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Abstract 
This paper presents an architecture overview of the 
distributed, heterogeneous query processor (DHQP) 
in the Microsoft SQL Server database system to en-
able queries over a large collection of diverse data 
sources. The paper highlights three salient aspects of 
the architecture. First, the system introduces well-
defined abstractions such as connections, commands, 
and rowsets that enable sources to plug into the sys-
tem. These abstractions are formalized by the OLE 
DB data access interfaces. The generality of OLE DB 
and its broad industry adoption enables our system to 
reach a very large collection of diverse data sources 
ranging from personal productivity tools, to database 
management systems, to file system data. Second, the 
DHQP is built-in to the relational optimizer and exe-
cution engine of the system. This enables DH queries 
and updates to benefit from the cost-based algebraic 
transformations and execution strategies available in 
the system.  Finally, the architecture is inherently 
extensible to support new data sources as they 
emerge as well as serves as a key extensibility point 
for the relational engine to add new features such as 
full-text search and distributed partitioned views. 

1. Introduction 

The rate at which data, individual and corporate, 
is being generated in diverse data sources is currently 
much higher than our ability to collect it, catalog it, 
and organize it inside database systems. Personal data 
is generated and stored in multiple, diverse sources 
(Word, Excel, mail messages, digital pictures) with 
no easy mechanism to collect and organize them in a 
single database. At a corporate level, acquisitions and 
the continuous creation of business relationships and 
partnerships forces organizations to create an infra-
structure that allows access to mission-critical data 
stored in distributed and heterogeneous data sources.  
Modern data intensive applications must adapt to the 
inherent distribution and heterogeneity of data. 
Therefore, it is no longer optional for modern data-
base management systems to provide efficient, built-
in capabilities to query and update heterogeneous and 
distributed data.  We need data management systems 
that can provide efficient and flexible access to di-

verse data sources.  This paper presents the architec-
ture of such capability in the Microsoft SQL Server 
database system.  The salient features of this architec-
ture are: 
• A provider model based on the OLE DB data 

access interfaces. OLE DB is a broadly deployed, 
industry standard API that enables access to a 
very large set of relational and non-relational 
data sources [2][3][4][5].  OLE DB includes in-
terfaces that enable the exposure of data source 
capabilities such as query, indexing, and statis-
tics which permit the query optimizer to decide 
how much computation can be pushed to the re-
mote data sources vs. executed locally. 

• Distributed and heterogeneous query and update 
capabilities are natively built into the query 
processor. This means all execution plans are 
generated from cost-based decisions using a rich 
set of algebraic transformation rules. This en-
ables the system to decompose the original query 
into sub-expressions that can be pushed to the 
participating data sources when their capabilities 
allow it and it is cost-effective. 

• The architecture is inherently extensible in two 
key dimensions: (a) It supports new data sources 
as they emerge. It suffices to build an OLE DB 
provider that exposes the capabilities of the data 
source and the new provider can be “plugged-in” 
to the DHQP system. (b) It enables the extension 
of the capabilities of the server itself. To date, 
the full-text indexing and distributed partitioned 
view features of the system have been built as 
extensions to the DHQP. 
Another aspect of the framework (not covered 

in this paper) is tools support. The Microsoft Founda-
tion Class Library includes a set of templates that 
facilitate the construction of OLE DB providers [16].  
Assuming a system programmer is familiar with the 
semantics of the OLE DB API, it takes a modest de-
velopment effort to build a working provider plug-
gable to the DHQP system using these templates. 

The rest of the paper is organized as follows. 
Section 2 introduces the system architecture and 
some real world applications of SQL Server DHQP.  
Section 3 describes the key OLE DB interfaces to 
enable DHQP. Section 4 presents the distributed 
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query processing infrastructure including optimiza-
tion and execution. Section 5 presents related work 
and Section 6 concludes the paper. 

2. Architecture and Scenarios 

Figure 1 illustrates the general architecture of 
the SQL Server distributed/heterogeneous query 
processing system. In this architecture all data 
sources, including SQL Server, expose their capabili-
ties and data rowsets through the OLE DB interfaces. 

 

Figure 1 Distributed/Heterogeneous Query Process-
ing Architecture 

It is conceivable to consider building a similar 
system using other widely used data access interface 
such as ODBC or JDBC as the “plug-in interface” to 
other data sources. The key benefit of OLE DB over 
ODBC/ JDBC is that the latter were designed funda-
mentally as interfaces to SQL data sources whereas 
OLE DB is factored to expose only the native capa-
bilities of the data source. OLE DB can access both 
SQL and non-SQL data sources such as ISAM, 
search engines, personal productivity tools, e-mail 
systems, and so on. In addition, OLE DB is the inter-
face used by SQL Server to access its local storage 
engine, thus the code patterns to access data from 
local and external sources are almost identical. SQL 
Server uses the Microsoft Distributed Transaction 
Coordinator [15] to ensure atomicity of transactions 
across data sources. The following subsections show 
example applications leveraging SQL Server’s 
DHQP. 

2.1. Distributed SQL-to-SQL Queries  
SQL statements can reference local and remote 

SQL Server tables and heterogeneous data sources in 
the FROM clause via “linked servers”. Linked server 
names associate a server name with an OLE DB data 
source. These objects are referenced in SQL state-
ments using the four-part name convention: <linked-

server>.<catalog>.<schema>.<object>.  For exam-
ple, if a linked server name of DeptSQLSrvr is de-
fined to reference a remote SQL Server machine, the 
following statement references a table on that server:  

SELECT *  

FROM DeptSQLSrvr.Northwind.dbo.Employees  

This technique can be used to create and reference a 
wide range of data sources including other relational 
sources (e.g., Oracle, IBM DB/2, Microsoft Access) 
as well as other tabular data sources (Microsoft Excel, 
text files, or other third-party data sources).  SQL 
Server also supports a technique to reference remote 
sources in an ad-hoc manner.  Details of ad-hoc con-
nections are beyond the scope of this paper. 

For each data source accessed as a linked server, 
an OLE DB provider for that source must be present 
on the machine running SQL Server. The set of SQL 
operations that can be used against a specific OLE 
DB data source depends on the capabilities of the 
OLE DB provider. For SQL-capable data sources, the 
DHQP can “push” SQL statements containing joins, 
restrictions, projections, sorts, and group-by opera-
tions to them when it is cost-effective. 

2.2. Heterogeneous SQL-to-File System 
Queries 

The Microsoft Search Service supports full-text 
searches over file system data.  Various document 
formats are supported for inclusion in full-text in-
dexes.  There is an OLE DB provider for Microsoft 
Search which allows SQL Server’s DHQP to query 
documents and files stored in the file system. To en-
able this capability, users need to setup a full-text 
catalog/index first by activating the index service on 
the Windows machine and creating a new cata-
log/index over the directory containing the docu-
ments to be full-text indexed. 

In the following example, a catalog named 
DQLiterature is created over a document repository 
containing various document types, e.g., MS Word, 
MS PowerPoint, PDF, ZIP files, etc.  For all third-
party document types, one needs to install necessary 
IFilters to enable full-text search.  The IFilter is an 
interface for retrieving text and properties out of 
documents.  It provides the foundation for building 
higher-level applications such as document indexers 
and application-independent viewers [14].  The fol-
lowing query retrieves all the documents about “par-
allel database” or “heterogeneous query”: 

SELECT FS.path 

FROM OpenRowset('MSIDXS','DQLiterature';'';'', 

  'Select Path, Directory, FileName, size,  

  Create, Write from SCOPE() where  

  CONTAINS(''"Parallel database" OR  

  "heterogeneous query"'')') AS FS 

2.3. Full-text queries on relational data 
SQL Server leverages the full-text index and 

query capabilities of the Microsoft Search Service to 
provide a full-text search capability over textual data 
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and documents stored in SQL Server tables.  These 
full-text indexes are stored outside of the database 
engine and queried using SQL Server DHQP. Figure 
2 illustrates the general architecture of this integra-
tion. The SQL syntax was extended to enable con-
tent-based predicates and the DHQP leverages the 
index service to derive efficient query plans. With the 
full-text SQL extension it is possible to find related 
words by searching over word stems.  For example, 
‘runner’, ‘run’, and ‘ran’ can all be equivalent in full-
text searches. 
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Figure 2 Integration of a full-text component with a 
relational DBMS via OLE DB 

There are two aspects to full-text support: index 
creation and maintenance, and query support. Index-
ing support involves creation, update, and administra-
tion of full-text catalogs and indexes defined for a 
table or tables in a database. Query support involves 
processing of full-text search queries. Given a full-
text predicate, the search service determines which 
entries in the index meet the full-text selection crite-
ria. For each entry that meets the selection criteria, 
the query component of the search service returns an 
OLE DB Rowset containing the identity of the row 
whose columns match the search criteria, and a rank-
ing value. This rowset is used as input to the query 
being processed by the SQL relational engine just 
like any other rowset originating from tables or in-
dexes inside the server. The relational engine joins 
this rowset with the base table on the row identity 
and along with other predicates in the query evaluates 
the execution plan that yields the final result set. The 
types of full-text queries supported include searching 
for words or phrases, words in close proximity to 
each other, and inflectional forms of verbs and nouns.  

2.4. Heterogeneous SQL-to-Email Queries 
Consider a salesman who wants to find all email 

messages he has received from Seattle customers, 
including their addresses, within the last two days to 
which he has not yet replied. This query involves 
searching the mailbox file containing the salesman’s 

email, as well as a Customers table stored in an Ac-
cess DBMS to identify customers. Microsoft DHQP 
plus OLE DB enable the development of an applica-
tion that will access both information sources and 
assist the salesman to answer this query, which can 
be formulated in an extended SQL syntax as follows: 

SELECT  m1.*, c.Address 

FROM MakeTable(Mail, d:\mail\smith.mmf) m1,  

  MakeTable(Access,  

  d:\access\Enterprise.mdb, Customers) c 

WHERE m1.Date >= date(today(), -2) AND 

  m1.From = c.Emailaddr AND  

  c.City = “Seattle” AND  

  NOT EXISTS (SELECT *FROM 

       MakeTable(Mail, d:\mail\smith.mmf) m2 

       WHERE m1.MsgId = m2.InReplyTo); 

MakeTable is a table-valued function that trans-
forms the mail file (d:\mail\smith.mmf) into a stream 
of rows, each representing a message. It also exposes 
the Customers table from an Access database 
(d:\access\enterprise.mdb). The function date() 
takes a date and a number of days as arguments and 
produces a date. 

3. OLE DB: A Component Data Model 

OLE DB is designed as a set of Component Ob-
ject Model (COM) [6] interfaces.  This section pro-
vides a brief overview of OLE DB, focusing on the 
pieces most important to building a DHQP.  For de-
tails about OLE DB, please refer to [2],[3],[4] and [5]. 

3.1. Common abstractions 
OLE DB is built on a small set of common ab-

stractions, along with a set of common extensions 
that enable access to diverse data sources. By build-
ing on a set of common abstractions, OLE DB en-
ables generic components to operate on those abstrac-
tions as individual entities without needing to know 
how the entities were generated or the details of what 
they represent.  

 

Figure 3 Hierarchy of Data Source, Session, Com-
mand, and Rowset Objects 

OLE DB defines three object classes common 
to any data provider; the Data Source Object, or DSO, 
provides a common abstraction for connecting to the 
data store, the Session object provides a transactional 
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Table 1 languages supported by various OLE DB providers 

Type of Data Source Product Query Language 
Relational Microsoft  SQL Server Microsoft Transact-SQL 
Full-text Indexing  Microsoft Index Server Index Server Query Language 
OLAP Microsoft  OLAP Services MDX 
Email Microsoft Exchange SQL with hierarchical query extensions 
Directory Services Microsoft Active Directory LDAP 
   

scope for multiple concurrent units of work, and the 
Rowset object provides a common abstraction for 
exposing data in a tabular fashion, as shown in Figure 
3.  All of the extensions built on OLE DB extend this 
basic object hierarchy.  For example, the command 
object, discussed later, enables query requests on 
query-capable providers. 

3.1.1. Connection abstraction 
The OLE DB connection model defines how data 
providers are located and activated. The data source 
object (DSO) and the session object are the basis for 
the OLE DB connection model. To access a data 
provider, a consumer must first instantiate a DSO. 
The DSO exposes the IDBProperties interface, 
which the consumer uses to provide basic 
authentication information, IDBInitialize establishes 
a connection with the data store, and 
IDBCreateSession creates a session object which 
supports a simple interface IOpenRowset to access 
rowsets. 

DSO supports interfaces used by DHQP to 
query the capabilities of remote sources. These capa-
bilities include the interfaces, rowset properties (e.g., 
scrollability), transaction properties (e.g., isolation 
levels), SQL dialects, command operations (e.g., left-
outer joins, text search operators), and security op-
tions. 

3.1.2. The Rowset 
A rowset is a unifying abstraction that enables OLE 
DB data providers to expose data in tabular form. 
Conceptually, a rowset is a multi-set of rows where 
each row has zero or more columns of data. Base 
table providers present their data in the form of 
rowsets. Query processors present the result of que-
ries in the form of rowsets. This way it is possible to 
layer components that consume or produce data 
through the same abstraction. Rowsets are also used 
to return metadata, such as database schema, sup-
ported data type information, extended column in-
formation and statistics.  For details about common 
abstractions of OLE DB, please refer to [2].  

3.2. Common extensions 
In order to be suitable as a primary interface to 

DHQP, OLE DB defines a set of common extensions 
on top of the base abstractions.  The major extensions 
include query support, ISAM navigation, hierarchical 

navigation, heterogeneous data support, statistics, 
and OLAP support [2].  By building these extensions 
on the common abstractions, generic consumers can 
view all data through the common abstractions while 
special purpose consumers can access the domain-
specific functionality through common extensions.  
In the following subsections, we will briefly describe 
the DHQP related extensions ⎯ query syntax support, 
ISAM navigation, heterogeneous data support and 
statistics. 

3.2.1. Query syntax support 
This extension exposes the ability to issue a textual 
command to a data store.  The command object en-
capsulates the functions that enable a consumer to 
invoke the execution of data definition or data ma-
nipulation statements such as queries or updates 
against a relational database. Figure 3 depicts the 
calling sequence. 

Since OLE DB is designed to work with any 
query-capable provider, it does not mandate a spe-
cific syntax or semantics for queries. It is entirely up 
to the provider to define the language for formulating 
queries. For example, currently there are OLE DB 
providers for relational DBMSs, full-text search en-
gines, OLAP engines, directory services, email stores, 
and spatial stores. Each of these query-capable stores 
exposes a different query language.  Table 1 lists 
some of the query languages supported by various 
OLE DB providers. 

3.2.2. ISAM navigation 
ISAM navigation supports basic indexing functional-
ity. This functionality allows services such as query 
processors to efficiently access contiguous rows of 
data within a range of keys.  Through this extension, 
SQL Server DHQP can generate query plans during 
optimization to leverage these remote capabilities.  
These indexed solutions will be costed and compared 
with the costs of other solutions before the optimal 
plan is chosen. 

3.2.3. Heterogeneous data support 
If results from different data sources share the same 
schema, rowsets are well suited.  However, for dis-
similar results, such as e-mail messages, calendar 
entries, and spreadsheet data, which may contain dif-
ferent columns, a single rowset becomes a limitation. 



Table 2 Interfaces of Data Source objects and DB Session objects 
COM Object Interface Mandatory? Purpose 

IDBInitialize Yes Initialize and setup connection and security context based on linked server properties 
IDBCreateSession Yes Create a DB session object. 
IDBProperties, IDBInfo Yes Get information about the capabilities of the provider,. 

Data Source 
Object 

IDBInfo No Get quoting literal, catalog, name, part, separator, character, and so on. 
IDBSchemaRowset No Get metadata about tables, indexes and columns. 
IOpenRowset Yes Open a rowset on a table, index or histogram. 

DB Session 
Object 

IDBCreateCommand No Use to create a command object (query) for providers that support querying. 
    

In order to simplify navigation of rowsets con-
taining heterogeneous rows, OLE DB defines a row 
object.  Each row object represents an individual row 
instance, which can be a member of a rowset or a 
single result value.  Consumers can navigate through 
a set of rows viewing the common set of columns 
through the rowset abstraction, and then obtain a row 
object for a particular row in order to view row-
specific columns.  In addition, hierarchies of row and 
rowset objects can be used to model containment 
relationships common in tree-structured data sources 
via chaptered rowsets. 

3.2.4. Statistics 
Another supported extension allows remote sources 
to pass statistical information (including histograms) 
from remote sources into the optimizer to generate 
more accurate cardinality estimates over remote op-
erations.  This commonly provides order of magni-
tude improvements on cardinality estimates similar to 
what is expected in local queries.  Histogram Statis-
tics are exposed through an extension to the IOpen-
Rowset interface and can be implemented by any 
provider.  Cardinality information is exposed through 
the schema rowset TABLES_INFO. 

As a summary, the major OLE DB extensions to 
DSOs and Sessions used to support DHQP are listed 
in Table 2.  For a complete list of extended interfaces, 
see [13]. 

3.3. Categories of OLE DB providers 
The set of distributed query capabilities sup-

ported against a linked server depends on the capa-
bilities of the OLE DB provider.  Three commonly 
seen providers are briefly discussed below. 
Simple provider: A simple provider is an OLE DB 
provider which supports only the mandatory OLE DB 
interfaces of being able to connect and retrieve 
named rowsets.  In this case, DHQP provides all of 
the querying functionality on top of this base pro-
vider.  
Query provider: A query provider is an OLE DB 
Provider which supports the ability to query the data 
source through the ICommand interface.  If the 
query syntax is a proprietary syntax, then DHQP 
supports only pass-through queries against this pro-

vider using the OpenQuery function [2].  If the pro-
vider supports a standard SQL syntax, then it is con-
sidered a SQL provider.  In this case, the DHQP can 
support the full SQL query language against remote 
tables named through four-part names in SELECT 
statements.  The queries that are remoted depend 
upon the syntax capability of the provider as reported 
by its DBPROP_SQLSUPPORT remote OLE DB 
property.  This property indicates the level of SQL 
support in the provider as one of: SQL Minimum, 
ODBC Core or SQL-92 Entry/Intermediate/Full.  The 
DHQP constructs plans such that the provider’s ca-
pabilities are fully used while not overshooting its 
limitations.  
Index provider: If the provider supports indexes, 
then the DHQP can generate plans that use these 
indexes.  Index support requires reporting metadata 
on the indexes (through IDBSchemaRowset 
interface), ability to open OLE DB rowsets on 
indexes, the ability to seek (or setting a range) on the 
index for given key values (using the IRowsetIndex 
interface) and the ability to locate base table rows 
using bookmark values retrieved from the index 
(using the IRowsetLocate interface). 

4. Distributed Query Processing 

4.1. Distributed query optimization 
In this section, we first introduce the Cascades 

optimizer framework [9]: how different optimization 
rules interact with one another in different optimiza-
tion phases, and how guidance and promise of each 
rule help to improve the effectiveness and efficiency 
of the rule engine.  Then, we elaborate on how rules 
specific to distributed queries work and how well 
they fit into Microsoft SQL Server’s cost-based query 
optimizer making remote data access as easy as ac-
cess to local data.  Finally, we discuss distributed 
partitioned views which are built on top of the func-
tionality of Microsoft SQL Server’s distributed query 
processing to enable efficient query processing in a 
federated database system. 

4.1.1. Search framework 
The SQL Server Query Optimizer is based on the 
Cascades Framework.  While this framework has 



been discussed previously [9], this section provides a 
brief overview of the important design characteristics 
of this framework with respect to distributed and het-
erogeneous query processing.  More specifically, this 
section discusses the overall approach to representing 
query operations, how the space of possible plans is 
searched, and the mechanisms used to find a plan 
efficiently.  Additionally, some examples of specific 
rules used in SQL Server are presented to demon-
strate how the implementation works. 

The Cascades framework is a top-down cost-
based optimization technique using a rule engine to 
enumerate possible alternatives of a query for com-
parison.  Unlike some other optimizers, each operator 
is represented as a unique node in a query tree.  For 
example, “A JOIN B JOIN C” would be represented as 
two “joins” and three “get” operations instead of a 
single node containing all joins.  Relational operators 
are sub-divided into the logical and physical 
ones.  “Join” would be an example logical operation, 
while “hash join”, “loop join”, or “merge join” would 
be corresponding physical operations. 

Rules are used to search the space of possible 
plans by matching one logical query pattern (the be-
fore-pattern) and introducing a new query pattern (the 
after-pattern) as a result.  Rules are also subdivided 
into different categories based on their func-
tion.  Simplification Rules perform heuristic tree re-
writes, generally early in the optimization process.  In 
this phase, logical trees are rewritten into simpler 
logical trees.  While some optimizers perform a sepa-
rate heuristic rewrite phase before optimization, Mi-
crosoft SQL Server uses the same rule framework as 
the optimization phase for heuristic rewrites.  Explo-
ration Rules enumerate equivalent logical alternatives 
to a query pattern to be considered in the cost-based 
optimization process.  Join commutation (A Join B 
≡ B Join A) is an example exploration rule.  Imple-
mentation Rules generate physical alternatives for a 
particular logical query tree.  The implementation of 
a logical “group by” into “stream aggregation” or 
“hash aggregation” is one such rule.  Physical im-
plementations are costed and compared to determine 
the optimal query plan. 

The rule engine uses additional structures as 
part of the framework.  A Memo is a structure to store 
equivalent alternatives generated by Exploration and 
Implementation Rules.  Within the Memo, equivalent 
alternatives are stored in groups, and a query tree is 
represented using connections between groups in-
stead of operators.  This design allows for rules that 
match patterns without comparing whole trees.  For 
example, join commutation can be performed for 
“Get(A) Join Get(B)” using the same rule as for “Fil-
ter(Get(A)) Join Filter(Get(B))”.  When rules match a 

pattern during the plan search, an alternative may be 
generated and inserted into the Memo.  If the new 
alternative already exists in the Memo, nothing is 
inserted (more importantly, no extra work is required 
to re-search this portion of the possible query 
space).  If the alternative does not yet exist, it is in-
serted into the Memo with the top-most operator of 
the alternative being inserted into the same group 
where the root of the original pattern resides.  This 
means that the two query trees provide equivalent 
outputs and may be interchangeable. 

Properties are also derived within this frame-
work to further refine the notion of equivalent groups 
within the Memo.  Group Properties (which are 
sometimes called logical properties) represent infor-
mation about all of the alternatives within a 
group.  For example, the set of output columns from 
a group is considered to be a group property.  Addi-
tional group properties include any columns in the 
output that make up a key, the cardinality estimate 
for that group, and constraint properties tracking the 
domain for all active columns in the query.  These 
properties are derived only on logical operators in the 
query tree.  Alternatives within a group should, by 
definition, have the same logical properties.  Physical 
Plan Properties represent particular physical details 
about the output of a particular physical plan.  Sort is 
the most well-known physical property.  These are 
computed on physical operators and are useful to 
determine if a physical implementation delivers the 
proper physical characteristics to other operators in a 
query tree.  Special rules called Enforcer Rules can 
be used, in some cases, to deliver missing physical 
properties.  For sort, an enforcer can insert a physical 
sort operation to introduce order when needed.  Prop-
erties are essential to guide the search of the plan 
space and deliver exactly what semantics are needed 
for each query. 

Several additional concepts help make the 
search of all possible plans as efficient as possi-
ble.  Each operator contains a routine called Guid-
ance that enumerates rules that could match it.  This 
avoids unnecessary work to attempt to run rules 
against an operator when they could never 
match.  Additionally, a Promise routine exists on 
each rule to define how valuable this particular rule 
could be to identifying an efficient alterna-
tive.  Commonly used tricks such as pushing filters 
towards the leaves of a query tree have a high prom-
ise, while less common or more expensive rules such 
as generalized materialized view matching may have 
a lower Promise. 

Costing functions are also used to prune 
searches that will yield physical alternatives that cost 
more than existing physical solutions.  Finally, rules 



are split into different optimization phases consisting 
of a round of exploration rules followed by imple-
mentation rules.  Early phases have a restricted set of 
rules enabled to attempt to find a good plan 
quickly.  If the cost of the best solution found after a 
phase is acceptable, the solution is returned.  Other-
wise, additional phases may be run in an attempt to 
find a better solution.  Currently, SQL Server has 
three possible phases — transaction processing, 
quick plan and full optimization.  These different 
strategies help provide a good plan as quickly as pos-
sible, and search for a better plan as needed. 

4.1.2. Rules specific to distributed queries 
The Cascades framework provides enough abstrac-
tion to allow adding remote rules (i.e., those rules 
specific to distributed queries) as easily as local rules 
(named “local rules”), and both can work seamlessly 
together.  Like local rules, remote rules can be cate-
gorized into exploration rules and implementation 
rules.  Examples of remote exploration rules are: 
parameterization of the remote queries, grouping 
joins based on locality, splitting and merging selec-
tion predicates based on predicate remotability, etc.  
Parameterization enables pushing parameters into the 
remote sources and opens up a large variety of alter-
native plans.  The rule — “grouping joins based on 
locality” — reorders the joins into groups of joins 
based on the locality of the operand tables.  Similarly, 
the rule — “splitting/merging predicates” — splits 
and collapses predicates based on the remotability of 
the predicates.  The rationale behind grouping the 
operations based on their locality is to find solutions 
of pushing the largest possible sub-tree to the remote 
source (c.f. the implementation rule “build remote 
query” below). 

Examples of remote implementation rules are: 
building SQL statements from trees to run on remote 
sources, building remote scan/range/fetch, adding 
spool on top of remote operations, etc.  The rule — 
“build remote query” —constructs a SQL statement 
out of a logical query tree.  Namely, it pushes the 
SQL statement to the remote source and consumes 
the data once the results are returned.  A typical 
scenario where a sub-tree is pushed to the remote 
source is that the remote source is a fully capable 
query processor.  Being able to quickly identify a 
sub-tree based on the locality of the operand tables 
(c.f. above mentioned exploration rules) reduces the 
optimization time and leverages the optimization 
capability of the remote sources.  However, although 
there are rules to generate alternative plans based on 
locality, it does not necessarily mean they are the 
only solutions.  The optimality of plans is determined 
by their estimated costs.  For example, both customer 
and supplier in Example 1 are from the same remote 

source.  Figure 4(a) shows the plan of pushing the 
join of customer and supplier to the remote server, 
and Figure 4(b) show a plan of joining supplier first 
to nation before joining to customer. 

Example 1 
SELECT c.c_name, c.c_address, c.c_phone  

FROM remote0.tpch10g.dbo.customer c,  

  remote0.tpch10g.dbo.supplier s, nation n 

WHERE c.c_nationkey = n.n_nationkey AND  

  n.n_nationkey = s.s_nationkey 

 
Figure 4 Cost-based optimization 

On a 10GB TPCH database, the SQL Server 
optimizer chooses the plan shown in Figure 4(b), 
since by joining supplier to nation first will avoid 
having to send a large intermediate result set of “cus-

tomer join supplier” over the network.  Our optimizer 
does not simply rely on the heuristics of pushing the 
largest sub-tree to the remote sources. 

The rules — “build remote scan/range/fetch” — 
implement remote table access via different access 
paths.  “Remote scan” is simply a sequential scan on 
remote table.  “Remote range” accesses a remote ta-
ble via indexes, and “remote fetch” accesses a remote 
table via “bookmark” (the key).  The rule — “spool 
over remote operation” — implements a spool to 
store a copy of the remote results for subsequent ac-
cesses within the same query context without having 
to request the data from the remote sources again. 

As described in the previous subsection, the 
phases of optimization start with normalization of the 
query tree, followed by three phases of exploration 
and implementation.  Whether to continue with the 
next optimization phase or not depends on the esti-
mated costs of the query.  In such ways, the optimizer 
will not spend too much time on optimizing easy 
queries, while for complex queries it will spend 
longer time in order to find the optimal plan.  How 
the distributed query optimization fits into this 
framework seamlessly will be discussed next.  

4.1.3. Seamless integration of local and distrib-
uted query optimization 

Two of the strengths of the Cascades framework that 
make distributed query optimization as natural as the 
local cases are 1) the separation of logical and physi-
cal operators, and 2) the interaction between group 
properties and rules. 
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At the beginning of optimization, both local and 
distributed queries are algebrized in the same way, 
i.e., the same logical operator is used no matter the 
data source is local or remote, except that the remote 
data sources are tagged with a flag indicating their 
level of remotability.  During the exploration phase, 
the optimization rules match logical query sub-trees 
and transform them into their equivalent logical 
alternatives regardless of the remoteness.  Through 
the distinction between logical and physical operators, 
most of the exploration rules designed for local query 
optimization (local rules) are also directly applicable 
to distributed queries, making the optimizer 
framework simple and free from duplicates of the 
same work.  For example, the rules ⎯ reordering 
joins, pushing the predicates before joins, removing 
sub-queries, etc. ⎯ are all applicable to remote 
queries.  During the implementation phase, the 
implementation rules will interact with group 
properties and generate corresponding physical 
operators.  For example, “get(A)” can be imple-
mented as TableScan(A) in the local case, or as 
RemoteScan(A) if A is a remote table. 

Once a logical operator is implemented as a 
physical operation, the costing functions are invoked 
to derive the estimated execution costs of each physi-
cal operator.  This works for both local and remote 
operators.  All needed here is to define the cost for-
mula for each remote operator.  It is obvious that the 
cost formula of an operation depends on how the 
operator is implemented.  However, in heterogeneous, 
autonomous environments, it is sometimes impossi-
ble to reason about the detailed implementation of the 
remote operator in addition to other non-deterministic 
factors, like network latencies. 

SQL Server DHQP defines a simple cost model 
based on the output cardinality of a remote operator.  
It aims at finding plans with minimal network traffic.  
With the help of remote histogram rowsets via the 
OLE DB interface, SQL Server optimizer chooses the 
optimal plan which produces the minimal intermedi-
ate result sets, e.g., the plan shown in Figure 4(b).  
This simple model works well in most of the cases 
and is easy to extend. 

Another important component in the distributed 
query processing is the decoder.  The decoder takes a 
logical query tree as its input and decodes it into an 
equivalent SQL statement.  This is part of the imple-
mentation rule ⎯ “build remote query”.  When com-
posing the SQL statement, the decoder responds to 
different parameter settings of the connection to the 
OLE DB provider in order to produce a SQL state-
ment which is compliant to the remote system, e.g., 
the SQL dialect the remote sources support, data col-
lation, etc.  Additionally, SQL Server DHQP extends 

OLE DB by defining additional properties that pro-
viders can implement to communicate capabilities to 
Microsoft SQL Server.  For example, providers can 
indicate support for nested select statements, parallel 
table scans, or specific syntactical details about date 
literals beyond what is defined in SQL.  This infor-
mation is used both in plan selection and by the de-
coder to more effectively remote queries (especially 
to non-SQL Server systems). 

4.1.4. Extensions to the Cascades Framework to 
Support Distributed Query 

Beyond the addition of specific remote query rules, 
several modifications and extensions to the Cascades 
framework are required to better facilitate distributed 
query processing.  For example, sub-queries are usu-
ally heuristically transformed into semi-joins in the 
Simplification phase of optimization for local queries.  
This avoids duplication of logic for handling semi-
joins and sub-queries.  However, the un-rolling of 
sub-queries over remote sources is delayed until the 
exploration phase to simplify the process of decoding 
a logical tree back into SQL. 

Another framework modification is required to 
properly generate remote queries in Cascades.  If you 
recall from Section 4.1.1, groups in the Memo store 
equivalent alternatives for that portion of the query.  
However, not all logical alternatives in a specific 
group may be remotable.  This can happen for any 
number of reasons, but common causes include the 
use of an abstract operator (such as a semi-join) with 
no direct SQL corollary, the use of an operator not 
supported in a previous version of the product, or 
even cases when the decoder has not yet imple-
mented logic to generate SQL for a specific operator.  
In these cases, the implementation rule that trans-
forms a logical tree into a remote SQL statement re-
quires special framework logic to pick any remotable 
tree from the same group in the Memo.  Since these 
trees represent logically equivalent alternatives, the 
SQL generated for them must, by definition, return 
the same results.   

A few practical changes to the framework help 
improve the performance of specific user operations.  
It is often beneficial to spool results from a remote 
source if multiple scans of the data are expected.  
This is implemented using a special “enforcer” rule 
in the framework that spools a remote query’s results.  
Additional logic is required to disable spools done for 
local scenarios, such as Halloween Protection [10]. 

4.1.5. Application of Distributed Query Process-
ing in Federated Systems 

The distributed query processing capabilities of SQL 
Server were further extended to support efficient 
processing of queries in a federated database system.  
A federated database system is a set of loosely cou-



pled database systems all logically forming a single 
database store.  SQL Server announced this technol-
ogy in February 2000 by publishing the world record 
TPCC benchmark using a federation of 32 Microsoft 
SQL Server instances [17]. 

SQL Servers support for federated systems 
builds on the following concepts: constraint property 
framework, static and runtime pruning support, par-
titioned view support, algebraic re-writes of query 
and DML operator trees, and delayed schema valida-
tion. 
Constraint Property Framework  Constraint prop-
erties leverage Microsoft SQL Server’s existing op-
timization property framework to support tracking 
the domain of all scalar expressions.  Domain restric-
tions track possible values for scalar expressions at 
each point in the query tree.  Each relational opera-
tion can modify the valid domain for a scalar expres-
sion, and this information can be leveraged by the 
optimizer to make decisions on pruning the search 
space, cardinality estimation, or constraint validation. 

For example, if a integer column CustomerId 
passes through a filter operator predicate “Cus-

tomerId > 50”, the optimizer updates the domain 
property of the CustomerId column from ],[ +∞−∞  to 

],50( +∞ . (In computer systems, the positive and 

negative infinities depend on the data types.) This 
mechanism also supports disjoint ranges by tracking 
a set of range intervals for each scalar and then per-
forming appropriate interval operations.  For example: 
“CustomerId IN (1, 5) OR CustomerId BETWEEN 50 

AND 100” would derive a domain property of 
]100,50[]5,5[]1,1[ ∪∪ .  Constraint properties can be 

derived from any scalar expression in the query tree 
including any constraints defined over columns in the 
source tables. 
Static and Runtime Pruning Support  During op-
timization, the constraint property framework is lev-
eraged to infer if a plan sub-tree could produce any 
results.  Each Boolean expression can be evaluated at 
compile time to see if the constraint properties of 
expressions intersect. 

For example, given the column CustomerId 
with domain ],50( +∞ .  If there is an expression 

“CustomerId = 20”, we can attempt to intersect the 
domain of CustomerId with the domain of the con-
stant 20.  Since there is no overlap between ]20,20[  
and ],50( +∞ , the predicate can be reduced to a con-

stant false value.  If the predicate appears in a select 
or join operator, we can reduce the operator to a logi-
cal empty table operator using an exploration rule. 

This reduction of expressions is only possible at 
compile time when the domains of the input values 
are known.  In many cases, the domain of a predicate 

is not known at compile time since most modern SQL 
applications make use of variables in their queries.  
In this case, a special filter operator is introduced into 
the final execution plan ⎯ the “startup filter”. 

A startup filter predicate can not contain any 
references to columns or values in its input tree.  This 
allows the predicate to be evaluated before the sub-
tree of the filter has been executed.  For example, 
let’s consider the following query and its execution 
plan with the startup predicate. 

SELECT *  

FROM Customer  

WHERE CustomerId = @customerId 

 

In this example, the table scan of Customer will 
only be executed if the @customerId variable con-
tains a value in the domain of CustomerId. 
Partitioned Views  A partitioned view unions hori-
zontally partitioned data from a set of member tables 
across one or more servers, making the data appear as 
if from one table or domain.  In a local partitioned 
view, all participating tables and the view reside on 
the same instance of Microsoft SQL Server.  In a 
distributed partitioned view, one or more tables re-
side on a different (remote) server instance. 

Records in the partitioned view are distributed 
across the member tables, each table representing a 
single logical partition.  The range of values in each 
member table is enforced by a CHECK constraint on a 
column designated as the partitioning column.  Each 
table must store a disjoint range of partitioned values. 

For example, consider the Lineitem table of the 
TPCH benchmark partitioned into seven tables based 
on year of the CommitDate column.  Each partitioned 
table is stored at a different server.  For example, on 
one of the server, the partitioned table is defined as 
follows. 

-- on server1: 
CREATE TABLE lineitem_92 ( 

[L_COMMITDATE] [datetime] NOT NULL 

CHECK (L_COMMITDATE >= '1992-1-1' and 

L_COMMITDATE <= '1992-12-31'), 

  …  -- additional column definitions) 

Other partitioned tables — lineitem_93 to 
lineitem_98 — are defined on different servers simi-
larly.  Once the member tables are present, a SQL 
view is created on each member server to union the 
data from each partition into a single logical table.  
This allows queries referencing the distributed parti-
tioned view to run on any of the member servers.  
The system operates as if a copy of the original table 

Filter(STARTUP(@customerId > 50)) 

Scan(Customers) 

Filter(CustomerId = @customerId) 



is on each member server, but each server has only a 
member table and a distributed partitioned view.  The 
location of the data is transparent to the application.  
The distributed partitioned view is defined as follows. 

CREATE VIEW v_LINEITEM AS 

SELECT * FROM server1.tpch10g.dbo.LINEITEM_92 

UNION ALL 

SELECT * FROM server2.tpch10g.dbo.LINEITEM_93 

UNION ALL 

SELECT * FROM server3.tpch10g.dbo.LINEITEM_94 

UNION ALL 

SELECT * FROM server4.tpch10g.dbo.LINEITEM_95 

UNION ALL 

SELECT * FROM server5.tpch10g.dbo.LINEITEM_96 

UNION ALL 

SELECT * FROM server6.tpch10g.dbo.LINEITEM_97 

UNION ALL 

SELECT * FROM server7.tpch10g.dbo.LINEITEM_98 

Query Rewrite Support  Once the partitioned view 
is in place, the query optimizer leverages the con-
straint and dynamic plan pruning support to produce 
efficient execution plans for the federation of servers.  
Example 2 illustrates how this all works together. 

Example 2 
SELECT l.* 

FROM v_lineitem l, remote0.tpch10G.dbo.customer c, 

        remote0.tpch10G.dbo.orders o, nation n 

WHERE l.l_orderkey = o.o_orderkey AND  

        c_custkey = o_custkey AND  

        c.c_nationkey=n.n_nationkey AND  

        l.l_commitdate BETWEEN @date1 AND @date2 

This query pulls data from one or two nodes in 
the federation.  Since the values of the requested 
Lineitems are not known at compile time, the engine 
must introduce startup filter expressions to dynami-
cally select the appropriate server for execution at 
execution time.  The execution plan is shown in 
Figure 5. 
Partitioned View DML Support  An important part 
of partitioned view support is the support for DML 
(insert, update and delete) against the view as if the 
client were operating over a local table.  Microsoft 
SQL Server leverages support for constraint proper-
ties, query re-write and dynamic plan execution to 
provide support for transparent DML support over 
partitioned views. 

An update over a distributed partitioned view is 
decomposed into one update against each partition 
using the check-constraint logic.  If the partitioning 
key is updated, rows may move across partitions.  As 
such, the query optimizer must detect this could oc-
cur and produce a plan capable of deleting rows from 
one server and then inserting them in another server. 

 

Figure 5 DPV execution plan 

Delayed Schema Validation  When a plan is pre-
pared for execution, Microsoft SQL Server checks 
the current schema DDL version numbers of all 
schema objects participating in the plan.  This 
mechanism allows the server to recompile a plan if a 
table has changed structure, an index added or 
dropped since the plan was compiled.  In a federated 
system, the only way to check the schema on remote 
servers is to perform a query to the remote server 
node.  The cost of checking schema on remote nodes, 
even nodes which will not be used in the plan execu-
tion (due to parameter values) is cost prohibitive in 
federated systems. 

To address this problem, Microsoft SQL Server 
introduced the concept of “delayed schema valida-
tion” for distributed servers.  When enabled, this op-
tion causes the local (source) server to perform opti-
mistic schema checking.  Rather than checking all 
remote schema versions before starting query execu-
tion, the query starts execution and then only checks 
the remote schema of this server which ultimately 
participates in the query execution.  Combining this 
lazy validation with partition pruning, it provides 
significant performance advantages for applications 
using distributed partitioned views.  If the remote 
server has changed schema and the server executes a 
portion of the plan, the plan is discarded from the 
plan cache and a “schema changed” error is returned 
to the calling application.  If the application resub-
mits the query, the query is recompiled with the latest 
schema version and execution continues. 

4.2. Execution 
A number of techniques improve the execution 

time of a given distributed query plan.  Connections 
to remote sources are cached to avoid initialization 
costs for each query.  Especially in busy server work-
loads, this can remove seconds from the average 
query time.  Another simple technique to improve 
execution time is to batch multiple rows together in 

Execute(Server1, 

Select * From tpch10g. 

dbo.Lineitem_92 

WHERE l_commitdate 

between @date1 AND 
@date2) 

Filter(STARTUP 
(@date1 BETWEEN 
‘1992-1-1’ AND ‘1992-
12-31’) OR (@date2 
BETWEEN ‘1992-1-1’ 
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Execute(Server2, 

Select * From tpch10g. 

dbo.Lineitem_93 

WHERE l_commitdate 

between @date1 AND 
@date2) 

Filter(STARTUP 
(@date1 BETWEEN 
‘1993-1-1’ AND ‘1993-
12-31’) OR (@date2 
BETWEEN ‘1993-1-1’ 

AND ‘1993-12-31’)) 

... 
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each call to a remote provider.  This capability is 
provided in OLE DB as part of the IRowset interface.  
Providers either implement row batching natively, or 
the functionality can be simulated using a service 
component layer provided as part of the OLE DB 
Service Components framework.  Providers over 
server databases typically can amortize the fixed 
costs of a network I/O better over 50 or 100 rows.  
These common techniques are generally supported by 
most major providers used against Microsoft SQL 
Server. 

Overlapping I/O is also implemented in less ob-
vious places to improve performance.  Distributed 
Partitioned Views commonly store each source table 
on a different remote source.  Therefore, the execu-
tion plan must often open several commands.  With-
out special provisions, these may be required to be 
opened serially since the underlying wire protocols 
for server providers may not support multi-
ple/asynchronous command requests.  This function-
ality has been added into the upcoming Microsoft 
SQL Server 2005 release to better facilitate queries 
over multiple remote sources.  

Updates are also optimized to perform better 
against remote sources.  In Microsoft SQL Server, 
cursor-based updates are represented internally using 
two scans against a table.  The read cursor provides 
row-ids to a write-cursor which makes the change to 
the row [8].  This technique has benefits from allow-
ing the use of secondary indexes as the read-cursor to 
provide rows in a particular order to faster processing 
of batched, per-index maintenance operations.  Mi-
crosoft SQL Server has an optimization to perform 
the updates using a single cursor if the query meets 
specific restrictions.  This “in-place” update allows a 
single exclusive (X) lock to be taken on the row in-
stead of a shared (S) lock in the read cursor followed 
by an X lock in the write cursor.  For queries requir-
ing no Halloween Protection [10] or sorting, this can 
be a noticeable performance improvement.  In-place 
updates seamlessly work for remote sources against 
Microsoft SQL Server.  In some cases, these are ac-
tually required for the remote source to work prop-
erly.  If the provider opens the read and write cursors 
over the remote provider using different connections 
(and thus different transactions), the S and X locks 
can actually conflict and return an error.  This opti-
mization therefore provides important performance 
and functional guarantees for some remote sources. 

5. Related work 

Relevant work in this area includes work on ar-
chitectures and frameworks to support distributed and 
heterogeneous query processing, and the optimization 
techniques for DH queries. 

Similar to OLE DB, IBM’s Garlic is a middle-
ware system designed to integrate data from different 
data sources [7][11].  In addition to the exposure of 
the query capabilities of the data sources, Garlic’s 
wrappers also need to provide cost functions and op-
timization rules.  Microsoft SQL Server DHQP, on 
the other hand, relieves the responsibility of defining 
optimization rules and the cost functions from the 
OLE DB provider implementers.  By doing so, it 
lowers the entry bar for sources to plug into the Mi-
crosoft DHQP. In addition, one can implement a 
minimal subset of OLE DB or one can extend the 
model to meet the needs of emerging applications.  In 
addition, Microsoft SQL Server DHQP is fully inte-
grated into the Cascades cost-based optimizer 
framework which enables the generation of efficient 
query plans over diverse sources.  

Regarding to distributed query optimization, 
SDD-1 [1] from CCA deploys semi-join to efficiently 
delimit the subset of the database that contains data 
relevant to the query.  IBM’s System R* [12] uses 
dynamic programming for optimizing queries using 
semi-joins and joins.  Mermaid [18] makes use of 
semi-joins to eliminate unnecessary relations.  Others 
can be found in [19].  All of the above previous work 
tackles the problem in a distributed homogeneous 
environment.  Microsoft SQL Server DHQP, on the 
other hand, deals with both homogeneous and het-
erogeneous distributed queries.  The Microsoft SQL 
Server Cascades optimizer implements dynamic pro-
gramming and memorization for efficient rule-based 
exploration and cost-based pruning to find the opti-
mal plan. 

6. Concluding remarks 

In most organizations the diversity and volume 
of data grow rapidly.  To have efficient and extensi-
ble distributed query processing capabilities is essen-
tial to any database management systems. 

The distributed, heterogeneous query processor 
in Microsoft SQL Server implements an extensible 
architecture, based on OLE DB, supporting robust 
cost-based query optimization against remote data 
sources.  Tight integration with the existing Cascades 
query optimization framework allows local and re-
mote queries to be treated identically for core optimi-
zation decisions while supporting extensions specific 
to remote queries.  Additionally, the query execution 
framework has been extended to hide many of the 
latencies seen in this class of distributed application.  
This framework supports arbitrary third-party provid-
ers, and modern development tools enable someone 
to write a simple provider which can integrate data 
into the query processor. 



The DHQP framework supports a number of 
additional internal features using the same framework.  
Full-text content indexing has been implemented by 
plugging the Microsoft Index Server as an OLE DB 
provider called from the DHQP, allowing rich text 
searching over file system and table content.  DHQP 
supports scale-out partitioning through the use of 
partitioned views over multiple remote sources.  This 
configuration set a TPCC record when it was first 
introduced.  Additional features can be built by third-
party vendors who wish to leverage the capabilities 
of an existing query processor over external data. 
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