ДонНТУ > Портал магистров > Емельяненко И.И. RUS | ENG
Главная страница Автобиография Библиотека Ссылки Отчет о поиске Индивидуальное задание
Магистр ДонНТУ Емельяненко И.И.

Емельяненко Игорь Игоревич

e-mail:YEMELIYASHEVICH@ukr.net

Факультет: вычислительной техники и информатики (ФВТИ)

Специальность: экономическая кибернетика (ЭКИ)

Тема выпускной работы:

«Сравнительный анализ статистических и нейросетевых методов прогнозирования социально-экономических процессов»

РУКОВОДИТЕЛЬ: зам.декана ФВТИ, доцент, к.т.н. Федяев Олег Иванович






Автореферат



Примечание

На момент написания автореферата дипломная работа не была завершена. Время окончания написания работы - январь 2007 г. Полный текст дипломной работы и другие материалы по теме можно получить как у автора, так и у руководителя.

Актуальность и мотивация выбора темы работы

Время - это одно из самых интересных понятий, которые интересуют человека с Древних времен. Понять и подчинить себе время человечество стремилось всегда, потому что знание будущего дает невиданную силу принятия решений в различных областях человеческой деятельности. Вопрос определения будущего был и остается актуальным по сегодняшний день. Большой интерес представляют задачи прогнозирования погоды по результатам соответствующих атмосферных измерений, селекционирования новых видов растений и животных, определений возможностей индивидуумов в определенных областях с помощью соответствующей системы контрольных тестов и т.д. Особо важное значение прогнозирование имеет в таких областях, как индустрия, экономика, коммерция (прогнозирование экономических показателей, динамики цен на тот или иной продукт, курса акций на какое-то время вперед и т.д.).

Прогнозирование - это ключевой момент при принятии решений в управлении. Конечная эффективность любого решения зависит от последовательности событий, возникающих уже после принятия решения. Возможность предсказать неуправляемые аспекты этих событий перед принятием решения позволяет сделать наилучший выбор, который, в противном случае, мог бы быть не таким удачным. Поэтому системы планирования и управления, обычно, реализуют функцию прогноза.

В последние несколько лет наблюдается взрыв интереса к нейронным сетям, они находят успешное применение в самых различных областях - бизнесе, медицине, технике, геологии, физике. Нейронные сети вошли в практику везде, где нужно решать задачи прогнозирования, классификации или управления, поскольку они применимы практически в любой ситуации, когда имеется связь между переменными-предикторами (входами) и прогнозируемыми переменными (выходами), даже если эта связь имеет очень сложную природу и ее трудно выразить в обычных терминах корреляций или различий между группами.

Методы нейронных сетей могут использоваться независимо или же служить прекрасным дополнением к традиционным методам статистического анализа. Большинство статистических методов связано с построением моделей, основанных на тех или иных предположениях и теоретических выводах (например, что искомая зависимость является линейной или что некоторая переменная имеет нормальное распределение). Нейросетевой подход не связан с такими предположениями, он одинаково годится для линейных и сложных нелинейных зависимостей, и особенно эффективен в разведочном анализе данных, когда необходимо выяснить, имеются ли зависимости между данными переменными.

Типичный пример нейронной сети с прямой передачей сигнала показан на рисунке ниже. Нейроны регулярным образом организованыв слои. Входной слой служит просто для ввода значений входных переменных. Каждый из скрытых и выходных нейронов соединён со всеми элементами предыдущего слоя.

Можно было бы рассматривать сети, в которых нейроны связаны только с некоторыми из нейронов предыдущего слоя; однако для большинства приложений предпочтительны сети с полной системой связей (такие связи реализованы в программном пакете STATISTICA Neural Networks).

При работе (использовании) сети во входные элементы подаются значения входных переменных, затем последовательно отрабатывают нейроны промежуточных и выходного слоёв. Каждый из нейронов после обработки сигналов формирует свой выход. После того, как вся сеть отработает, выходные значения элементов выходного слоя принимаются за выход всей сети в целом.

Нейронная сеть с прямой передачей сигнала

СЕМАНТИКА СХЕМЫ НЕЙРОННОЙ СЕТИ


Растущий интерес к методам нейронных сетей можно объяснить их успешным применением в самых различных областях деятельности для решения задач прогнозирования, классификации и управления. Такие характеристики нейросетевых методов, как возможность нелинейного моделирования и сравнительная простота реализации, часто делают их незаменимыми при решении сложнейших многомерных задач.

Нейронные сети нелинейны по свой природе и представляют собой исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости. На протяжении многих лет в качестве основного метода в большинстве областей использовалось линейное моделирование, поскольку для него хорошо разработаны процедуры оптимизации. Там, где линейная аппроксимация неудовлетворительна и линейные модели работают плохо, а таких задач достаточно много, основным инструментом становятся нейросетевые методы. Кроме того, нейронные сети справляются с проблемой большой размерности, которая не позволяет моделировать линейные зависимости в случае большого числа переменных.

Нейронные сети учатся на примерах. Пользователь нейронной сети подбирает репрезентативную выборку, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных. При этом от пользователя, конечно, требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты, однако уровень знаний, необходимый для успешного применения нейронных сетей, гораздо скромнее, чем, например, при использовании традиционных методов статистики.

Нейронные сети привлекательны с интуитивной точки зрения, ибо они основаны на примитивной биологической модели нервных систем. В будущем развитие таких нейробиологических моделей может привести к созданию действительно мыслящих компьютеров. Между тем уже «простые» нейронные модели, которые строит система ST Neural Networks, являются мощным оружием в арсенале специалиста по прикладной статистике.

Традиционные статистические модели - важный класс моделей, которые предлагает математика исследователю. С помощью этих моделей описываются явления, в которых присутствуют статистические факторы, не позволяющие объяснить явление в чисто детерминистских терминах. Типичные примеры такого рода моделей представляют временные ряды в экономике и финансовой сфере, имеющие тренд-циклическую компоненту и случайную составляющую. Хочет того или нет, исследователь не может исключить случайную составляющую и должен строить свои выводы, учитывая ее наличие.

Прогнозирование, нахождение скрытых периодичностей в данных, анализ зависимостей, оценка рисков при принятии решений и другие задачи решаются в рамках статистических моделей.

Обзор существующих исследований

Нейронные сети (НС) могут быть реализованы двумя путями: первый - это программная модель НС, второй - аппаратная. На современном рынке изделия, основанные на использовании механизма действия НС, первоначально появились в виде нейроплат. В качестве типичного примера нейроплаты можно назвать плату МВ 86232 японской фирмы Fujitsu. На плате размещены процессор цифровой обработки сигналов и оперативная память емкостью 4 Мбайт, что позволяет использовать такую плату для реализации НС, содержащих до тысячи нейронов. Есть и более совершенные платы.

Основными коммерческими аппаратными изделиями на основе НС являются и, вероятно, в ближайшее время будут оставаться нейро- БИС. Сейчас выпускаются более 20 типов нейроБИС, параметры которых порой различаются на несколько порядков. Среди них – модель ETANN фирмы Intel. Эта БИС, выполненная по микронной технологии, является реализацией НС с 64т нейронами и 10240 синапсами. Ее цена 2000 долл.

К числу самых дешевых нейроБИС (41 долл.) относится модель MD 1220 фирмы Micro Devices. Эта БИС реализует НС с 8 нейронами и 120 синапсами.

Среди разрабатываемых в настоящее время нейроБИС выделяются модели фирмы Adaptive Solutions (США) и Hitachi (Япония). Нейро- БИС фирмы Adaptive Solutions, вероятно, станет одной из самых быстродействующих: объявленная скорость обработки составляет 1,2 млрд. соединений / с. (НС содержит 64 нейрона и 262144 синапса). НейроБИС фирмы Hitachi позволяет реализовать НС, содержащую до 576 нейронов. Эти нейроБИС, несомненно, станут основой новых нейрокомпьютеров и специализированных многопроцессорных изделий.

Большинство сегодняшних нейрокомпьютеров представляют собой просто персональный компьютер или рабочую станцию, в состав которых входит дополнительная нейроплата. К их числу относятся, например, компьютеры серии FMR фирмы Fujitsu. Такие системы имеют бесспорное право на существование, поскольку их возможностей вполне достаточно для разработки новых алгоритмов и решения большого числа прикладных задач методами нейроматематики. Однако наибольший интерес представляют специализированные нейрокомпьютеры, непосредственно реализующие принципы НС. Типичными представителями таких систем являются компьютеры семейства Mark фирмы TRW (первая реализация персептрона, разработанная Розенблатом, называлась Mark I). Модель Mark III фирмы TRW представляют собой рабочую станцию, содержащую до 15 процессоров семейства Motorola 68000 с математическими сопроцессорами. Все процессоры объединены шиной VME. Архитектура системы, поддерживающая до 65 000 виртуальных процессорных элементов с более чем 1 млн. настраиваемых соединений, позволяет обрабатывать до 450 тыс. межсоединений/с. Mark IV - это однопроцессорный суперкомпьютер с конвейерной архитектурой. Он поддерживает до 236 тыс. виртуальных процессорных элементов, что позволяет обрабатывать до 5 млн. межсоединений/с. Компьютеры семейства Mark имеют общую программную оболочку ANSE (Artificial Neural System Environment), обеспечивающую программную совместимость моделей. Помимо указанных моделей фирмы TRW предлагает также пакет Mark II - программный эмулятор НС.

Другой интересной моделью является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. Его топология представляет собой трехмерную решетку стандартных вычислительных узлов на базе процессоров 80188. Компьютер NETSIM используется для моделирования таких моделей НС, как сеть Хопфилда - Кохонена и НС с обратным распространением. Его производительность достигает 450 млн. межсоединений/с.

Фирма Computer Recognitiion Systems (CRS) продает серию нейрокомпьютеров WIZARD/CRS 1000, предназначенных для обработки видеоизображений. Размер входной изображения 512 x 512 пикселей. Модель CRS 1000 уже нашла применение в промышленных системах автоматического контроля.

Сегодня на рынке представлено много моделей нейрокомпьютеров. На самом деле их, видимо, гораздо больше, но наиболее мощные и перспективные модели по-прежнему создаются по заказам военных. К сожалению, не имея достаточной информации о моделях специального назначения, трудно составить представление об истинных возможностях современных компьютеров.

НС хорошо подходят для распознавания образов и решения задач классификации, оптимизации и прогнозирования. Ниже приведен перечень возможных промышленных применений нейронных сетей, на базе которых либо уже созданы коммерческие продукты, либо реализованы демонстрационные прототипы:

Банки и страховые компании:
- автоматическое считывание чеков и финансовых документов;
- проверка достоверности подписей;
- оценка риска для займов;
- прогнозирование изменений экономических показателей.

Административное обслуживание:
- автоматическое считывание документов;
- автоматическое распознавание штриховых кодов.

Нефтяная и химическая промышленность:
- анализ геологической информации;
- идентификация неисправностей оборудования;
- разведка залежей минералов по данным аэрофотосъемок;
- анализ составов примесей;
- управление процессами.

Военная промышленность и аэронавтика:
- обработка звуковых сигналов (разделение, идентификация, локализация, устранение шума, интерпретация);
- обработка радарных сигналов (распознавание целей, идентификация и локализация источников);
- обработка инфракрасных сигналов (локализация);
- обобщение информации;
- автоматическое пилотирование.

Промышленное производство:
- управление манипуляторами;
- управление качеством;
- управление процессами;
- обнаружение неисправностей;
- адаптивная робототехника;
- управление голосом.

Служба безопасности:
- распознавание лиц, голосов, отпечатков пальцев.

Биомедицинская промышленность:
- анализ рентгенограмм;
- обнаружение отклонений в ЭКГ.

Телевидение и связь:
- адаптивное управление сетью связи;
- сжатие и восстановление изображения.

Представленный перечень далеко не полон. Ежемесячно западные средства массовой информации сообщают о новых коммерческих продуктах на базе нейронных сетей. Так, фирма LIAC выпускает аппаратуру для контроля качества воды. Нейросистемы фирмы SAIC находят пластиковые бомбы в багаже авиапассажиров. Специалисты инвестиционного банка Citicomp (Лондон) с помощью программного нейропакета делают краткосрочные прогнозы колебаний курсов валют.

Перечень решаемых задач и новизна работы

Задачами моей работы являются:

- выполнение прогнозирования значений определённых социально-экономических показателей по одинаковым исходным данным с использованием как традиционных статистических методов, так и нейросетевых методов;

- выполнение сравнительного анализа по определённым критериям эффективности результатов прогнозирования каждого из выбранных методов;

- определение того, в каком типе задач каждый из выбранных методов прогнозирования выдаёт наилучшие результаты.

Новизной моей дипломной работы является выполнение комплексного сравнительного анализа статистических и нейросетевых методов прогнозирования.

Теоретическая часть

МЕТОДЫ ПРОГНОЗИРОВАНИЯ

Методы прогнозирования можно разделить на два класса (квалитативные и квантитативные) в зависимости от того, какие математические методы используются.

Квалитативные процедуры производят субъективную оценку, основанную на мнении экспертов. Обычно, это формальная процедура для получения обобщенного предсказывания, на основе ранжирования и обобщения мнения экспертов (например на основе методов Делфи). Эти процедуры основываются на опросах, тестах, оценке эффективности продаж и исторических данных, но процесс с помощью которого получается прогноз остается субъективным.

С другой стороны, квантитативные процедуры прогнозирования явно объявляют - каким образом получен прогноз. Четко видна логика и понятны математические операции. Эти методы производят исследование исторических данных для того, чтобы определить глубинный процесс, генерирующий переменную и предположив, что процесс стабилен, использовать знания о нем для того, чтобы экстраполировать процесс в будущее. К квантитативным процедурам прогнозирования относятся методы основанные на статистическом анализе, анализе временных последовательностей, байесовском прогнозировании, наборе фрактальных методов, нейронных сетях.

Сейчас используется два основных типа моделей: модели временных последовательностей и причинные модели.

Временная последовательность - это упорядоченная во времени последовательность наблюдений (реализаций) переменной. Анализ временных последовательностей использует для прогнозирования переменной только исторические данные о ее изменении. Таким образом, если исследование данных о ежемесячных продажах автомобильных шин, показывает, что они линейно возрастают - для представления данного процесса может быть выбрана линейная модель тренда. Наклон и смещение этой прямой могут быть оценены на основе исторических данных. Прогнозирование может быть осуществлено путем экстраполяции подходящей модели.

Причинные модели используют связь между интересующей нас временной последовательностью и одной или более другими временными последовательностями. Если эти другие переменные коррелируют с интересующей нас переменной и если существуют причины для этой корреляции, модели прогнозирования, описывающие эти отношения могут быть очень полезными. В этом случае, зная значение коррелирующих переменных, можно построить модель прогноза зависимой переменной. Например, анализ может указать четкую корреляцию между уровнем ежемесячной продажи шин и уровнем месячной продажи новых автомобилей 15 месяцев назад. В этом случае информация о продажах новых автомобилей 14 месяцев назад будет полезной для того, чтобы предсказывать продажу шин в следующем месяце.

Серьезным ограничением использования причинных моделей является требование того, чтобы независимая переменная была известна ко времени, когда делается прогноз. Факт, что продажа шин коррелирует с продажей новых автомобилей 15 месяцев назад, бесполезен при прогнозировании уровня продаж шин на 18 месяцев вперед. Аналогично, знание о том, что уровень продаж шин коррелирует с текущими ценами на бензин, нам ничего не дает - ведь мы не знаем точных цен на бензин на месяц, для которого мы делаем прогноз. Другое ограничение причинных методов - большое количество вычислений и данных, которое необходимо сравнивать.

Практически, прогнозирующие системы часто используют комбинацию квантитативных и квалитативных методов. Квантитативные методы используются для последовательного анализа исторических данных и формирование прогноза. Это придает системе объективность и позволяет эффективно организовать обработку исторических данных. Данные прогноза далее становятся входными данными для субъективной оценки опытными менеджерами, которые могут модифицировать прогноз в соответствии с их взглядами на информацию и их восприятие будущего.

На выбор соответствующего метода прогнозирования, влияют следующие факторы:

- требуемая форма прогноза;
- горизонт, период и интервал прогнозирования;
- доступность данных;
- требуемая точность;
- поведение прогнозируемого процесса;
- стоимость разработки, установки и работы с системой;
- простота работы с системой;
- понимание и сотрудничество управляющих.




КРИТЕРИИ ПРОИЗВОДИТЕЛЬНОСТИ

Существуют ряд измерений, которые могут быть использованы для оценки эффективности прогнозирующей системы. Среди них наиболее важными являются: точность прогнозирования, стоимость системы, результирующая польза, свойства стабильности и отзывчивости.

Точность метода прогнозирования определяется на основе анализа возникшей ошибки прогнозирования.

Заметим, что ожидаемая квадратичная ошибка обычно называется средней квадратичной ошибкой. При анализе ошибки прогнозирования, общепринято в каждый период использовать так называемый тест пути сигнала. Целью этого теста является определение, присутствуют ли систематическая ошибка прогнозирования. Путевой сигнал вычисляется путем деления оцененной предполагаемой ошибки прогнозирования на измеренную вариацию ошибки прогнозирования, определенную как среднее абсолютное отклонение. Если в прогнозе отсутствует систематическая ошибка - путевой сигнал должен быть близок к нулю.

Конечно, стоимость является важным элементом при оценке и сравнении методов прогнозирования. Ее можно разделить на одноразовые затраты на разработку и установку системы и затраты на ее эксплуатацию. Что касается затрат на эксплуатацию, то разные прогнозирующие процедуры могут очень сильно отличаться по стоимости получения данных, эффективности вычислений и уровню действий, необходимых для поддержания системы.

Польза прогноза в улучшении принимаемых решений зависит от горизонта прогнозирования и формы прогноза также, как и от его точности. Прибыль должна измеряться для всей системы управления как единого целого, и прогнозирование - только один элемент этой системы.

Мы можем также сравнивать методы прогнозирования с точки зрения реакции на постоянные изменения во временной последовательности, описывающей процесс, и стабильности при случайных и кратковременных изменениях.

При определении интервала прогнозирования необходимо выбирать между риском не идентифицировать изменения в прогнозируемом процессе и стоимостью прогноза. Если мы используем значительный период прогнозирования, мы можем работать достаточно длительное время в соответствии с планами, основанными на, возможно, уже бессмысленном прогнозе. Наилучший интервал прогнозирования зависит от стабильности процесса, последствий использования неправильного прогноза, стоимости прогнозирования и репланирования.

Посредством данных, необходимых для прогнозирующей системы, в систему может подаваться и ошибка, поэтому необходимо редактировать входные данные системы для того, чтобы устранить очевидные или вероятные ошибки. Конечно, небольшие ошибки идентифицировать будет невозможно, но они обычно не оказывают значительного влияния на прогноз. Более значительные ошибки легче найти и исправить. Прогнозирующая система также не должна реагировать на необычные, экстраординарные наблюдения.

Если мы прогнозируем требование на продукт - любые продажи, которые рассматриваются как нетипичные или экстремальные, конечно должны быть занесены в записи, но не должны включаться в данные используемые для прогнозирования. Например, производитель, который обслуживает ряд поставщиков, получает нового клиента. Первые заказы этого клиента, скорее всего, не будут типичными для его более поздних заказов, так как в начале он находился на этапе исследования нового товара.

Симуляция является полезным средством при оценке различных методов прогнозирования. Метод симуляции основан на ретроспективном использовании исторических данных. Для каждого метода прогнозирования берется некоторая точка в прошлом и начиная с нее вплоть до текущего момента времени проводится симуляция прогнозирования. Измеренная ошибка прогнозирования может быть использована для сравнения методов прогнозирования. Если предполагается, что будущее отличается от прошлого, может быть создана псевдоистория, основанная на субъективном взгляде на будущую природу временной последовательности, и использована при симуляции.

Прогнозирующая система должна выполнять две основные функции: генерацию прогноза и управление прогнозом. Генерация прогноза включает получение данных для уточнения модели прогнозирования, проведение прогнозирования, учет мнения экспертов и предоставление результатов прогноза пользователю. Управление прогнозом включает в себя наблюдение процесса прогнозирования для определения неконтролируемых условий и поиск возможности для улучшения производительности прогнозирования. Важным компонентом функции управления является тестирование путевого сигнала. Функция управления прогнозом также должна периодически определять производительность прогнозирования и предоставлять результаты соответствующему менеджеру.

Собственная разработка

Моя собственная разработка при окончании написания дипломной работы будет касаться построения эффективной методики проведения сравнительного анализа описанных в работе методов прогнозирования по определённым типам задач.

Экспериментальные исследования

При завершении написания дипломной работы мои экспериментальные исследования будут содержать:


- реальные исходные данные для прогнозирования значений определённых показателей;

- выполненное прогнозирование значений определённых социально-экономических показателей несколькими традиционными статистическими методами и с помощью нейронных сетей в соответствующих программных пакетах STATISTICA и STATISTICA Neural Networks;

- сравнительный анализ (по установленным критериям) результатов прогнозирования выбранных традиционных статистических и нейросетевых методов.

Обзор результатов и выводы

На основании вышеизложенного можно сказать, что прогнозирование - это предсказание будущих событий. Целью прогнозирования является уменьшение риска при принятии решений. Прогноз обычно получается ошибочным, но ошибка зависит от используемой прогнозирующей системы. Предоставляя прогнозу больше ресурсов, мы можем увеличить точность прогноза и уменьшить убытки, связанные с неопределенностью при принятии решений.

Поскольку прогнозирование никогда не сможет полностью уничтожить риск при принятии решений, необходимо явно определять неточность прогноза. Обычно, принимаемое решение определяется результатами прогноза (при этом предполагается, что прогноз правильный) с учетом возможной ошибки прогнозирования.

Прогнозирование на НС обладает рядом недостатков. Вообще говоря, нам необходимо как минимум 50 и лучше 100 наблюдений для создания приемлемой модели. Это достаточно большое число данных и существует много случаев, когда такое количество исторических данных недоступно. Например, при производстве сезонного товара, истории предыдущих сезонов недостаточно для прогноза на текущий сезон, из-за изменения стиля продукта, политики продаж и т.д.

Даже при прогнозировании требования на достаточно стабильный продукт на основе информации о ежемесячных продажах, возможно мы не сможем накопить историю за период от 50 до 100 месяцев. Для сезонных процессов проблема еще более сложна. Каждый сезон истории фактически представляет собой одно наблюдение. То есть, в ежемесячных наблюдениях за пять лет будет только пять наблюдений за январь, пять наблюдений за февраль и т.д. Может потребоваться информация за большее число сезонов для того, чтобы построить сезонную модель. Однако, необходимо отметить, что мы можем построить удовлетворительную модель на НС даже в условиях нехватки данных. Модель может уточняться по мере того, как свежие данные становится доступными.

Другим недостатком нейронных моделей - значительные затраты по времени и другим ресурсам для построения удовлетворительной модели. Эта проблема не очень важна, если исследуется небольшое число временных последовательностей. Тем не менее, обычно прогнозирующая система в области управления производством может включать от нескольких сотен до нескольких тысяч временных последовательностей.

Однако, несмотря на перечисленные недостатки, нейронные модели обладает рядом достоинств. Существует удобный способ модифицировать модель по мере того как появляются новые наблюдения. Модель хорошо работает с временными последовательностями, в которых мал интервал наблюдений, т.е. может быть получена относительно длительная временная последовательность. По этой причине модель может быть использована в областях, где нас интересуют ежечасовые, ежедневные или еженедельные наблюдения. Эти модели также используются в ситуациях, когда необходимо анализировать небольшое число временных последовательностей.

Необходимо отметить, что прогнозирование это не конечная цель. Прогнозирующая система это часть большой системы менеджмента и как подсистема, она взаимодействует с другими компонентами системы, играя немалую роль в получаемом результате.

Перспективы дальнейших исследований

Перспективы дальнейших исследований по проведению сравнительного анализа различных методов прогнозирования довольно обнадёживающие, так как человечество всё острее и острее нуждается в точных механизмах предсказывания будущего. Поэтому, просто необходимо будет постоянно сравнивать и выбирать наилучший метод прогнозирования для конкретной задачи или сферы деятельности. К тому же, становятся всё более совершенными нейронные сети, а вместе с ними и нейросетевые методы прогнозирования.

Перечень литературы


Примечание

На момент написания автореферата дипломная работа не была завершена. Время окончания написания работы - январь 2007 г. Полный текст дипломной работы и другие материалы по теме можно получить как у автора, так и у руководителя.




Главная страница Автобиография Библиотека Ссылки Отчет о поиске Индивидуальное задание