Reiner, D. Batory. (Eds.) NY: Springer-Verlag, 1985.

[13] Microsoft. Distributed Queries. MSDN: Microsoft
SQL Server. http://msdn.microsoft.com/library/en-
us/acdata/ac_8_qd_12_9ooj.asp

[14] Microsoft. IFilter. MSDN: Indexing Service Reference.
http://msdn.microsoft.com/library/en-
us/indexsrv/html/ixref_6xid.asp

[15] Microsoft. MSDN: Microsoft Distributed Transaction
Coordinator. http://msdn.microsoft.com/library/en-
us/cossdk/htm/dtc_toplevel_6vjm.asp

[16] Microsoft. MSDN: OLE DB Templates.
http://msdn.microsoft.com/library/en-
us/vccore/html/vcconOLEDBProgramming.asp .

[17] Transaction Processing Performance Council:
http://www.tpc.org/tpcc

[18] C.T. Yu, C.C. Chang, M. Templeton, D. Brill, E.
Lund. Query Processing in a Fragmented Relational
Distributed System: Mermaid. IEEE Trans. Software
Eng. 11(8), 1985.

[19] C.T. Yu, W. Meng, Query Processing in Distributed
Relational Database Systems, In Principles of Data-
base Query Processing for Advanced Applications.
Morgan Kaufmann, 1998.

