
The Transaction-Based Verification Methodology
Cadence Berkeley Labs, Technical Report # CDNL-TR-2000-0825, August 2000.

Dhananjay S. Brahme, Steven Cox, Jim Gallo1, Mark Glasser, William Grundmann, C. Norris Ip,
William Paulsen, John L. Pierce, John Rose, Dean Shea, Karl Whiting

Cadence Design Systems, Inc.
he
r-
n
ure
on-
c
s.

el
n-
vel

-
kly,
M
r-
is
itly
, to

iate
se
s-

if
ni-
of

,

Keywords verification, simulation, test bench,

transaction, system-on-chip (SoC).

Abstract

This paper summarizes a transaction-based verification
methodology (TBV) that makes functional verification of
RTL descriptions using simulation more effective By raising
the verification effort to a higher level of abstraction, an
engineer can develop and diagnose tests from a system level
perspective. This capability enhances the reusability of each
component in the test benches. It improves the debugging
and coverage analysis process by presenting information in
terms of transactions and their relationships, rather than sig-
nals and waveforms.

Several designs have been verified using this methodol-
ogy. It was found that TBV can be mastered by hardware
engineers in a short time, and the teams were able to iden-
tify and fix design errors quickly.

1. Introduction
Developing an effective test suite for an HDL design is an
arduous process. With exploding design sizes, we need to
generate a large amount of high quality stimulus with a min-
imum of effort. While the test benches should be exercising
the design thoroughly, they should also be self-checking to
avoid manual confirmation of expected operation. It should
be easy to check the activities in a simulation run to identify
problems in the design. It should also be easy to analyze the
resulting coverage of the design to access the quality of the
test suites.

The transaction-based verification methodology (TBV) is
designed to make it easy to create and reuse test benches, to
debug simulation runs, and to analyze coverages by intro-
ducing the concept of transactions to the verification tools.
It was introduced in 1998 [1,2,3] and integrated into a verifi-
cation tool suite in 1999 [4,5]. The corresponding C++
library for transaction-based test bench authoring is released
in 2000 as an open-source licensed software [6,7]. A similar
work can be found in [8].

In short, TBV uses the concept of transactions to raise t
verification effort to a higher level of abstraction for the pu
pose of improved productivity. It fundamentally relies o
separating a test bench into two layers, as shown in Fig
1. The top layer is the tests, which orchestrate transacti
level activity in the system without regard to the specifi
detail of signal-level protocols on the design's interface
The bottom layer is the transaction verification mod
(TVM), which provides the mapping between transactio
level requests made by the tests and detailed signal-le
protocols on the design's interfaces.

Figure 1: A layered test bench

With the separation of responsibility into these two lay
ers, many new and complex tests can be developed quic
as the detailed protocols are already captured in the TV
layer. Although this separation of responsibility can be pe
formed manually on any test bench authoring tool, it
much easier to use a test bench authoring tool that explic
supports transactions, to speed up the learning process
guide the user to model their test benches in an appropr
style, and to simplify the coding. This strategy allows reu
of individual components in the test bench. Similar discu
sion in reusability can be found in [9,12].

Furthermore, a better productivity gain can be obtained
the debugging tools and the coverage tools can commu
cate and work with the test bench authoring tools in terms
transactions. With these tools, a user can

■ write new self-checking tests easily in terms of
transactions, and pass this information to other tools

1. no longer with Cadence (work done while at
Cadence Design Systems, Inc.).

proc.doRead;
proc.doWrite;
...

design

signals

doRead
addr = 0xFF
data = 0xF

transactions

test

transaction
verification model (TVM)
1

The Transaction-based Verification Mehtodology

at

of

ts,
nd

om-
e,
g
to
oc
ils,
nd
ck-
ps
-

lly
em
ip
heir
h
on-
he
ts
ys-
ro-
bal

ns
nd

ign
n-

ate
it
ay
nd

on-

el
■ record and display transactions and establish
relationships among transactions, to facilitate the
debugging process,

■ record and analyze coverage information in terms of
transactions and their relationships.

A core part of this methodology has been implemented as a
C++ library called TestBuilder [12], available with an open-
source licence [10,11]. This library includes a text-based
database for transaction recording and analysis. More
sophisticated debugging and coverage tools are also avail-
able commercially.

Support for transaction-level test bench authoring and the
supports for intuitive and automated transaction-level debug
and coverage capabilities are central to TBV. In particular,
this support is particularly useful for self-checking con-
strained random tests, where it is important to confirm that
the algorithmic test generator is actually generating appro-
priate and difficult simulation scenarios.

A four-port ethernet packet router is used in this paper to
illustrate various concepts in TBV. A system-on-a-chip
(SoC) for Voice-over-Packet (VoP) application has been ver-
ified using TBV at Cadence Design Systems. Designers
from several companies have been involved in the evalua-
tion of the methodology.

2. Traditional functional verification
approaches

A typical design process starts with the creation of a func-
tional specification for the design. Once the functional spec-
ification has been completed, a test plan is created to specify
the functionality that requires testing, at both the block and
system levels.

The test plan usually includes coverage requirements as
well as specific corner cases that require testing. The team
then creates test benches, including both deterministic gen-
erators and checkers to verify design functionality. Test
bench creation continues until test plan requirements have
been satisfied.

The tests can be classified into three categories:

■ deterministic tests that are written for a typical scenario
or a specific corner case,

■ directed random tests with constraints,

■ trace-driven tests that utilize traces captured from real-
world stimuli and responses.

The correctness of the designs is usually checked by

■ executing high-level behavioral models in parallel with
the design and comparing the outputs of both,

■ executing protocol checkers that monitor the events
the interface and checking the conformance of the
events to the protocol specification,

■ executing event checkers that monitor the events
internal to the design and checking the conformance
the events according to some ad-hoc scripts.

It is tedious and time-consuming to write deterministic tes
random tests, behavioral models, protocol checkers, a
event checkers. In many cases, the tests are written to c
municate to the design directly at the signal-level interfac
requiring a lot of code for underlying protocols and makin
reuse of tests difficult. It is also difficult to use these tests
drive the system-level behavioral models, leading to ad-h
use of alternate models, some with cycle-accurate deta
some with ad-hoc comparison of system-level events a
signal-level events. The protocol checkers and event che
ers are typically confined to checking simple relationshi
among signals, with limited ability to check global relation
ships.

On the other hand, a system-on-chip design is typica
conceived at the transaction level. For example, syst
architects do not start out thinking about the relationsh
between the enable pin and the address bus. They start t
design by thinking about what kind of data flows throug
the system and how and where it is stored. The transacti
based verification methodology is a natural extension of t
high-level design process, which allows deterministic tes
and random tests to be written at the system level, the s
tem-level behavioral models to be used directly, and the p
tocol and event checkers to be expanded to include glo
relationships.

3. Raising the level of abstraction to
transactions

Raising the level of abstraction from signals to transactio
facilitates the creation of tests, the debugging process, a
the measurement of functional coverage. While the des
works at the signal level with ones and zeros, a transactio
based methodology allows a hardware designer to cre
tests and work in a more intuitive way. In many ways,
allows the tests to interact with the design in the same w
that humans interact with computers using keyboards a
mice instead of binary punch cards.

There are three fundamental concepts in a transacti
based verification environment:

■ transactions,

■ transaction verification models (TVM),

■ transaction-based tests.

3.1 Transactions
A transaction is a single conceptual transfer of high-lev
2

The Transaction-based Verification Mehtodology

st
ks,
A

r-
e

er-
es,
k
of
ac-

a
ch
e
nd
m-
data or control between the test bench and thedesign under
verification (DUV) over an interface. It is defined by its
begin time, end time, and attributes. It can be as simple as a
memory read or as complex as the transfer of an entire
structured data packet through a communication channel.
The transaction level is the level at which the design is
architected and it is the level at which the design can be ver-
ified in a most effective way.

A four-port ethernet packet router, as shown in Figure 2,
illustrates the concepts in this paper. The job of an ethernet
packet router is to accept packets from the four input ports,
determine the output port to which each packet should be
sent, and send each packet to the corresponding output port.
A host processor is connected to the router for configuration
and performance monitoring.

Figure 2: A four-port ethernet router

The host processor communicates to the router via read
and write transactions. For example, a write transaction
begins when the processor has successfully arbitrated for
the bus and ends when the related actions are finished. It has
two attributes, the data and the address to which the data is
to be written, as shown in the top left transaction in Figure
3. A read transaction and a simplified version of the under-
lying activities at the signal level are shown in the bottom of
the diagram.

In this simplified interface, there are seven signals and a
clock signal for a non-pipelined bus. The processor asserts
the signalreq to initiate a new transaction. The transaction
can proceed whengnt is asserted by the DUV. The signalwr
is used to determine whether it is a read or a write transac-
tion. When the transaction begins, the signalardy is asserted
and the processor puts the address in the address bus. The
validity of the data at the data bus is indicated by the signal
drdy, which can be asserted by the processor or by the
design, depending on whether the transaction is a read or a
write. By abstracting all this information into transactions, it
becomes easier to write tests, debug a simulation run, and
analyze the coverage.

Figure 3: Transactions vs. signals

3.2 Transaction Verification Models
A TVM serves as an abstraction layer between the te

and the design. It is constructed as a collection of tas
each of which executes a particular kind of transaction.
TVM connects to the DUV at a design interface. An inte
face is a collection of pins that move data to and from th
design according to the requirements of the design's int
face protocol. Since most designs have multiple interfac
they also have multiple TVMs to drive stimulus and chec
results. TVMs are sometimes referred to by a variety
names, such as bus functional models (BFM) and trans
tors.

Given a set of attributes from a test, a task can initiate
transaction by arbitrating at the protocol level, pass on ea
attribute to the DUV at the appropriate time, determin
other attributes according to the responses of the DUV, a
terminate the transaction when the related actions are co
pleted.

For example, a packet router is written in Verilog with
signalsclk, req, ardy, addr, drdy,anddata declared as part
of the input and output ports:

module design (...);
...
input clk;
input req;
output gnt;
input wr;
input ardy;
input [63:0] addr;
inout drdy;
inout [63:0] data;
...

endmodule

host processor

packet
router

input/output port 1

input/output port 4

input/output port 3

input/output port 2

Write
addr = 0xF3
data = 0xEF

Read
addr = 0xF3
data = 0xEF

simulation time

activities at the processor bus

transactions

req

ardy

addr

drdy

data

wr

gnt
3

The Transaction-based Verification Mehtodology

or
he
s-

d to
r-
be
n
ad

es
her
s
o-

sk
t a
r a
a

in
lar
iffer-
m
the

is
he
he
r-
re-
er
d

led
nd
ets
in
in
in
g

The signal-level activities corresponding to a read transac-
tion may be generated by the following task (in a pseudo
code format).

begin read task
get address from the test;
wait for 10 units of time;
assert signal req ;
wait until signal gnt

is asserted by the DUV;
record the fact that a read

transaction begins here;
deassert signal wr to indicate a read
assert ardy and set signal addr

to the right address
wait until signal drdy

is asserted by the DUV;
 copy the value at signal data

to a local variable;
 deassert signal req at the next

 positive edge of signal clk;
wait for the signal gnt to be deasserted

by the DUV.
 record the address as one attribute

of the transaction;
record the data as one attribute

of the transaction;
record the fact that the read

transaction has ended
end task

Similarly, a write task can be used to generate the signal-
level activities corresponding to a write transaction. The
corresponding TVM will be a static structure in the test
bench, with two tasks communicating to the DUV through
the signalsclk, req, gnt, wr, ardy, addr, drdy,and data, as
shown in Figure 4.

Figure 4: A processor TVM

It is important to record the transactions with appropriate
attributes in the simulation database. This facilitates the pro-
cess of debugging and coverage analysis, as discussed in
Section 5 and Section 6. For example, the first stage of the
debugging process is to analyze the relationship of the trans-
actions generated from the simulation run, without looking
at the signal-level activities. When the area of concern has
been narrowed down to a few related transactions, the sec-
ond stage of the debugging process can expand those trans-
actions into their corresponding signal-level activities to

pin-point the bug in the DUV.

3.3 Transaction-based Tests
A test is a program that generates organized (direct

random) sequences of task invocations for each of t
TVMs in the system. These TVMs, in turn, generate tran
actions into the DUV. A TVM is typically written once for a
design interface, whereas new tests are constantly adde
the test suite to exercise the TVMs and the design in diffe
ent ways to cover different corner cases. A task can
invoked in a blocking fashion (run) or non-blocking fashio
(spawn). Spawning a task dynamically creates a new thre
of execution and supports task re-entrancy. Multiple copi
of the same task can be spawned without regard to whet
the previous invocation has finished or not. This allow
specification of concurrent events to support pipelined pr
tocols and other complex test scenarios.

In the ethernet router, the implementation of the read ta
indicates that only one transaction can be outstanding a
time. This can be achieved by waiting on a semaphore o
mutex in a TVM or by invoking the read and write tasks in
blocking fashion only.

A simple test can be created in the following form

loop 1000 times
select a task to invoke (read or write);
select an address;
if the write task is selected,

select a value for the data;
invoke the selected task with the address

(and the data if applicable);
end loop

Similar tests can be written quickly without referring to
the signals at the DUV interface, reusing the same TVMs
every test. Furthermore, in subsequent projects of simi
designs, the tests can be reused. When a design has a d
ent protocol than a previous design, the verification tea
can replace the TVMs with a set of new ones and reuse
high-level tests.

The overall transaction-based verification methodology
summarized in Figure 1. The communication between t
tests and the TVMs is performed by task invocations and t
communication between the TVMs and the DUV is pe
formed by signal value changes. Figure 5 shows the cor
sponding picture for the 4-port ethernet packet rout
example with 7 TVMs and a set of tests. The block labele
P is the processor TVM described before; the blocks labe
M are master TVMs that generate packets to the router; a
the blocks labeled S are slave TVMs that check the pack
from the router. The tests can directly invoke the tasks
any of these TVMs. Typically, when a test invokes a task
a master TVM to generate a packet, it also invokes a task
a slave TVM to monitor the packet that should be comin
from one of the output ports.

doRead

doWrite

tests

clk
req

ardy
addr
drdy
data

clk
req

ardy
addr
drdy
data

processor TVM design

gnt gnt

wr wr
4

The Transaction-based Verification Mehtodology

n-

st
ry

ar-
a
k
at

to
ng
ge
er
nts
ol
ns
an

x
ing
st
lue

se
t
s;
ilar

l, as
us

ted
d a
he
d

o
ne
rt to
file

u-
at
and
le
r-
e
the
Figure 5: A test bench for a 4-port ethernet
packet router

Furthermore, with the advent of system-level design
tools, transaction-based tests can be developed in a system-
level design tool for simulating system-level description,
then be reused in the RTL simulation by adding appropriate
TVMs to translate the system-level events (transactions) to
the signal-level events.

4. Test bench authoring
From our experience, an effective test bench usually con-
tains concurrency, encapsulation and abstraction, self-
checking, automatic test stimulus generation, and reusable
components.

A test bench authoring tool for transaction-based verifi-
cation uses the concept of transactions to help the user cre-
ate effective test benches with these five features. There are
four aspects:

■ partitioning the responsibility among TVMs and tests:
This partitioning speeds up the development process,
enhances reuse, and allows automated recording of
transactions.

■ specifying cause and effect relationships among
transactions:an engineer can write complex self-
checking tests that are easy to understand.

■ specifying complex concurrency using inter-
transaction synchronization:an engineer can verify
systems with complex out-of-order or pipelined
characteristics.

■ specifying localized constraints in the attributes of a
transaction:an engineer can write constrained random
tests that are easy to understand.

Furthermore, we have found that a transaction-based test
bench provides a level of good abstraction for advanced
techniques such as test stimulus transformation [13]. Test
stimulus transformation is a technique that modifies the
stimuli from a test bench to improve simulation coverage.
We are currently implementing a prototype for transforming
stimuli in a transaction-based test bench.

We have selected C++ as our test bench authoring la
guage and created a C++ library calledTestBuilder. Test-
Builder facilitates the creation of transaction-based te
benches. The main innovations in the design of this libra
are discussed in [12].

4.1 Partition of Responsibility
As shown in Figure 1, a transaction-based test bench is p
titioned into two layers: tests and TVMs. The concept of
transaction is captured by a task within a TVM. A tas
translates this high-level concept into a series of signals
the design interface.

These concepts provide a convenient mechanism
divide the responsibility of test bench development amo
several verification engineers. Engineers with knowled
about the interface protocol only can develop TVMs; oth
engineers can develop tests from functional requireme
without knowledge of the actual interface protocol. Protoc
and internal event checkers for the basic protocol operatio
can be captured in a TVM. System-level event checkers c
be captured in a system-level test.

With the responsibilities partitioned, new and comple
test scenarios can be developed quickly. By encapsulat
the protocol in a reusable module, the total size of the te
bench shrinks, as measured by lines of code, and the va
per line of the test code is enhanced.

Furthermore, this partitioning facilitates test bench re-u
in two dimensions: TVMs can be reused for differen
designs that have similar interfaces but different function
tests can be re-used for different designs that have sim
functions but different interfaces.

4.2 Cause and effect testing
Once a test bench has been raised to the transaction leve
indicated in the previous section, we can easily add rigoro
self-checking capabilities into the test bench.

Usually, users know the expected responses associa
with specific stimulus sequences. For example, if we sen
packet to a port of an ethernet switch, we expect that t
packet will come out of a different port at some unspecifie
future time. However, because it is frequently difficult t
manage the temporal disparity between stimulus on o
interface and response on another, users frequently reve
less powerful mechanisms, such as logging results to a
for subsequent processing to determine correctness.

By invoking tasks in TVMs in a separate thread of exec
tion (called spawning), it is a simple matter to perform wh
is known as cause and effect testing. Specifically, cause
effect testing relies on a so-called active slave TVM: whi
another TVM is generating stimulus to the design for a pa
ticular transaction, the active slave TVM calculates th
expected output from the same transaction and monitors
actual output to report errors.

packet
router

M S
P

S

S

SM

M

M

test
5

The Transaction-based Verification Mehtodology

s
lex
s of
ng
om

lex
re

For
sily

on

nd

is
n-
om
rit-
in

che-
s a
-

d
in

the
e

ns
s-

ns

is
an

ns-
6

With active slave TVMs, the following straightforward
algorithm can be used in a test to receive the benefit of
knowing exactly when something bad occurs during simula-
tion, without having to waste simulation cycles or wait until
simulation results have been post-processed or visually ana-
lyzed.

loop until satisfied
Assign (or randomly select) values

for a task invocation;
Spawn a task to generate stimulus

to the design;
Calculate expected transaction

from the selected values.
Spawn a task to check the outputs

of the design;
end loop

Such an algorithm is particularly valuable when the
expected transaction can be calculated by calling a reference
model of the design being tested. In such a case, algorithms
like this can be used even in directed ran- dom testing.

Using cause and effect testing allows the test author to
focus on what transactions are expected, as opposed to
when they should occur. The intent of the test is captured so
that the test not only automatically checks for accurate
responses, but is self-documenting and hence much more
maintainable.

4.3 Complex concurrency
Running a task in a separate thread of execution relieves the
difficulty of predicting exactly when response transactions
are expected to occur in simulation. However, many practi-
cal designs allow responses at the output interface to be
reordered arbitrarily. Two typical scenarios are

■ pipelined cache-coherent protocols:in these protocols,
it is common for data tenures to be re-ordered with
respect to the ordering of address tenures.

■ multiple master, single target situations:many systems
(switches, multiprocessors, DMA controllers, etc.) use
multiple independent TVMs generating stimulus to
different input interfaces. In these scenarios, the order in
which the multiple responses on the output interface
occur is typically indeterminant and is usually different
than the order in which the expected outputs were
specified in the test.

Both situations can be handled with a clever use of
queues to maintain outstanding transactions, for example,
by using a queuing mechanism called smart queues. In order
to use a smart queue, a user would specify how to extract a
key from a transaction. With this information, a smart queue
can maintain a FIFO ordering among transactions with the
same key and allow arbitrary reordering among transactions
with different keys.

In other scenarios, a rich set of synchronization mecha-
nisms from the concurrent program community, such as

semaphores, barriers, and mutexes, can be used.

The ability to verify order-indeterminant systems make
it easier to develop self-checking test benches with comp
concurrency. Reactive stimuli can be generated regardles
uncertainties in transaction ordering. The result-checki
mechanisms are strengthened with enforcement of cust
ordering rules.

4.4 Constrained random testing
The ability to handle cause and effect testing and comp
concurrency lays the foundation for another valuable featu
in a test bench: constrained random test generation.
example, a transaction-based test bench allows us to ea
randomize:

■ the TVMs from which traffic is initiated,

■ the specific tasks (or task sequences) that are invoked
those TVMs,

■ the specific arguments used for invoking the tasks, a

■ the synchronization among concurrent tasks.

Besides being able to randomize these selections, it
important that the random selections obey realistic co
straints. Constraints can be used to ensure that the rand
selections obey system-level requirements, such as not w
ing to ROM space, or they can be used to focus testing
certain areas, such as focusing address selection at ca
line boundaries. A transaction-based test bench provide
set of intuitive locations at which we can specify the con
straints: in the registry for the set of existing TVMs an
tasks, in the arguments used for invoking the tasks, and
the synchronization within a TVM.

5. Efficient simulation debug
The four aspects of test bench authoring, discussed in
previous section, can be utilized to significantly improve th
process of debugging a simulation run. Productivity gai
can be achieved by presenting information in terms of tran
actions:

■ transaction viewing: the abstract information about a
transaction is displayed, rather than a sequence of
transitions on certain signals.

■ cause and effect: the relationships among transactio
are displayed.

■ error transactions: an error detected during simulation
recorded as an error transaction; the original causes c
be found easily by checking the cause and effect
relationships.

■ concurrency: out-of-order / pipelined transactions are
displayed in simple blocks with appropriate relative
positions.

When users have access to automatically recorded tra
action-level information, debugging is much easier. Figure
6

The Transaction-based Verification Mehtodology

s to
ect
-

ng
ng

f
the

se
ge

ny
of

r-
c-
a

nt

re-
ion
rbi-
ed
a

lar
in

Figure 6: Transactions, transaction linkages, and error transactions

Write
addr = 0xFF
data = 0xEF

Read
addr = 0xFF
data = 0xEF

Write
addr = 0x01
data = 0xDF

Read
addr = 0x01
data = 0x00

Write
addr = 0xFF
data = 0xAB

error
exp = 0xDF

error
exp = 0xAB

PacketIn

PacketOut PacketOut

PacketOut PacketOut

PacketOut

PacketOut

PacketIn PacketInPacketIn

PacketIn PacketInin0

in1

out0

out1
shows how simulation events can be presented in term of
transactions.

The top two lines of display correspond to the activities
in the processor bus. Five transactions have been exercised,
with three for the address 0xFF and two for the address
0x01. A transaction-based test bench can link the transac-
tions with the same address, and also detect problems in a
simulation run by generating error transactions. Because a
test bench authoring tool that understands transactions can
automatically maintain relationships between the transac-
tions, it is a simple matter to select the "Show Related
Transactions" function of a transaction display tool to auto-
matically cross-reference to the related write transactions
(the stimulus or "cause"). Once the offending transactions
have been identified, the relevant signal-level activities can
be examined to determine whether the simulation error is a
result of a bug in the test, the TVMs, or the design.

The bottom four lines show the usefulness of the concept
of transactions when the design is capable of handling com-
plex concurrency. By linking the packet coming out from a
router to the original packet, we can easily match their
attributes and determine the correctness of the design. If a
packet has been corrupted, it is easy to identify the activities
that happen between the time the packet entered and the
time the packet came out. Similarly, these kinds of diagrams
are very useful for pipelined protocols.

6. Intuitive functional coverage
Functional verification must measure functional coverage,
identify holes in functional coverage, and determine with
confidence when function verification is complete before
the design is committed to silicon. Unfortunately, traditional

approaches and their limitations cause many design team
rely on code coverage, rate of new bugs found, or the proj
schedule to determine when functional verification com
pleted.

With the concept of transactions, the process of checki
coverage and writing new tests can be simplified by aski
coverage questions in terms of transactions:

■ enumeration of simulated transaction types,

■ analysis of simulated transaction sequences,

■ analysis of simulated overlapping transitions.

It would be very tedious and difficult to write most o
these queries using specific signals at the interface of
design.

Figure 7 shows how a coverage analysis tool might u
the concept of transactions to communicate the covera
information to the user. The histogram shows how ma
transactions of a certain type are observed at the interface
a design, without referring to the actual signals at the inte
face. As shown in the figure, there are three write transa
tions to the address space of RAM1, in which one has
corresponding read immediately afterward. A zero cou
indicates a hole in the high-level test suite.

The last coverage measurement in the diagram cor
sponds to a quantitative measurement of transact
sequences that have been exercised. In general, an a
trarily complex sequence of transactions can be specifi
and a coverage tool can report how many times such
sequence (or portions of it) has been exercised. A simi
work without the concept of transactions can be found
[14].
7

The Transaction-based Verification Mehtodology

nt

g

ss

r,"

e

d

ark

arl

ng
n
n

A.
Figure 7: Basic transaction coverage

7. Case study and conclusion
An early version of the TestBuilder C++ library has been

used to support the transaction-based verification methodol-
ogy (TBV) for a system-on-chip design for a voice-over-
packet application. We have been using a four-port ethernet
packet router as a benchmark internally to determine the
necessary features to support TBV and we have worked
with the designers from several companies to test and fine-
tune the implementation.

Our overall experience has confirmed that TBV signifi-
cantly improves the productivity of the verification teams.
With a short training in the new tools (C++, which is our test
bench authoring language, and the TestBuilder C++
library), the verification teams can easily create new TVMs,
tasks, deterministic tests and directed random tests, both for
the system verification and IP verification. Design errors
were identified quickly, with good feedback on the simula-
tion coverage using transaction coverage.

Acknowledgment

The authors would like to thank the transaction-based verifi-
cation engineering team for the design and realization of the
concept presented in this paper.

References

1. Richard Goering, "DAI introduces Test-Generation
Tool," EE Times,November 17, 1998.

2. Ann Steffora, "DAI Enters Transaction-Based
Verification Market,"Electronic News,November 17,
1998.

3. Steve Forde, Steve Bishop, and Ramnath S. Velu.
"Streamlining HDL Code Coverage Analysis,"
Integrated Systems Design, December, 1998.

4. Michael Santarini, "Cadence Moves Toward Intellige
Testbench," EE Times, June 17, 1999.

5. Richard Goering, "Intelligent TestBenches Gainin
Ground,"EE Times,August 10, 1999.

6. Michael Santarini, "Cadence Offers Testbench Cla
Library via Open-Source License,"EE Times,August
28, 2000.

7. Gale Morrison, "Cadence Open-Sources T-Builde
Electronic News, August 28, 2000.

8. Dennis Abts and Mike Roberts, "Verifying Large-Scal
Multiprocessors Using an Abstract Verification
Environment."Design Automation Conference, 1999.

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides,Design
Patterns: Elements of Reusable Object-Oriente
Software, pp, 233-243, Addison-Wesley, 1995.

10. TestBuilder Reference Manual,open-source document,
September 2000. http://www.testbuilder.net

11. TestBuilder User Guide, open-source document,
September 2000. http://www.testbuilder.net

12. Dhananjay S. Brahme, Steven Cox, João Geada, M
Glasser, William Grundmann, C. Norris Ip, William
Paulsen, John L. Pierce, John Rose, Dean Shea, K
Whiting. "Creating a C++ Library for Test Bench
Authoring Methodology," technical report # CDNL-
TR-2000-0820,Cadence Berkeley Labs, August 2000.

13. C. Norris Ip, "Simulation Coverage Enhancement usi
Test Stimulus Transformation," to appear i
International Conference on Computer-Aided Desig,
November 2000.

14. Brent E. Nelson, Robert B. Jones, Desmond
Kirkpatrick. "Simulation Event Pattern Checking with
PROTO,"International Conference on Simulation and
Hardware Description languages (SHDL), 1994.

write transaction
for RAM 1

read transaction
for RAM 1

write transaction
for RAM 2

read transaction
for RAM2

write transaction
with back-to-back read

...
for RAM 1

3

target

1

5

2

0

8

	The Transaction-Based Verification Methodology
	Dhananjay S. Brahme, Steven Cox, Jim Gallo, Mark Glasser, William Grundmann, C. Norris Ip, Willia...
	Keywords verification, simulation, test bench, transaction, system-on-chip (SoC).
	Abstract
	1. Introduction
	Figure 1: A layered test bench
	2. Traditional functional verification approaches
	3. Raising the level of abstraction to transactions
	3.1 Transactions

	Figure 2: A four-port ethernet router
	Figure 3: Transactions vs. signals
	3.2 Transaction Verification Models

	Figure 4: A processor TVM
	3.3 Transaction-based Tests

	Figure 5: A test bench for a 4-port ethernet packet router
	4. Test bench authoring
	4.1 Partition of Responsibility
	4.2 Cause and effect testing
	4.3 Complex concurrency
	4.4 Constrained random testing

	5. Efficient simulation debug
	6. Intuitive functional coverage

	Figure 7: Basic transaction coverage
	7. Case study and conclusion

	Acknowledgment
	References
	1. Richard Goering, "DAI introduces Test-Generation Tool," EE Times, November 17, 1998.
	2. Ann Steffora, "DAI Enters Transaction-Based Verification Market," Electronic News, November 17...
	3. Steve Forde, Steve Bishop, and Ramnath S. Velu. "Streamlining HDL Code Coverage Analysis," Int...
	4. Michael Santarini, "Cadence Moves Toward Intelligent Testbench," EE Times, June 17, 1999.
	5. Richard Goering, "Intelligent TestBenches Gaining Ground," EE Times, August 10, 1999.
	6. Michael Santarini, "Cadence Offers Testbench Class Library via Open-Source License," EE Times,...
	7. Gale Morrison, "Cadence Open-Sources T-Builder," Electronic News, August 28, 2000.
	8. Dennis Abts and Mike Roberts, "Verifying Large-Scale Multiprocessors Using an Abstract Verific...
	9. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Orie...
	10. TestBuilder Reference Manual, open-source document, September 2000. http://www.testbuilder.net
	11. TestBuilder User Guide, open-source document, September 2000. http://www.testbuilder.net
	12. Dhananjay S. Brahme, Steven Cox, João Geada, Mark Glasser, William Grundmann, C. Norris Ip, W...
	13. C. Norris Ip, "Simulation Coverage Enhancement using Test Stimulus Transformation," to appear...
	14. Brent E. Nelson, Robert B. Jones, Desmond A. Kirkpatrick. "Simulation Event Pattern Checking ...

	Cadence Design Systems, Inc.
	Figure 6: Transactions, transaction linkages, and error transactions

