
System Modelling
Transaction Level Modelling

Prof. Dr.- Ing. Sorin Alexander Huss

Integrierte Schaltungen und Systeme
Fachbereich Informatik

Technische Universität Darmstadt

SS 2006

Huss (ISS) System Modelling SS 2006 1 / 43

Transaction-Level Models with SystemC

TLM Methodology

Introduction to SystemC

Transaction Level Modelling in SystemC

(Source: Frank (Ed.) Ghenassia, editor. Transaction-Level Modeling with SystemC.

Springer, June 2005)

Huss (ISS) System Modelling SS 2006 2 / 43

TLM provides a methodology for

Early software development

Architecture analysis

Functional verification

Huss (ISS) System Modelling SS 2006 3 / 43

Novel design flow for embedded systems

Concurrent
HW/SW

Engineering
Based on TLM

Software
Development

Hardware
Development

System Integration
& Validation

Chip Fabrication

Test Chip

TLM

Customer Specification

Paper Specification

HW/SW Partitioning

Huss (ISS) System Modelling SS 2006 4 / 43

Triple abstraction stucture

1 Functional view

2 Architecture view

3 Micro-architecture view

Huss (ISS) System Modelling SS 2006 5 / 43

1. Functional view

abstracts the expected behavior of a given system

executable specification of ths system function composed of
algorithmic SW

no consideration of any implementation details - such as architecture
or address mapping information - and of perfomance figures

Huss (ISS) System Modelling SS 2006 6 / 43

2. Architecture view

provides the platform for associated SW development

provides the reference model for verification purposes, i.e., for the
generation of functional verfication tests of subsequent
implementation models

Huss (ISS) System Modelling SS 2006 7 / 43

3. Micro-architecture view

captures all required information for timed and cycle-accurate
simulation of RT level models

validates low-level embedded SW in the real HW simulation
environment

validation of micro-architecture for real-time requirements

Huss (ISS) System Modelling SS 2006 8 / 43

Principles of TLM

Modelling of components as modules

Communication structure by means of channels

Modules and channels are bound to each other by communication
ports

A set of data is exchanged by a transaction

System synchronisation is an explicit action between modules, e. g.,
interrupt by DMA to notify a transfer completion

Huss (ISS) System Modelling SS 2006 9 / 43

Modelling approach

TLM modules must hold the following characteristics:

Bit-true behavior of the component

Register-accurate interface of the component

System synchronisation managed by the component

Huss (ISS) System Modelling SS 2006 10 / 43

TLM vs. RT level simulation

FRTLFTLM

TLM Simulation RTL Simulation

S1

S2

S1

S2

Huss (ISS) System Modelling SS 2006 11 / 43

Modelling accuracy

Granularity of communication data

Levels: application packet, bus packet, bus size
(Example video transfer: frame, line, pixel)

Timing accuracy

Levels: untimed, approximately-timed, timed TLM

Huss (ISS) System Modelling SS 2006 12 / 43

Modelling accuracy (2)

Application
Packet

TLM−PVT
BCA

Data Granularity

Bus Size

Bus Packet

CA

RTL

TLM−PVTTLM−PV

Timed Accuracy

TLM−PV

Approximately−timed Cycle−accurateUntimed

Algorithmic Model

Legend:
RTL register transfer level
BCA bus cycle accurate
CA cycle accurate
PV programmer’s view
PVT programmer’s view

plus timing

Huss (ISS) System Modelling SS 2006 13 / 43

Untimed TLM - Model of Computation

Characteristics

Concurrent execution of independent processes

Respect for causal process dependencies by using system
synchronisation

Bit-true behavior

Bit-true communication

Huss (ISS) System Modelling SS 2006 14 / 43

Untimed TLM - System Synchronisation

Execution order within P1, P2, P3: System syncronisation between
concurrent processes:

P1

P11

P12

S
im

ulation Tim
eline

P21

P22

P2

Synchronization 1

Synchronization 2 P32

P31

P3

1 P11 → P12 for P1

2 P21 → P22 for P2

3 P31 → P32 for P3

4 P11 → P22

5 P22 → P12

Huss (ISS) System Modelling SS 2006 15 / 43

Untimed TLM - System Synchronisation (2)

Different overall execution order (process interleaves) examples:

1 P21 → P11 → P22 → P12 → P31 → P32

2 P31 → P32 → P21 → P11 → P22 → P12

Syncronisation kinds:

Emit-synchronisation A process sends out a synchr. that may influence the
behavior or state of other processes.

Receive-synchronisation A process waits for an event from the system that
may influence its behavior or state.

Huss (ISS) System Modelling SS 2006 16 / 43

Untimed TLM - Deterministic Behavior

Step Action

1 Activate or resume a process
2 Read input data for control flow and data processing
3 Computation
4 Write output data if there is any
5 Return to Step 2 if more computation is required
6 Synchronisation:

a) if it is ’emit-synchronisation’, then return to Step 2

b) if it is ’receive-synchronisation’, then the process will
be suspended.

Huss (ISS) System Modelling SS 2006 17 / 43

Approximately-Timed TLM - Insertion of Functional Delays

0 delay 0 delay 0 delay 0 delay

Read Compute Delay Write Read Compute Delay Write

R
ec

ei
ve

E
m

it

E
m

it

E
m

it

Read Compute Write

E
m

it

Read Compute Write

R
ec

ei
ve

E
m

it

0ns0ns 15ns 15ns 15ns 20ns 20ns

Time Unit

Delay Cycle 0 Delay Cycle 1

(a) Simulation without Functional Delay

(b) Simulation without Functional Delay

System Synchronization

Functional Delay

Thread Activation

Behavioral Simulation

Note: Functional delays inserted at architecture level.
Insertion of functional delays must not change causal dependencies

in a given system!

Huss (ISS) System Modelling SS 2006 18 / 43

Timed TLM - Objectives and Modelling Approach

Objectives:

Benchmarking of the performance of a given micro-architecture

Fine tuning of the micro-architecture

Optimizing the SW for a given micro-architecture to meet real-time
constraints

Modelling approaches:

Time annotated untimed model

Standalone timed model

Huss (ISS) System Modelling SS 2006 19 / 43

Time annotated TLM

Well-suited in case of a fairly good match of the untimed model
structure to the micro-architectural model (re-use of untimed TLM):
Simply insert parametrized wait statements related to the concerning
computation times.

In general: Define delay of each possible activation-synchronisation in
a process based on the control flow of the component. This may
result in rather complex graphs and in a large set of timing attributes.

Huss (ISS) System Modelling SS 2006 20 / 43

Standalone Timed TLM

Detached model incorporated with timing information: High-level
analytical timing model without functional information. Suitable in
case of large differences between the structures of the algorithm and
of the related micro-architecture.

Depedancy of timing behaviour on functional component behaviour:
Control of the timed model by an untimed TLM by tracing and
forwarding of all functional events produced by the untimed model to
the standalone timed model.

Huss (ISS) System Modelling SS 2006 21 / 43

Combined Untimed and Standalone Timed TLM

Model architecture

Timing
Control Unit

Architectural
States

Threads

Functional
Traces of

Events

Micro−architectural
States

& Timing constraints

Threads

Data

Untimed TLM

Standalone Timed Model

Data Port

Bus Ports

Initiator Port Target Port

Model execution

Untimed
TLM

Standalone
Timed
Model

R
ea

d

C
om

pu
te

W
rit

e

Delay WriteRead Read Delay

S
yn

ch
ro

ni
za

tio
n

R
ea

d

C
om

pu
te

W
rit

e

Thread
Activation

Thread
Activation

0 delay

S
yn

ch
ro

ni
za

tio
n

0ns0ns 10ns 10ns

0 delay

Huss (ISS) System Modelling SS 2006 22 / 43

TLM as Unique Reference Model

Verification Team

Algorithm Team

Software Team
Hardware Team

TLM

Huss (ISS) System Modelling SS 2006 23 / 43

TLM-oriented HW/SW Development

Software
Development

Hardware
Development

Functional SW Time−level SW

Untimed TLM

Timed TLM

RTL

Real−time SW SW Validation

R
eciprocal Im

provem
ent

R
eciprocal Im

provem
ent

Huss (ISS) System Modelling SS 2006 24 / 43

Introduction to SystemC

SystemC

Is a programming language implemented as a C++ class library such
that C++ is a subset of SystemC. It is an IEEE Standard and it is
freely downloadable from www.systemc.org.

Enhances C++ such that it becomes more suitable for specific
modelling purposes of embedded systems, i. e., tightly cooperating
HW and SW functional modules.

Supports concurrency, timed behaviour, HW specific data types, and
structural descriptions of embedded systems models.

Incorporates a strict separation of computation and communication
tasks within a distributed information processing system.

Huss (ISS) System Modelling SS 2006 25 / 43

SystemC Interfaces, Modules, Channels, Ports (1)

Interface A set of methods which are usable for particular
communication channels. It is described using an abstract
base class in C++ containing pure virtual methods only.

Module An entity for structuring architectural descriptions. It may
contain several processes, which execute concurently.

Huss (ISS) System Modelling SS 2006 26 / 43

SystemC Interfaces, Modules, Channels, Ports (2)

Channel A communication path between processes. It may be as
simple as a signal or rather complex featuring an own
internal structure and processes (hierarchical channel). It
may be refined in an object-oriented manner.

Port This is the communication access point of a module. A port
is typed according to the type of the interface it is bound to.

Summary:

Channels are accessed via interfaces.

Modules access channels via ports.

Ports are related to the type of interface they may connect to.

Huss (ISS) System Modelling SS 2006 27 / 43

SystemC Communication Concept

Concept: Modules are linked to channels via interfaces.

read()

write()
read()

access methods:
Implementaion of

write()
buffer_size()

Port

ChannelInterfaceModule

Signals are predefined channels

Huss (ISS) System Modelling SS 2006 28 / 43

Module Example

Example

#inc lude ” systemc . h”
struct MAC: sc module {

s c in <int> a ;
s c in <int> b ;
sc out<int> acc ;
s c s i g n a l <int> prod ;
void act ion1 () { prod = a ∗ b ; }
void ac t i on 2() { acc = acc + prod ; }

SC CTOR (MAC) {
SC METHOD(act ion1) ;

s e n s i t i v e << a << b ;
SC METHOD(act ion2) ;

s e n s i t i v e << prod ;
}

} ;

Huss (ISS) System Modelling SS 2006 30 / 43

SystemC Processes

Types of processes:

SC METHOD

SC THREAD

SC CTHREAD

Declaration and activation:

SC CTOR(Module) {
SC THREAD(thread) ;

s e n s i t i v e << a << b ; // s t a t i c s e n s i t i v i t y l i s t
}
void thread () {

for (; ;) {
wait (10 , SC NS) ; // dynamic s e n s i t i v i t y − t ime va l u e in nanoseconds

wait (e) ; // dynamic s e n s i t i v i t y − even t
}

}

Huss (ISS) System Modelling SS 2006 32 / 43

SystemC Data Types

sc int<> 64-bit signed integer
sc uint<> 64-bit unsigned integer
sc bigint<> arbitrary precision signed integer
sc biguint<> arbitrary precision unsigned integer
sc logic 4-valued single bit
sc bv<> vector of 2-valued single bits
sc lv<> vector of 4-valued single bits
sc fixed<> templated signed fixed point
sc ufixed<> templated unsigned fixed point
. . .

Huss (ISS) System Modelling SS 2006 33 / 43

TLM in SystemC: Example (1)

1. Interface for the master side of a bus:

#inc lude ” systemc . h”
class mas t e r i f : virtual public s c i n t e r f a c e {

public :
virtual void wr i te (int p r i o r i t y , int address , int data) = 0 ;
virtual void read (int p r i o r i t y , int address , int∗ data) = 0 ;

} ;

Note: The interface master if is derived from the class sc interface. It
just creates two methods: read, write. The bus is then created as a
module, derived from the interface class.

(Source: J. Aynsley, A. Fitch (Doulos Ltd.) - Euro DesignCon 2004 tutorial)

Huss (ISS) System Modelling SS 2006 35 / 43

TLM in SystemC: Example (2)

2. Bus model

class Bus : public sc module , public mas t e r i f {
public :

s c i n <bool> c l ock ;
s c por t <s l a v e i f ,2> s l a v e po r t ;

Bus () :
{

SC THREAD(busa rb i t e r) ;
s e n s i t i v e << c l ock . pos () ; // s t a t i c s e n s i t i v i t y

}
void wr i te (int p r i o r i t y , int address , int data) ;
void read (int p r i o r i t y , int address , int∗ data) ;
void busa rb i t e r (. . .) ;

private :
bool∗ r eques t ;
s c even t ∗ proceed ;

} ;

Huss (ISS) System Modelling SS 2006 37 / 43

TLM in SystemC: Example (3)

3. Bus write function (part of)

void Bus : : wr i t e (int p r i o r i t y , int address , int data} {
r eques t [p r i o r i t y] = true ;
wait (proceed [p r i o r i t y]) ;
. . . }

Note: Set flag when master attepts to write to the bus and wait until
permission is given. The call to wait overrides the sensitivity list of the
master - it is an Interface Method Call, IMC.

Huss (ISS) System Modelling SS 2006 39 / 43

TLM in SystemC: Example (4)

4. Use of the bus

Port declaration in the master module: sc port<master if> busport;

Create and bind instances:
Bus MyBus(”MyBus”) ;
Master MyMaster (”MyMaster”) ; // b ind po r t to i n t e r f a c e o f t h e bus
MyMaster . busport (MyBus) ;

Note: Now the code in MyMaster may invoke the read and write
methods implemented in the bus.

Huss (ISS) System Modelling SS 2006 41 / 43

TLM Summary

TLM methodology is:

HDL independent.

An IEEE Standard.

A key stone in modern embedded systems design flows.

Huss (ISS) System Modelling SS 2006 42 / 43

End

Questions ?

Huss (ISS) System Modelling SS 2006 43 / 43

