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Abstract

Many database applications adopt a client-server ar-
chitecture, in which data resides on a server that receives
queries from a client. For each client’s query, the server
often needs to transfer to the client a large amount of data
that is an answer to the query. The communication net-
work in these environments could become a bottleneck in
the computation. In this paper we study how to minimize
the communication costs of transferring answers to large-
join queries from server to client. We propose a novel tech-
nique that decomposes the answer into intermediate results,
or views, which can reduce the redundancy in the answer.
These views are transferred to the client and are used by
the client to compute the final answer. There are several
challenges in implementing this technique: (1) the num-
ber of possible plans to decompose the answers could be
very large; (2) the technique requires an efficient algorithm
to give an accurate estimate of the size of each view; and
(3) many factors could affect the decomposition choice;
one such factor is whether relevant data is cached on the
client. Our extensive experiments on queries adapted from
the TPC-H benchmark show that our technique can signif-
icantly reduce the communication costs of transferring an-
swers to large-join queries. The extra steps used in our ap-
proach do pay off to reduce the total time of transferring the
result of a query, when the result has a lot of redundancy.

1 Introduction

Many database applications use the client-server archi-
tecture, in which data resides on a server that receives
queries from a client. For each query, the server sends the
answer to the client. Applications that use this architec-
ture include data integration, grid computing, and the recent
“database-as-a-service” computing model [16]. Consider,
for instance, mediators in data-integration systems [25];
mediators support seamless access to autonomous, hetero-
geneous information sources. Given a user query, a me-
diator translates the query to a sequence of queries on the
sources, and then uses the answers from the sources to com-
pute the final answer to the user query [14]. For each source
query issued from the mediator (“client”), the results of
the query are transferred from the source (“server”) to the
mediator. As another example, “database as a service” is
a new model for enterprise computing, made possible by
recent advances in networking and Internet technologies.
In this model, companies and organizations choose storing
their data on a server over having to maintain their local
databases. The server provides its clients with the capabil-
ities to create, store, modify, and query data on the server.
When a client issues a query, the server uses the stored data
to compute the answers and then sends the answers to the
client over the network.

These applications adopt the client-server architecture
and share the following characteristics. (1) Both the client
and the server are able to do computation. The client might
prefer computing some part of the query answer to receiv-
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ing excessively large amounts of data from the server, as in
the database-as-a-service scenario; alternatively, the client
might have to do computation anyway, as in the mediation
scenario. (2) The computation is data driven; the data re-
sides on the server that is different from the client where
a query is issued — either by client’s choice, as in the
database-as-a-service scenario, or by design, as in the me-
diation scenario. (3) The server needs to send data to the
client over a network. When query results are large, the
network could become a bottleneck; in addition, the client
may want to minimize the costs of transferring the data over
the network.

In the scenarios that have these three characteristics,
minimizing data-transfer time becomes very important. In
this paper we address the problem of minimizing commu-
nication costs incurred in transferring query results, in the
applications that have these characteristics. We propose an
efficient technique for reducing the communication costs:
The idea is to decompose query answers into intermedi-
ate results, called “views,” to reduce the redundancy in the
data. The answers to these views are sent to the client; the
client uses the answers to the views to compute the answer
to the query. There are many possible ways (plans) to de-
compose query answers into view results; which plan is the
best (i.e., has the minimum size) depends on the database
on the server.

A critical advantage of our approach is that we use for-
mal methods in [10] to choose provably globally optimal —
and, at the same time, efficient — methods for decompos-
ing queries into views. In other words, for a given query
from client to server, our approach finds a view decompo-
sition that provably minimizes the communication costs of
transferring to the client the data for answering the query.
Another feature of the proposed approach is that it can be
implemented on top of the server database and thus make
full use of the query-answering capabilities of the database-
management system, including the capability to simultane-
ously process multiple queries from one or more clients.
In particular, we can use the existing indexing structures in
the server database to efficiently perform the required cal-
culations. As shown in our experiments, in those scenarios
where the communication cost dominates the total compu-
tation time, the extra time spent to evaluate the views does
pay off in many cases, as our techniques significantly re-
duce the size of transferred data.

There are several challenges in implementing the pro-
posed technique. (1) The number of possible plans to de-
compose query results into views could be exponential in
terms of the number of relations in the query. (2) The tech-
nique requires an efficient approach to obtaining accurate
view-size estimates; at the same time, traditional estima-
tion techniques tend to give unreliable estimates for views
defined as large-join queries. (3) Many factors could affect

the process of finding a good plan, such as whether it is pos-
sible to use, in the computation of query answers, relevant
data that is cached on the client.

In this paper we develop efficient solutions to these prob-
lems. The following are our contributions.

� We develop a novel approach to minimizing the com-
munication costs of transferring query answers from
server to client. For a given query from client to server,
our approach finds a view decomposition that provably
minimizes the size of data transferred to the client for
answering the query. Thus the total time to send the
result is reduced when the transfer cost is high (Sec-
tion 3).

� We propose rules for reducing the search space of op-
timal decomposition plans. The rules can take into ac-
count the cached data on the client, which allows us to
further reduce the communication costs of sending the
results to the client (Section 4).

� We study how to efficiently and accurately estimate the
sizes of views (Section 5).

� Our extensive experiments on queries adapted from the
TPC-H benchmark show that our technique can effi-
ciently and significantly reduce communication costs
(Section 6).

1.1 Related Work

The original motivation for finding views to materialize
to answer queries comes up in the context of designing data
warehouses. The problem of finding the “right” views to
materialize has traditionally been studied under the name of
view selection (e.g., [1]). Recently, [8, 9] proposed an ap-
proach to finding views to materialize that considers all pos-
sible views that can be invented to optimize a given metric
of database performance. That approach emphasizes formal
methods in finding a set of views that are provably globally
optimal for a given query or queries and for a given per-
formance metric. In this paper, we extend the approach to
the metric of minimizing the communication costs in client-
server scenarios.

Minimizing data-communication costs is one of the key
problems in distributed database systems [5, 19]. Heuris-
tic search techniques have been proposed for finding a se-
quence of joins and semijoins that reduce the communi-
cation costs in distributed query processing [2, 4, 6]. In
a semijoin, it is assumed that relations to be joined are at
different sites. All local operations such as selections, pro-
jection and joins are performed first, then a projection on
join attributes is shipped between two sites to remove the
dangling tuples. In our case, relations to be joined are all
stored at the server site. Our approach is to project the query
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results on the server site to different views, so that global
dangling tuples are removed among these views. Besides,
because everything is on the server, we can do more than
the local selections, that is, both local and global selections
among the views, to get more reduction of view sizes. One
challenge in our approach is how to find the optimal way to
do the projections.

[18] discusses the efficiency of distributed joins in Sys-
tem ��. [22] describes the Mariposa system to deal
with the mobility of data stored in different sources. [14]
presents the design of a cost-based optimizer for heteroge-
neous middleware systems where data sources may have
different query capabilities. [20] addresses how to deter-
mine the costs of query plans in a wrapper-based hetero-
geneous system. The approach uses the information pro-
vided by query-plan nodes to eliminate some costly plans
early. The cost model in the approach includes communica-
tion costs, which are modeled via stored constants. Yet our
approach is more flexible, as it takes into account features
of specific queries.

These previousdistributed approaches focused on the
problem of query placement todifferentsources. That is,
they decompose a query into subqueries among individual
server nodes. Once the query-execution location is fixed
and subqueries reach individual servers, our approach pre-
sented in this work can be applied to do the server-level
(sub)query optimization. In other words, our approach is
applicable on top of the traditional local query optimizer,
which further reduces the communication costs between the
sources nodes and the query site. In addition, by consider-
ing views to construct the query results, our approach could
utilize possible cached data on the client with more flexibil-
ity.

Another related topic is the hybrid shipping model in dis-
tributed query processing [11]. That model allows a server
to execute portions of an access plan on a client, but if the
server is asked to return two views that are to be joined in
the client, they do not pre-compute the join of the two re-
lations, so that all useless tuples that do not join with other
views, i.e., dangling tuples, are still kept and sent to the
client, causing extra network load. Our approach also leaves
some computation to clients. But on the server site, we fur-
ther reduce the size of data transferred by utilizing all po-
tential joins to be performed on clients, which is similar to
what a semijoin does among different server sites. So in
our approach, the views to be transferred no longer contain
those dangling tuples, thus leading to further reduction of
communication cost. In addition, past work in distributed
query processing does not emphasize the study of global
optimality guarantees of the proposed solutions. In contrast,
our approach can choose provably globally optimal plans to
minimize the communication costs.

[17] describes methods for converting relational data into

nested structures; one of the methods decomposes relational
query results into relational views. Although they do make
use of all join information to reduce the redundancy and
eliminate useless data in the result, their view decomposi-
tion, for each input, always considers (and produces) just
onefixedset of views; that is, one for each relation. In ad-
dition, their approach is inefficient in getting the result data
by using a nested-loop join. Finally, their approach does not
have optimality guarantees for the outputs produced by the
algorithm.

Data-compression techniques (e.g., [23, 7]) can be used
to compress the results for efficient transfer. As we will see
in Section 6.6, our approach is orthogonal to those com-
pression techniques. In particular, those techniques can be
applied to the results of our approach, to further reduce the
data-communication costs.

In [10] the general problem of finding an optimal view
decomposition for a query result is studied. It is shown that
when the query has self-joins, we need to consider disjunc-
tive views as an optimal solution. In this paper, we focus
on the case where an optimal solution includes conjunctive
views only. We study how to find the views efficiently, and
experimentally evaluate our techniques.

2 Problem Formulation

In this section we formulate the problem of minimizing
the data-communication costs in transferring the results of
large-join queries, by decomposing the query answers into
intermediate view results. We first present and discuss a
motivating example and then give a formal specification of
the problem.

2.1 A Motivating Example

Consider the following simplified versions of three rela-
tion schemas in the TPC-H benchmark [24]:

customer(custkey(4),name(25),mktsgmt(10))
order(orderkey(4),custkey(4),orderdate(8),

shippriority(4),comment(79))
lineitem(linenumber(4),orderkey(4),

quantity(4), shipmode(10))

The underlined attribute of each relation is a primary
key for this relation. The number after each attribute is
the size of the values of the attribute, in bytes. (For
simplicity, we assume for each attribute that all its val-
ues are of the same size.) There is a referential-integrity
constraint from attributeorder.custkey to attribute
customer.custkey. We further assume that the rela-
tions reside on a server that accepts queries from a client.

Suppose a user at the client issues a query��, shown
in Figure 1.�� is a variation on the Query 3 in the TCP-
H benchmark. The server computes the answer to�� and

3



SELECT c.name, o.orderdate,
o.shippriority, o.comment,
l.orderkey, l.quantity, l.shipmode

FROM customer c, orders o, lineitem l
WHERE c.mktsgmnt = ’BUILDING’

AND c.custkey = o.custkey
AND o.orderkey = l.orderkey
AND o.orderdate � ’1995-03-20’
AND l.shipdate � ’1995-03-20’;

Figure 1. Query ��.

sends it back to the client. Suppose there are���� tuples in
the answer to�� on the database at the server.1 It follows
that the total number of bytes sent to the client is:

����� ��� � � � � � � � �� � � � 	�
 � �	�� ����

Let us see if we can reduce the communication costs by
reducing the amount of data to be transferred to the client,
while still giving the client all the data it needs to compute
the final answer to the query��. Table 1 shows a frag-
ment of the answer to��; it is easy to see that the answer
to �� has redundancies. For instance, tuples�� through
�� are the same except in the values ofl.quantity and
l.shipmode; tuples�� and �� have similar redundancy.
One reason for the redundancy is that an order could have
several lineitems with different quantities and shipmodes.
In the join results, these orders data generate several tuples
with the same values ofcustomer andorder. Based on
this observation, we can decompose the answer to�� into
intermediate results —views�� and�� — as shown in Fig-
ure 2. We will obtain the answer to the query�� by joining
the views.

Assume there are	��� tuples in view�� and���� tuples
in view ��. By using the sizes of the attribute values in
the answers to the two views, we obtain that the total size
of the answers to the views is�	�� ��� bytes. Recall that
the size of the answer to the query�� is 516,000 bytes,
and that it is possible to compute the answer to�� using
the answers to the views�� and��. It follows that instead
of sending the client the (large) answer to the query��,
the server can reduce the transmission costs by sending the
client the results of the two views; the client can then use
the view results to compute the answer to the query.

This example shows that it is possible to decompose
queries into intermediate views, such that the answers to
the views can be used to compute the exact answer to the
query, and the total size of the answers to the views can be
much smaller than the size of the answer to the query. At the
same time, we make the following observations. (1) When

1In this paper we assume set semantics, i.e., no duplicates exist in query
answers.

View ��:
SELECT c.name, o.orderdate, o.shippriority,

o.comment, o.orderkey
FROM customer c, orders o, lineitem l
WHERE c.mktsgmnt = ’BUILDING’

AND c.custkey = o.custkey
AND o.orderkey = l.orderkey
AND o.orderdate � ’1995-03-20’
AND l.shipdate � ’1995-03-20’;

View ��:
SELECT l.orderkey, l.quantity, l.shipmode
FROM customer c, orders o, lineitem l
WHERE c.mktsgmnt = ’BUILDING’

AND c.custkey = o.custkey
AND o.orderkey = l.orderkey
AND o.orderdate � ’1995-03-20’
AND l.shipdate � ’1995-03-20’;

Figure 2. Decomposing the query answer to
two views.

trying to reduce the redundancy in the query answers, we
may need to add more attributes that will allow joins of the
view results. (2) There is more than one way to decompose
the answer into views. (3) If the client has, in the cache, the
answers to previously asked queries, then the cached data
can be used to further reduce the communication costs.

2.2 Problem Specification

Consider a client-server environment that uses a rela-
tional database. All base relations are stored on the server,
which takes queries from the client. Given a query sub-
mitted to the server, we try to reduce the communication
costs of transferring the query answer to the client, by de-
composing the answer into intermediate results, orviews.
Intuitively, the answers to the views in a good decomposi-
tion have less redundancy than the query answer. The server
sends the view answers to the client, and the client uses the
view answers to compute the final answer to the query. In
this paper, we focus on select-project-join (SPJ) queries and
views in the following format:

SELECT ��� � � � � ��

FROM ��� � � � � ��

WHERE ��	
� AND ��	
� AND . . .AND ��	
�;

Attributes ��� � � � � �� are called theoutput attributes
of the query/view. Each condition��	
 � is in the form
� �� � , where � is an attribute,� is a constant
or an attribute, and�� is one of the following opera-
tors: , �, �, �, �, LIKE. The results we report in
this paper use the set-semantics assumption for comput-
ing query answers. We consider two types of conditions
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Table 1. Partial results of query ��.
Tuple id c.name l.orderkey o.comment o.shippriority o.orderdate l.quantity l.shipmode
�� Tom 134721 closely ironic. . . [79 characters] 0 3/14/1995 26 REG AIR
�� Tom 134721 closely ironic. . . [79 characters] 0 3/14/1995 75 REG AIR
�� Tom 134721 closely ironic. . . [79 characters] 0 3/14/1995 43 AIR
�� Jack 571683 final sentiments. . . [79 characters] 0 12/21/1994 43 MAIL
�� Jack 571683 final sentiments. . . [79 characters] 0 12/21/1994 33 AIR
...

...
...

...
...

...
...

...

� �� � . (1) A join condition� �� � usesjoin attributes
— two attributes from two different relations. Exam-
ples of join conditions are:c.custkey = o.custkey;
o.orderkey = l.orderkey. (2) All other conditions
� �� � areselection conditions, e.g.,o.orderdate 
’1995-03-20’.

Given a query� on the database on the server, ade-
composition plan� � ���� � � � � ��� for the query is a set
of intermediate views��� � � � � ��, such that the client can
compute the answer to the query� using the answers to the
views. Thesize of a decomposition plan� � ���� � � � � ���
is ������ 
 �

�
����

�������
, where each�������
, the
size of view��, is the total number of bytes in the answer to
the view. For simplicity, we assume that all tuples in a view
have the same size; this size is the sum of sizes, in bytes, of
the corresponding attributes.

Problem Statement: Given a query on a database at the
server, find anoptimal decomposition plan, which is a de-
composition plan with a minimum size.

Notice that an optimal plan for a query is computed on
a fixed database instance and is therefore dependent on the
database of the server. Our goal, given a database, is to find
an optimal plan efficiently. After finding an optimal plan,
the server sends the results of the views in the plan to the
client. As the view results are streaming in, the client can
compute the query answer in apipelinedmanner. By using
the pipelining operators we can reduce the total execution
time for the client to get the final answer.

3 Choosing Views

In this section we first define the view space that needs
to be considered to form plans for a query�, and discuss
one method for computing these views efficiently.

3.1 Determining the Search Space of Views

Given a query�, there are many possible views that can
be used to compute the answers to the query. Not all of these
views need to be considered in the search for an optimal de-
composition plan, since the sizes of some views are greater

than the sizes of other views, no matter what the database is.
In this section we define a class of views that we consider
in decomposition plans of a query�. We will see that this
class includes all views that need to be considered to find an
optimal plan for the query�.

We begin by defining those attributes in the query� that
can be output attributes of views in some decomposition
plan. Consider an arbitrary subset� � ����� � � � � ���� of
the relations in theFROM clause of the query�; let � � be
the remaining relations in�. An attribute� of a relation
in � is a relevantattribute of� if either (1)� is an output
attribute of�, or (2)� is a join attribute used in a join con-
dition � �� � (in �), where� is an attribute of a relation
in ��. Theassociated view of�, denoted��, is defined as:

SELECT [all relevant attributes of�]
FROM [all relations in theFROM clause of�]
WHERE [all conditions in theWHERE clause of�];

The view�� has the sameFROM andWHERE clauses as
the query�. The only difference is that in the answer to
��, all attributes are relevant attributes of�. Intuitively,
�� needs its join attributes for joins with other views in
computing the query’s answers, and the output attributes of
�� in the query’s answer.

For example, the view�� in Figure 2 is associ-
ated with the subset��=�customer, order�. The
relevant attributes of the view�� include output at-
tributes of the query�� — c.name, o.orderdate,
o.shippriority, o.comment — as well as a join
attributeo.orderkey. Table 2 shows all possible subsets
of the relations in the query�� that need to be considered
in searching for an optimal decomposition. (We will show
in Section 4 that some of these views do not need to be con-
sidered.)

Lemma 3.1 By considering the decomposition plans that
use the views in the format above, we will always find an
optimal plan for� in the space of conjunctive views. �

3.2 Computing the Views Efficiently

In order to search for an optimal plan in the space of
views described in Section 3.1, we need to know the size of
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Table 2. Possible views for query ��.
Relation subset Associated view
���������� ��

���
��� ��

���	������ �� � ��
���������� ��
��� �� � ��
���������� ��	������ ��

���
��� ��	������ ��

���������� ��
��� ��	������ �� � ��

each view. One brute-force approach is to get the exact sizes
of all these views, by computing their answers at the server.
This approach is clearly computationally prohibitive. An-
other approach is to estimate the size of each view by us-
ing traditional estimates of the query optimizer and statis-
tics about the relations. Unfortunately, this approach tends
to give inaccurate results as the number of joins in the view
definition increases.

Now we propose a technique that allows us to estimate,
both efficiently and accurately, the sizes of all views. Intu-
itively, we are able to obtain all the estimates by comput-
ing the answer to just one query. We define this query by
adding, to theSELECT clause of the query�, all relevant
attributes of all views in our search space of views. All of
the view-size estimation afterwards is based on the results
from this extended query.

Formally, before searching for an optimal plan for a
query�, we first rewrite the query as follows. To the
SELECT clause of the query�, we add all its join attributes
that are not in its output attributes. The new query is de-
noted �. We execute this new query on the server to get its
results, denoted� ��. For instance, for the query�� in Fig-
ure 1, we add to this query the join attributes:c custkey,
o custkey, ando orderkey, because they are not out-
put attributes of the query��. The new query is shown in
Figure 3.

SELECT c.name, c.custkey, o.custkey,
o.orderdate, o.shippriority,
o.comment, o.orderkey, l.orderkey,
l.quantity, l.shipmode

FROM customer c, orders o, lineitem l
WHERE c.mktsgmnt = ’BUILDING’

AND c.custkey = o.custkey
AND o.orderkey = l.orderkey
AND o.orderdate � ’1995-03-20’
AND l.shipdate � ’1995-03-20’;

Figure 3. Extended query �� of�� (with added
attributes in bold face).

We execute the query�, rather than the original query

�, for cost estimation. Since we already have the answer
� �� to the extended query�, we can use� �� to estimate
the size of each view, by sampling� �� instead of the whole
database. The resulting estimates in this way are likely to
be more accurate than those obtained using standard size-
estimation functions and database statistics. In Section 5
we discuss how to estimate view sizes efficiently and accu-
rately.

Because the query� is obtained by adding attributes to
the query�, computing the answer to� could be more ex-
pensive than computing the answer to�. However, as our
experiments will show, this overhead is minor, because the
new query does not change the join conditions, the evalu-
ation of which often dominates the cost. Furthermore, we
will see shortly that the overhead can pay off in the search
for an optimal plan.

4 Efficient Search for an Optimal Plan

In this section, we study how to find an optimal decom-
position plan for a query� using the views defined in Sec-
tion 3. We consider all partitions of the relations in the
query�. Each partition� � ���� � � � � ���, which is a set
of nonoverlapping subsets of the query’s relations, yields
a decomposition plan�� � ����

� � � � � ����, where each
view ��� is the associated view of�� (Section 3.1).

Lemma 4.1 By considering the decomposition plans cor-
responding to all partitions of the relations in query�, we
will always find an optimal plan for� in the space of con-
junctive views.2 �

There are still challenges in implementing this approach.
(1) The number of possible decomposition plans could be
exponential in terms of the number of relations in the query.
Thus, doing an exhaustive search to find an optimal plan
could be computationally prohibitive. (2) We need to obtain
an accurate estimate of the size of each view��� . We dis-
cuss an efficient and accurate view-size estimation method
in the next section. In this section, we address the first chal-
lenge. We assume the server has computed the answer� ��

to the extended query� of �; we are using the answer� ��
in the algorithm below. We first give a basic version of the
search algorithm, then propose three pruning rules to reduce
the search space.

4.1 Basic Version of the Algorithm

Figure 4 shows the basic version of the search algorithm.
In the first step, the algorithm estimates the size of each
view, using the technique discussed in Section 5. All view

2The correctness is formally proved in [10].
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sizes are stored in a table�. In the second step, the al-
gorithm considers all partitions of the query relations. For
each partition� , it computes the total size of the views for
the subsets in� . The algorithm searches for a minimum-
size partition and generates the corresponding decomposi-
tion plan.

Input:
� �: original query
� � ��: answer to the extended query�� of �.

Output: a decomposition plan of� with minimum size.
Method:

Step 1: // estimate view sizes
initialize view-size table� to empty;
for each subset� of relations in� �

estimate size�� of view �� using� ��;
add���� ��� to table�;

�
Step 2: // find an optimal decomposition plan

minSize =�; optPlan =��;
for each partition	 of the relations in� �

size = 0; plan =��;
for each relation subset� � 	 �

get size�� by looking up table�;
size = size +��;
plan = plan�����;

�
if (size� minSize)�

minSize = size;
optPlan = plan;

�
�

return (optPlan, minSize);

Figure 4. Basic version of the algorithm.

As the number of relations in the query increases, the
number of partitions considered by the algorithm becomes
very large. Searching all these plans exhaustively is very
expensive. In the next three subsections we propose three
pruning rules that reduce the size of the search space while
still allowing us to find an optimal plan. To illustrate the
use of these pruning rules, we use the query�� shown in
Figure 5. �� is a slight variation on Query 2 in the TPC-
H benchmark. The following are simplified schemas of the
relations used in the query; the underlined attribute(s) of
each relation form(s) a primary key for this relation.

part(partkey,mfgr,type,size)
partsupp(partkey,suppkey,availqty)
supplier(suppkey,name,nationkey)
nation(nationkey,name,regionkey)
region(regionkey,name)

Before presenting the rules, we define the concept of

SELECT p.mfgr, ps.partkey, ps.suppkey,
s.name, n.name

FROM part p, supplier s, partsupp ps
nation n, region r

WHERE p.partkey = ps.partkey
AND s.suppkey = ps.suppkey
AND p.size = 24
AND p.type LIKE ’STANDARD %’
AND s.nationkey = n.nationkey
AND n.regionkey = r.regionkey
AND r.name = ’AMERICA’;

Figure 5. Query ��

“join graphs” [12, 27] that will be used in the pruning rules.
Formally, thejoin graph of a query� is a directed graph
���
 � ����
, in which� is the set of relations used in
�, which form the vertices in the graph. There is a directed
edge�: �� � �	 in � if the query has a join condition
���� � �	 ��, and� is a key of�	 . The edge is annotated
with “��” if there is a referential-integrity constraint from
���� to�	 ��.

As an example, the join graph of the query�� is
shown in Figure 6. The edgenation � region in
the graph represents the fact that there is a referential-
integrity constraint from nation.regionkey to
region.regionkey, and that there is a join condition

nation.regionkey = region.regionkey

in query��. Such an edge is called an “RI-join edge.”

region nation supplier partsupp

part

RI RI
RI

RI

Figure 6. Join graph ����
 of query ��.

Before running our search algorithm, we first ex-
tend �� by adding, to theSELECT clause, its join at-
tributes that are not output attributes, such asp.partkey,
n.nationkey, etc. We execute the extended query��

on the server, and get the results� ���

. Because theFROM
clause of the query�� has five relations, the number of
plans for�� considered by the basic version of the algo-
rithm is

��
��� ���� �
 � ��, where����	
 is the Stirling

number.

4.2 Pruning 1: Ignoring Plans that Use
“Noninterleaving” Views

Using this pruning rule, we never consider one class of
views, which we call “noninterleaving views.” As discussed
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in Section 3.1, given a query, we associate one view with
each subset� of the relations in theFROM clause of the
query. Noninterleaving viewscorrespond to those subsets
� that can be partitioned into two groups of relations,� 	�


and�	�
, such that the query does not have join conditions
between the relations in the two groups. Rather than con-
sidering a noninterleaving view for a subset� of relations,
we can always project the answer to the extended query on
the relevant attributes of the groups�	�
 and�	�
 sepa-
rately. In addition, in any decomposition plan for the query,
the two views for the groups�	�
 and�	�
, taken together,
have the same functionality as the noninterleaving view for
the subset�. After we apply this rule to reduce the number
of plans to be considered, the search space of the remaining
views can still be prohibitively large: A query with	 rela-
tions will still have up to���� possible plans. For��, we
still have��, that is, 16 possible plans. Luckily, we have
more rules to do the pruning.

4.3 Pruning 2: Removing Ear Relations without
Output Attributes

Let us look at theregion relation in query��. This
relation does not have any output attributes in��, and its
only join condition r.regionkey = n.regionkey
involves another relation,nation. The only contribu-
tion of region to the query is in providing a selection
conditionr.name = ’AMERICA’ and a join condition
n.regionkey = r.regionkey. Therefore, we can
ignore theregion relation when enumerating relation sub-
sets for views. Therefore, we can further reduce the number
of possible plans for�� to only�� � �.

In general, we look forear relationsthat do not have
output attributes in�. A relation is an ear relation if all its
join attributes are shared with just one other relation [13].
If an ear relation does not have any output attribute, then its
only contribution to the query’s results is to provide selec-
tion or join conditions in the query. After applying these
conditions, we can ignore this relation when generating re-
lation subsets for views. (Notice that the ignored relation’s
conditions still remain in�; we just do not consider it when
enumerating relation subsets.) By ignoring an ear relation
�, we could make another relation� � an ear relation in a
more general sense, i.e.,�� does not have any output at-
tributes of�, and all its join attributes are shared with ei-
ther� or another remaining relation. We repeat this process
until we cannot eliminate any more ear relations that do not
have output attributes. Notice if a relation does not have any
output attributes, but is connected with more than one other
relation, we may not be able to remove it, since it could be
“connecting” two other relations.

4.4 Pruning 3: Using Referential-Integrity
Constraints

This pruning rule is based on referential-integrity con-
straints in the query relations. As specifying referential-
integrity constraints is common in database design, this
pruning technique is widely applicable. We use our running
example, query��, to illustrate the intuition of the rule.
After ignoring theregion relation in enumerating rela-
tion subsets (using pruning rule 2), we noticed that forany
database on the server, no matter how relationsnation,
supplier, andpartsupp were grouped in views, the
data-size difference between the following two plans was
always a constant: (1) a plan withpartsupp andpart
in the same relation subset, (2) a plan that uses the same
partition of the relations, except thatpartsupp andpart
were in different subsets. In particular, consider the follow-
ing decomposition plans.

Plan Relation subsets of views in the plan
�� �	 ���	� ���������� �� �������� �� ���
�� �	 ���	� ���������� �� ������� � ���
�� �	 ���	�� ����������� �� �������� �� ���
�� �	 ���	�� ����������� �� ������� � ���
�� �	 ���	�� ���������� � �������� �� ���
�� �	 ���	�� ���������� � ������� � ���
�� �	 ���	 ��������� � �������� �� ���
�� �	 ���	 ��������� � ������� � ���

Interestingly, independently of the database,

�������
� �������
 � �������
� �������

= �������
� �������
 � �������
� �������


is always true. Therefore, we canlocally decide whether
to consider any view whose relation subset includes both
partsupp andpart, by comparing the sizes of the views
for ��partsupp�, �part�� and for ��partsupp,
part��. If the latter is smaller, then among all plans we
only need to consider those plans that include just one view
that corresponds to these two relations. Otherwise, we only
need to consider the other� plans.

This relationship is not a coincidence. By analyzing
the query closely, we found the following reasons: (1) the
partsupp relation has a directed RI-join-edge path to
each relation in the join graph; (2) this relation has a key that
is among the query’s output attributes (namely,partkey
andsuppkey); and (3) thepart relation is a “leaf” re-
lation joined with thepartsupp relation. That is, in the
join graph, the relationpart is connected to only one re-
lation. (In general, a leaf relation is always an ear relation
for a query, but an ear relation might not be a leaf relation.)
Now we generalize this relationship as follows.

Lemma 4.2 Consider two relations�� and�� in a query
�, if they satisfy the following conditions:
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� �� has a directed RI-join-edge path to each relation in
the join graph���
.

� �� has a key that is among the output attributes of
query�.

� �� is a leaf relation joined with��.

For a given database, consider any two plans�� and��

that are the same except for the following:�� and�� are
in the same relation subset in�� and in different relation
subsets in��. Then�������
 � �������
 is a constant,
independently of how other relations of� are grouped in
the plans. �

We call the relation�� in the lemma thecore relationof
the query (see [3] for the related notion of pivot relation),
and the RI-join edge from relation�� to�� anindependent
edge. Not all queries have core relations. And if a query
does have a core relation, such core relation might be not
unique, say, the query might have more than one core rela-
tions. If a query has an independent RI-join edge from� � to
��, as specified in Lemma 4.2, we can use the edge to prune
plans in the search space. In particular, when searching for
an optimal plan, we compare���������
 � ���������

to ��������� ���
. Once we determine which of them is
smaller, say,���������
 � ���������
, we do not need to
consider views in which relations�� and�� are in the same
relation subset.

In summary, the three pruning rules can help us dramati-
cally reduce the size of the search spacewithout sacrificing
the optimalityof the outcome. We will explore these advan-
tages experimentally in Section 6.

5 Estimating View Sizes

In order to find an optimal decomposition plan, we
need to estimate the size of each view� . The size of
the view � can be computed as:������ 
 � �� � �
����� �! � �" ����� �	 � 
, where�� � is the number of
distinct tuples in the view� . The size of each tuple is the
sum of sizes of the attributes of the view. All that remains to
be computed is the number of distinct tuples in the view� .
(Recall that we are using set semantics in the query results.)
This number is estimated by projecting the sampled tuples
from� �� onto the relevant attributes in the view, and apply-
ing an estimator. In this section we discuss how to estimate
the number of distinct tuples in view relations, efficiently
and accurately.

5.1 Finding Views with the Same Number of Dis-
tinct Tuples

We observe that certain views always have the same
number of distinct tuples, independently of the database.

For instance, consider the query�� in Figure 5. We can
show that for the view�partsupp� for the query, the
number of distinct tuples in the view is the same as in any
view whose relation subset contains this relation. For in-
stance,��� �������� � ����������� � ��������. This ef-
fect is due to the fact thatpartsupp is a core relation of
the query (see Fig. 6). For example, consider two views,
�partsupp� and �supplier, partsupp�. Since
there is an RI join edge frompartsupp to supplier,
the join can only “append” more values fromsupplier
to each tuple inpartsupp. Since a key ofpartsupp
(partkey andsuppkey) is among the query’s output at-
tributes, these appended values will not change the number
of distinct tuples in the views. In general, we have the fol-
lowing result:

Theorem 5.1 For any relation� in query �, let � be
the view associated with���. For any view � � �
������ � � � � ���, such that each relation�� is on a directed
RI-join path from�, the number of distinct tuples in� is
the same as in� �: �� � � �� ��. �

From this theorem it follows that we can use the num-
ber of distinct tuples in the view� to obtain the number
of distinct tuples in the views� �. This theorem can help
us reduce the amount of effort in estimating the number of
distinct tuples in views, sometimes dramatically. For in-
stance, for the query��, after ignoring theregion re-
lation when enumerating relation subsets, we only need
to estimate the number of distinct tuples in four views:
�nation�, �supplier�, �partsupp�, and�part�.
For any other view we consider for the query, its number of
tuples can be found from these four numbers.

5.2 Estimating the Number of Distinct Tuples in
a View

To estimate the number of distinct tuples in a view, we
treat all values in a tuple, taken together, as a single value.
In this way, we can reduce this problem to that of estimating
the number of distinct values of a specific attribute in a re-
lation. This problem has received a lot of attention in query
optimization. In our approach, we focus on two estimators,
namely the Smoothed Jackknife Estimator and Shlosser’s
Estimator [15]. Their details are in the Appendix.

5.3 Using the Client-Site Cache

Sometimes the client may have access to the cached re-
sults of previous queries. These results can help us reduce
the communication costs of sending data from the server
to the client. Suppose one view in a decomposition can be
computed using previously cached results. Then the server
does not need to transfer to the client the answer to that
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view. Thus, the view size should be 0 in our computation
of decomposition plans, and the answer to the view will not
be computed. For views whose answer is not sent from the
server, the client needs to use its cached data to calculate
the view’s answer before computing the final answer to the
query. In order to use cached data to reduce the commu-
nication costs, the server needs to have only a description
(i.e., metadata) of the cached data, i.e., the server does not
need to have access to the data itself.

6 Experiments

In this section we present the results of our extensive ex-
periments and show that our proposed approach is efficient
and effective when applied to representative large-scale ap-
plications.

6.1 The Queries and the Setting

To choose a set of realistic queries with reasonably large
result sizes, we used slight modifications of the queries
in the TPC-H benchmark [24]. The benchmark queries
are representatives of typical queries in a wide range of
decision-support applications. The TPC-H database schema
contains various data types, and the queries have consid-
erable redundancies. We will see in this section that our
approach is effective in removing the redundancies. We re-
moved all the grouping and aggregation operations from the
queries. We also did some other minor modifications, such
as adding more selection conditions and adding or remov-
ing some attributes in the outputs. The outcome of these
modifications is a set of realistic queries, with result sizes
varying between	MB and��MB.

To obtain the answers to the modified queries, we used
the databases in the TPC-H benchmark. We experimented
with databases of several sizes by varying the scaling fac-
tor. We have generated a total of	� queries and applied
our algorithm to them. Since our observations were con-
sistent across the queries, for brevity we report the results
for four queries only, namely#�, #�, #�, and#�. (The defini-
tions of the modified queries are given in the Appendix.) We
used Microsoft SQL Server Version��������. The program
(implemented in C++) interacts with the database using the
standard ODBC interface. To simulate the client-server en-
vironment, we ran the experiments on two desktop PC’s,
for the server and the client respectively. The server ma-
chine has a Pentium IV	��GHz CPU,���MB memory, and
a��GB hard disk. The client machine has a AMD Atholon
XP 	���GHz CPU,���MB memory, and a��GB hard disk.

6.2 Estimating View Sizes

In this section we report the results on the accuracy of
our view-size estimators. We have implemented both the
Smoothed Jackknife Estimator and the Shlosser’s Estima-
tor [15]. We chose the Smoothed Jackknife estimator since
it returns more accurate results for our dataset and queries
than the other one. In doing the estimation for each query,
we typically sampled�� ��� tuples in the answer to the ex-
tended query�, except two cases. (1) If the answer to�
had less than�� ��� tuples, we used the whole answer, be-
cause in this case, the computing time was negligible. (2)
If the size of the answer to� was very large, say, 5% of
the whole size is larger than����, we sampled 5% of the
tuples in the results. We ran the four queries on different
database sizes. Figure 7 shows how the accuracy changed
for different views for queries#� and#�. The formula for
accuracy is	� ������
�����
 � �����
�
 $ �����
��� The
experiments corroborated good accuracy of the estimators.
In most cases, accuracy was close to���.
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Figure 7. Accuracy on varying data sizes.

6.3 Pruning: The Number of Plans

To see how effectively the pruning rules in Section 4 can
help the algorithm reduce the number of plans in the search
space, we applied the rules to the queries. Table 3 shows the
results. The experiments showed that using the three rules
can result in a significant reduction in the size of the search
space.

6.4 Reduction of Data-Communication Costs

We evaluated how much the algorithm can reduce the
size of the query answers by comparing our approach (de-
noted as “DECOMP”) with the naive approach that transfers
the entire query answer (“NAIVE”). To measure the effect
of size reduction, we introduce a measurement of reduc-
tion ratio for an approach�, as the ratio of data size of the
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Table 3. Effect of pruning rules.
Queries Original After After After

number pruning pruning pruning
of plans rule 1 rule 2 rule 3

#� 203 32 32 4
#� 15 8 8 8
#� 15 8 8 2
#� 15 8 8 4

NAIVE approach over that of approach�. That is:

reduction ratio of approach� �
data size of NAIVE

data size of�

Here the approach� could be our DECOMP approach, or
other approaches we will talk later, such as the compression
approach, and the combinations of these two.

Table 4 shows the results on a��MB-database (the scal-
ing factor of����); it can be seen that our technique dra-
matically reduced the data-communication costs for these
queries. Take query#� as an example. The original size of
the answer to the query (i.e., the size of NAIVE) was		��
MB. After applying our technique, we reduced the size to
	��� MB, which was only	�� of the NAIVE size. That is,
the reduction ratio was 5.88.

Table 4. Data-communication size.
Queries NAIVE DECOMP Reduction

(MB) (MB) ratio
#� 3.45 2.53 1.36
#� 11.4 1.94 5.88
#� 14.3 4.26 3.36
#� 13.7 5.19 2.64

Table 5 shows the data-communication-reduction ratio
for the queries on several databases of different sizes. For
example, on an underlying database of 30MB, the reduction
ratio for #� was	���. That is, the size of data transferred
by the NAIVE approach was	��� times of that of our DE-
COMP approach. Similarly, the reduction ratio was���� for
#�, ���� for #�, and���� for #�. Our experiments show that
the technique can reduce the data-communication costs on
databases of various sizes.

6.5 Running Time

In this subsection, we show the query-runtime reduction
when using our approach. We consider both the transmis-
sion time and total running time on the server and client.
The total running time includes (1) the time it takes to run

Table 5. Communication-reduction ratio.
DB size 
� 
� 
� 
�

10MB 1.73 5.79 2.71 2.64
20MB 1.7 5.84 2.78 2.71
30MB 1.39 5.79 2.76 2.68
40MB 1.38 5.91 2.76 2.67
50MB 1.38 5.94 2.75 2.66
60MB 1.36 5.88 3.36 2.64
70MB 1.38 5.9 2.78 2.64
80MB 1.35 5.94 2.72 2.63

the extended query, (2) the time for generating an optimal
plan (including the time of searching for the optimal plan
and the time for computing its views), (3) the transmission
time, and (4) the time for the client-site execution. In our
implementation, we computed the results of the views in the
optimal plan by running the corresponding view queries in
the database, since this approach was much more efficient
than doing projections in the program. (The reason is that
the database has indexing structures to do the queries effi-
ciently.)

On the client site, because of the lack of indexing struc-
tures, we used a merge join algorithm to join the views to
compute the final answer. To speed up the client-site join,
on the server we tried to make the view results sorted based
on the join attributes whenever it was possible. (This ob-
servation was called “interesting order” in System R [21]).
Later we might still need to do some sorting if the join at-
tributes for the merge-sort join was different from those al-
ready sorted. In this way, we reduced the time of the client-
site join dramatically compared to the transmission time.

6.5.1 Different Running Times

Figure 8 shows how the different times in our approach vary
for different database sizes. Query#� was chosen under a
fixed network bandwidth of 56KB/sec. We can see that as
the database size increases, the network transmission time
dominates the total running time. Although other times also
increase, their growth is relatively slow compared to the
transmission time. Thus our approach would have a big
advantage over the NAIVE approach when a large size of
query result needs to be transfered via a very slow network.

Now we compare our DECOMP approach with the
NAIVE approach. Experiments showed that our approach
performs better than NAIVE in most cases, especially when
the network is slow. (Not surprisingly, as the network band-
width becomes higher, the advantage of our approach be-
comes smaller.)
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6.5.2 Total Running Time

Figure 9 compares the running time of DECOMP and
NAIVE on queries#� and#�, on a�� MB database with
the bandwidth of�� KB/sec. Each bar for our approach has
four blocks, corresponding to the four steps (from the top
to the bottom). Each bars for the NAIVE approach has only
two blocks, corresponding to the original-query execution
and transmission. Since some of the times are too small to
be displayed, we also put the number beside each block.

The figure shows that, although DECOMP takes two ex-
tra steps (optimal-plan generation and client-site execution),
its total time is much smaller than the NAIVE DECOMP
approach, due to the low bandwidth. The time for the two
extra steps can pay off compared to the network transmis-
sion time, especially when the network becomes a bottle-
neck in the computation. In addition, even though NAIVE
executed the original query, and DECOMP executed an ex-
tended query, the time difference was very small. Further-
more, the client-site join took relatively little time.

Under the same bandwidth of 56KB/sec, Figure 10
shows the total running time on different data sizes for
queries#� and#�. It shows that our DECOMP takes less
time than the NAIVE approach, as the data size varies.
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Figure 10. Total running time of NAIVE and
DECOMP on different data sizes.

6.5.3 Running Time and Query Size

Table 6 illustrates the effect of network bandwidth on the
benefits of our approach. It shows the amount of transfer
time our approach can save over NAIVE, for different net-
work bandwidths on a fixed database size of 60MB. We can
see that, as expected, the advantage becomes smaller as the
network becomes faster.

6.5.4 Running Time and Network Bandwidth

Figure 11 illustrates the effect of bandwidth on the benefits
from our approach. It shows the total running time of DE-
COMP and NAIVE, for different network bandwidths on a
fixed database size of 60MB. (Notice that the%-axis is us-
ing logarithmic scale.) Here we only show the result for
queries#� and#�. From the figure, we can see that our DE-
COMP approach saves time significantly under low network
bandwidth. In particular, our approach behaves much bet-
ter than NAIVE approach when the bandwidth is lower than
��� KB/sec, which is true for many network settings. For
instance, for query#�, when the bandwidth was 56KB/sec,
the NAIVE approach took��� seconds, while our approach
took only�� seconds, saving	�� seconds.

6.6 Comparison with Data Compression

There are other approaches to achieving the goal of min-
imizing the communication cost for transferring query re-
sults by reducing the data. Data compression is one of
them [7]. Our approach is orthogonal to the compression
approach, since the two approaches could be combined to
achieve a better improvement. Now we report our experi-
mental results to verify this claim.

In a compression approach, the result of a query is com-
pressed before the transmission. On the client site, the client
need to decompress the data to get the original result. So it
includes four steps: executing the query, compressing the
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Table 6. Transfer time saving (seconds) of DECOMP over NAIVE.
Bandwidth (KB/sec) 1 2 4 8 16 32 64 128 256

#� 9450 4720 2355 1173 581 286 138 64 27
#� 10030 5010 2500 1245 618 304 147 68 29
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Figure 11. Running time of NAIVE and DE-
COMP on different bandwidths.

result, transmitting the result, and decompressing the data.
Clearly we can utilize both our approach and the compres-
sion. For instance, we can first decompose queries into sub-
queries using our DECOMP approach, and further reduce
the data size by compressing the results of views. Even
though the redundancy could be smaller after our approach,
the compression step can still achieve a good reduction ra-
tio, as shown by our experiments. As a consequence, when
combining the two approaches, we gain more time saving
to transmit query results.

We conducted experiments to verify our analysis. There
are many compression tools, and we chose WinZip [26] due
to its availability and good efficiency. We collected the run-
ning time and data-size-reduction ratio of our DECOMP
approach, the WinZip approach (“ZIP”), and their combi-
nation (“DECOMP&ZIP”).

Table 7 lists the reduction ratio for the three approaches
on different queries with fixed database size of 60MB. It
shows that by combining DECOMP and COMP, we gain
much higher reduction ratio. For example, for query# �, the
ratio for DECOMP was����, the ratio for ZIP was���, and
the ratio of their combination DECOMP&ZIP was	��	�.

Table 8 shows the reduction ratio for different ap-
proaches on different database sizes, for query#�. Again,
we can see that in most cases DECOMP&ZIP has much
higher reduction ratio over DECOMP and ZIP. For instance,
when the database size was 60MB, the ratios of DECOMP,
ZIP, and DECOMP&ZIP were 3.36, 3.4, and 12.12, respec-
tively.

Figure 12 shows the total running time of query#�

Table 7. Reduction ratio for different queries.
Queries Reduction Reduction Reduction

ratio ratio ratio
(DECOMP) (ZIP) (DECOMP&ZIP)


� 1.36 4.3 3.46

� 5.88 7.08 14.16

� 3.36 3.4 12.12

� 2.64 4.27 9.51

Table 8. Reduction ratio of #� on different data
sizes.

DB size Reduction Reduction Reduction
ratio ratio ratio

(MB) (DECOMP) (ZIP) (DECOMP&ZIP)
10 2.71 3.49 9.96
20 2.78 3.49 10
30 2.76 3.45 9.96
40 2.76 3.44 9.93
50 2.75 3.42 10.17
60 3.36 3.4 12.12
70 2.73 3.4 10.06
80 2.72 3.4 10.05

and #� on different data sizes with the fixed bandwidth
of 56KB/sec. The total running time includes all the
times of different steps for each approach. Among the
three approaches, DECOMP&ZIP always needs the small-
est amount of time. The reason is that DECOMP&ZIP
always gets the highest reduction ratio, thus has smallest
amount of data to be transferred, and when the network is
the bottleneck, it can save much time. For instance, for
query#�, when the data size was�� MB, DECOMP took
125 seconds, ZIP took 103 seconds, and DECOMP&ZIP
took only 50 seconds.

Now we fix the database size to 60MB, and let the band-
width vary. Figure 13 shows the total running time for the
three approaches. As expected, DECOMP&ZIP is a win-
ner when the bandwidth is low. When the bandwidth was
20KB/sec, DECOMP&ZIP saved 33 seconds over ZIP for
query#�, and 145 seconds for query#�. As expected, this
benefit becomes less as the network speed goes down.
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Figure 12. Running time for DECOMP, ZIP, and
DECOMP&ZIP on different data sizes.

10

100

1000

20 40 60 80 100 120 140

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Bandwidth (KByte/sec)

q2 (DECOMP)
q2 (ZIP)

q2 (DECOMP-ZIP)

(a) Query��

10

100

1000

20 40 60 80 100 120 140

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Bandwidth (KByte/sec)

q3 (DECOMP)
q3 (ZIP)

q3 (DECOMP-ZIP)

(b) Query��

Figure 13. Running time for DECOMP, ZIP, and
DECOMP&ZIP on different bandwidths.

Summary

Our extensive experiments have shown that our proposed
approach can reduce the data-communication size signifi-
cantly when the query result has a lot of redundancy. This
reduction can save the total running time of sending the
query result to the client, especially when the network band-
width is low. Even though our approach needs to compute
an extended query, search for an optimal plan to do the
decomposition, and generate the results of different views,
these extra steps can pay off since they can reduce the data
size. In addition, our approach is orthogonal to the data-
compression technique, and combining these two can fur-
ther reduce the communication costs, and thus save the total
running time to send the query result.

7 Conclusions

In this paper we studied the problem of minimizing the
communication costs of transferring the answer to a large-
join query from a server to a client; the problem exists in a
variety of database applications. We proposed a novel tech-
nique that decomposes queries into intermediate results,
called “views”; the answers to the views are transferred to

the client and are then used by the client to compute the an-
swers to the queries. Decomposing queries into views can
reduce the redundancy in the query answers, which may re-
sult in significant reductions in the costs of transferring the
data from the server to the client. We discussed several chal-
lenges we had addressed in implementing this technique. In
our extensive experiments, we used queries that are mod-
ifications of TPC-H benchmark queries. The experiments
show that our technique can significantly reduce the com-
munication costs of transferring the answers to large-join
queries from server to client.

Currently we are extending the work reported in this
paper, by taking into account the computing power of the
client and of the server. The focus of our investigation is on
the tradeoffs between minimizing the communication costs
and reducing the computation load on both the client and
the server. Moreover, the computation of query answers can
be pipelined at the client as view results arrive. By study-
ing these issues, we expect to come up with an even more
powerful technique, which would maximize the overall per-
formance of answering large-join queries.
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A Appendix

A.1 Estimators for the Number of Distinct Values

In this subsection we describe two estimators, namely
the Smoothed Jackknife Estimator, and the Shlosser’s Esti-
mator, to estimate the number of distinct values of a specific
attribute in a relation. These estimators are used in our ex-
periments to esimate the size of each view. See [15] for
more details about the estimators.

Without loss of generality, we consider a relation� hav-
ing& tuples, and one of its attribute having� distinct val-
ues, numbered	� �� � � � � �. A sample of	 tuples selected
randomly from� is used for estimation, and the number of
distinct attribute values in the sample is denoted as
. Also
we denote by& the average number of tuples for an at-
tribute value, i.e.,& � &$�. We denote by&	 the number
of tuples in� with attribute value', for 	 � ' � �. For

	 � � � 	, let !� be the number of attribute values that
appear exactly� times in the sample.

The Smoothed Jackknife Estimator

This estimator is based on correcting bias of
�, that is
��
�� � �, where��
�� is the expectation of
�. Here
we write 
 � 
�, and use
��� to stand for the average
number of distinct attribute values in the sample after one
tuple is removed.
��� can be calculated by:


��� �

��

��� 
����(


	

where
����(
 means the number of distinct attribute val-
ues in the sample after the k’th tuple is removed from the
sample, for	 � ( � 	. In addition, the estimator uses the
following terms.

� The squared coefficient of variation of the frequencies
&�� &�� � � � � &�:

)� �
�
�

��
	���&	 �&
�

&
�

� The probability that the attribute value' does not ap-
pear in the sample.

"��&	
 �
��& �&	 � 	
��& � 	� 	


��& � 	�&	 � 	
��& � 	


Here��*� 	
 � *� for nonegative integer*.

Based on this estimator, the estimated number of distinct
values in�, denoted by��� , is:

��	�� � 
� �+�
��� � 
�


where+ is:

+ 	 �
�& �& � 	� 	

&

�
	�

&)�"�����&


"����&


��

and"���� in + is the first derivative of"���.

The Shlosser’s Estimator

Based on this estimator, the estimated number of distinct
values in�, denoted by�������, is:

������� � 
�
!�
��

����	� #
�!���

��� �� #�	� #
���!�

based on the assumption that each tuple is included in the
sample with probability# � 	$& , independently of all
other tuples. It performs well when the attribute value dis-
tribution is not uniform.
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A.2 Sample Queries Used in the Experiments

Our experiments used the following queries, which are
adapted from the TPC-H benchmark. We removed all the
grouping and aggregation operations from the queries. We
also did other minor modifications, such as adding more se-
lection conditions and adding or removing some attributes
in theSELECT clause..

q1:
SELECT l_extendedprice, l_discount,

l_quantity, l_orderkey,
l_lineitem, n_name as nation,
year(o_orderdate) as o_year,
ps_supplycost

FROM lineitem, nation, orders, part,
partsupp, supplier

WHERE l_quantity > 30
AND l_discount > 0.05
AND s_suppkey = l_suppkey
AND ps_suppkey = l_suppkey
AND ps_partkey = l_partkey
AND p_partkey = l_partkey
AND o_orderkey = l_orderkey
AND s_nationkey = n_nationkey;

q2:
SELECT c_custkey, c_name, c_acctbal,

c_address, c_phone, c_comment,
l_extendedprice, l_discount,
l_orderkey, l_lineitem, n_name

FROM customer, lineitem,
nation, orders

WHERE c_custkey = o_custkey
AND c_nationkey = n_nationkey
AND l_orderkey = o_orderkey
AND o_orderdate >= ’1997-06-01’
AND l_returnflag = ’N’;

q3:
SELECT c_custkey, c_name, c_address,

c_phone, c_acctbal, c_comment,
l_quantity, l_extendedprice,
l_orderkey, l_lineitem,
o_orderkey, o_orderpriority,
o_clerk, p_name, p_brand,
p_type, p_comment

FROM customer, orders, lineitem,
part

WHERE c_custkey = o_custkey
AND o_orderkey = l_orderkey
AND l_partkey = p_partkey
AND (l_quantity < 10)
AND (l_discount <= 0.08);

q4:
SELECT l_partkey, l_linenumber,

l_discount, l_comment,
l_orderkey, p_name, p_mfgr,
p_comment, ps_suppkey,
ps_availqty, ps_supplycost,
ps_comment, s_name

FROM lineitem, part, partsupp,
supplier

WHERE s_suppkey = ps_suppkey
AND p_partkey = ps_partkey
AND ps_suppkey = l_suppkey
AND ps_partkey = l_partkey
AND l_discount < 0.04
AND p_size < 20;

q5:
select s_acctbal, s_name, n_name,

p_partkey, p_mfgr, s_address,
s_phone, s_comment,
ps_supplycost

from part, supplier,
partsupp, nation, region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_type like ’%TIN’
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’

q6:
select l_orderkey,

l_extendedprice*(1-l_discount))
as revenue,

o_orderpriority, o_orderdate,
o_shippriority

from customer, orders, lineitem
where c_mktsegment = ’BUILDING’

and c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_shipdate > ’1992-03-15’

q7:
select c_name, c_phone, n_name,

o_totoalprice, o_comment,
l_extendedprice, l_discount

from customer, orders, lineitem,
supplier, nation, region

where c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
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and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’
and o_orderdate >=’1991-01-01’

q8:
select year(o_orderdate) as o_year,

o_orderstatus, o_totalprice
o_comment, s_name, s_phone,
n2.n_name as nation
l_extendedprice*(1-l_discount)

as volume,
from part, supplier, lineitem,

orders, customer,
nation n1, nation n2, region

where p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’EUROPE’
and s_nationkey = n2.n_nationkey
and o_orderdate >= ’1995-01-01’
and o_orderdate <= ’1996-12-31’
and p_type =’LARGE PLATED BRASS’

q9:
select ps_partkey, ps_supplycost,

ps_availqty, s_name, s_address,
s_acctbal,n_name

from partsupp, supplier, nation
where ps_suppkey = s_suppkey

and s_nationkey = n_nationkey
and n_name = ’CANADA’;

q10:
select l_shipmode, l_receiptdate,

o_totalprice, o_shippriority,
o_orderpriority, o_comment

from orders, lineitem
where o_orderkey = l_orderkey

and l_shipmode in
(’TRUCK’, ’REG AIR’)

and l_commitdate < l_receiptdate
and l_shipdate < l_commitdate
and l_receiptdate>=’1996-01-01’

q11:
select c_name, c_custkey, o_orderkey
from customer, orders
where c_custkey = o_custkey

and o_comment not like
’\%pending\%requests\%’;

q12:
select p_type, p_name, p_mfgr,

p_retailprice, l_extendedprice,
l_discount

from lineitem, part
where l_partkey = p_partkey

and l_shipdate >= ’1993-09-01’

q13:
select s_suppkey, s_name, s_phone,

l_suppkey, l_extendedprice,
l_discount, l_shipdate

from supplier, lineitem
where s_suppkey = l_suppkey

l_shipdate >= ’1996-01-01’

q14:
select p_brand, p_type, p_size,

ps_suppkey
from partsupp, part
where p_partkey = ps_partkey

and p_brand <> ’Brand#15’
and p_type not like

’SMALL POLISHED%’

q15:
select p_name, p_mfgr, p_type,

l_extendedprice, l_quantity
from lineitem, part
where p_partkey = l_partkey

and p_brand = ’Brand#42’
and p_container = ’SM CASE’;

q16:
select c_name, c_address, c_custkey,

o_orderkey, o_orderdate,
o_totalprice, l_quantity

from customer, orders, lineitem
where c_custkey = o_custkey

and o_orderkey = l_orderkey;

q17:
select p_name, p_brand, l_discount,

l_extendedprice,l_shipinstruct
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from lineitem, part
where p_partkey = l_partkey

and l_quantity >= 2
and l_shipmode in

(’AIR’, ’AIR REG’)

q18:
select s_name, s_address, s_suppkey,

p_partkey, ps_partkey,
ps_availqty, l_quantity

from supplier, nation, part,
lineitem, partsupp

where p_name not like ’beige%’
and s_nationkey = n_nationkey
and n_name = ’MOROCCO’
and s_suppkey = ps_supkey
and ps_parktey = p_partkey
and l_partkey = ps_partkey
and l_suppkey = ps_suppkey
and l_shipdate >= ’1996-01-01’
and l_shipdate < ’1999-01-01’

q19:
select s_name, s_address, o_orderdate,

o_orderpriority, l_orderkey,
l_suppkey, l_receiptdate,
l_commitdate

from supplier, lineitem, orders,
nation

where s_suppkey = l_suppkey
and o_orderkey = l_orderkey
and o_orderstatus = ’F’
and l_receiptdate > l_commitdate
and s_nationkey = n_nationkey
and n_name = ’KENYA’
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