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Abstract

Server performance has become a crucial issue for improving the overall perfor-
mance of the World-Wide Web. This paper describes Webmonitor, a tool for evalu-
ating and understanding server performance, and presents new results for a realistic
workload.

Webmonitor measures activity and resource consumption, both within the kernel
and in HTTP processes running in user space. Webmonitor is implemented using
an efficient combination of sampling and event-driven techniques that exhibit low
overhead. Our initial implementation is for the Apache World-Wide Web server run-
ning on the Linux operating system. We demonstrate the utility of Webmonitor by
measuring and understanding the performance of a Pentium-based PC acting as a
dedicated WWW server. Our workload uses a file size distribution with a heavy tail.
This captures the fact that Web servers must concurrently handle some requests for
large audio and video files, and a large number of requests for small documents,
containing text or images.

Our results show that in a Web server saturated by client requests, up to 90% of
the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping
connections open, as required by TCP, causes a factor of 2 increase in the elapsed
time required to service an HTTP request. Data gathered from Webmonitor provide
insight into the causes of this performance penalty. These results emphasize the im-
portant role of operating system and network protocol implementation in determin-
ing Web server performance.

1 INTRODUCTION

The quality of networked services like the World-Wide Web (WWW) depends on
many factors, including performance, reliability, and security. The overall perfor-
mance of the Web depends on the performance of its main components; namely
clients, the network, and servers. The explosive growth of the Web is placing a heavy
demand on servers [Birmanet al, 1996]. As a result, users see slow response times
on the most popular sites, which are overrun by millions of requests per day. Thus,
server performance has become a critical issue for improving the quality of service
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on the World-Wide Web. In order to improve Web server performance, we need to
understand how server behavior differs in response to different types of requests,
such as requests for small HTML documents, or for large audio and video files. We
need to gain insight into server behavior under heavy load in the presence of such
heterogeneous requests. In particular, we need to assess the impact of operating sys-
tem and network protocol implementation on server performance. This suggests the
need for quantitative measurements that show how system resources are being uti-
lized when servicing HTTP requests.

Despite the importance of measuring and understanding the behavior of Web
servers, there are no freely available performance tools that give detailed information
about server behavior. In this paper, we describe and present results from a prototype
tool (calledWebmonitor) that does just this. For an HTTP workload, Webmonitor
measures activity and resource consumption, both within the kernel and in HTTP
processes running in user space. Webmonitor is implemented using an efficient com-
bination of sampling and event-driven techniques that have low overhead (less than
4%), and therefore does not significantly perturb server behavior. Our initial imple-
mentation is for the Apache WWW server running on the Linux operating system.

We demonstrate the utility of Webmonitor by measuring and understanding the
performance of a Pentium-based PC acting as a dedicated WWW server. We present
results for a workload generated by WebStone [Trentet al., 1995], which is a con-
figurable tool for benchmarking Web server performance, available from Silicon
Graphics. We parameterized the server workload generated by WebStone to capture
the heterogeneous nature of HTTP requests, using values from [Arlittet al., 1996].
Specifically, we used a file size distribution with a heavy tail to capture the fact that
Web servers must concurrently handle some requests for huge multimedia files and a
large number of requests for small HTML and image documents. Such distributions
occur in the size of files available at servers, and in files requested by clients [Ar-
litt et al., 1996, Crovellaet al., 1996]. This heterogeneity in workload stresses the
limits of the underlying operating system much further than traditional applications
[McGrathet al, 1995]. One other important characteristic of our workload (and ex-
periments) is that we do not reuse TCP connections for multiple HTTP requests, as
described in [Mogul, 1995a] and the Apache documentation [Robinsonet al., 1995].
Thus, we open a new TCP connection for every request. We therefore capture the
costs of servicing our workload under the “worst case” assumption of being unable
to use persistent connections.

We present two new results from data collected using Webmonitor. First, in a
Web server saturated by client requests, we find that up to 90% of the time spent
handling HTTP requests is spent in the kernel. Second, that keeping TCP connections
open causes a factor of 2 increase in the elapsed time required to service an HTTP
request. It is necessary to keep TCP connections open (in the TIMEWAIT state) at
the server to guard against old data being received by a new connection. Although
such problems with the way TCP interacts with HTTP have been pointed out by
others [Mogul, 1995c, Mogul, 1995a, Padmanabhan, 1994], we isolate and quantify
their impact. Specifically, we show that these lingering TCP connections cause a
33% performance penalty in terms of throughput.

The rest of the paper is structured as follows. Section 2 outlines specific charac-
teristics of the Web that influenced the approach we adopted to measure server be-
havior. In section 3 we describe the experimental environment that was instrumented
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and measured, and the workload used to drive our experiments. Section 4 presents an
overview of the Webmonitor architecture and important aspects of its implementa-
tion. Next, we present and analyze measurements collected by Webmonitor. We then
use the tool to measure the behavior of a busy Web server, and discuss the impact of
the Web server implementation on performance. Finally, section 5 summarizes the
paper.

2 MEASURING A WEB SERVER

The standard performance tools provided by Unix operating systems includeps,
vmstatandnetstat. In Linux, all of them collect information from /proc filesystem
[Welsh, 1994]. Although these tools can provide insight into server behavior, they re-
flect the performance only from a system-wide standpoint. Furthermore, those stan-
dard tools may introduce unbearable overhead during the monitoring of a busy Web
server [Cockcroft, 1996].

In order to obtain in-depth information about the server behavior, we also need to
collect data at the HTTP server level. HTTP servers usually log per-request informa-
tion in log files, but that is not enough to gain insight in the way system resources
are used to service an HTTP workload. Thus, we decided to build a specific tool
to monitor the behavior of Web servers and to measure resource usage. In this sec-
tion, we describe the guidelines and principles we followed to design a Web server
performance monitor.

2.1 Characteristics of Web Servers

As pointed out in [Arlittet al., 1996, Crovellaet. al., 1996, Mogul, 1995a, Mogul,
1995b, Almeida Bestavroset al., 1996], there are several characteristics that distin-
guish Web servers from traditional distributed systems. The following two charac-
teristics have a profound impact on the behavior of Web servers.

(a) Heavy Tailed Distributions
Recent studies [Arlittet al., 1996, Crovellaet. al., 1996] have shown that file sizes
in the World-Wide Web exhibit heavy tails, including files stored on servers, files
requested by clients and transmitted over the network. A heavy-tailed distribution
(e.g., Pareto) is given byP [X > x] � x��, asx ! 1 and0 < � < 2. Theoretical
heavy-tailed distributions have infinite variance, which, in practical terms, means that
very large observations are possible with non-negligible probability. In [Crovellaet
al., 1996], the authors surveyed a number of WWW servers in the Internet and found
evidence of heavy-tailed distributions of sizes of files on the servers. One possible
explanation is the presence of large multimedia files that contribute to increase the
tail of file size distribution.

(b) Short-lived Processes
Most HTTP server implementations use a new TCP connection for almost every re-
quest. Several references [Arlittet al., 1996, Crovellaet al., 1996] report that over
90% of client requests are for small HTML or image files. The combination of these
facts explains a common phenomenon that has been observed during the operation
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of busy Web servers: the creation of a large number of short-lived processes [Mogul,
1995a, Mogul, 1995b]. This brings new challenges to some operating systems that
are not tuned for handling a large number of short-lived processes. Short-lived pro-
cesses also represent new problems for performance monitoring. Although UNIX
provides accurate measurements for processor usage by processes of moderately
long duration, the authors in [Sominet al., 1996] point out the problems in trying to
measure CPU time used by short-lived individual processes.

2.2 Measurement Approach

The fundamental characteristics of a good measurement tool are low overhead, low
interference in the system being measured, and high accuracy. We address these char-
acteristics in the design and implementation of Webmonitor.

Although monitors can provide a great deal of useful data, there are problems with
the use of their data for performance modeling. Thus, Webmonitor was designed to
provide data for analytical models also. The basic input data required by queueing
network models are service demands of a request at a server [Menasceet al., 1994].
Those demands specify the total amount of service time required by a request dur-
ing its execution at each major component of the server. It is worth mentioning that
service demand refers only to the time a request spends actually receiving service.
It does not include waiting times. Webmonitor was designed to provide this infor-
mation, which can then be used to derive the basic data required by analytical and
simulation queueing models.

In this section we show the features of Webmonitor that take advantage of World-
Wide Web workload characteristics to achieve low overhead and high accuracy.

(a) Monitoring Techniques
Webmonitor uses a combination of sampling and event-driven techniques to collect
different levels of information about the operation of a Web server. Sampling-based
measurement is used to read counters that are maintained by the kernel. Those coun-
ters provide system-level information (e.g., resource utilization, interrupt rates, etc.)
as well as network statistics. Because events occur within different modules in a
Web server, our monitor supports the concept of different sampling intervals, that
are adjusted to the nature of the information being monitored. However, the choice
of sampling intervals always represents a trade-off between accuracy and overhead.
To do sampling in an efficient way, we made some modifications to the Linux kernel,
because of the high volume of requests that would imply high overhead.

Sampling is an inadequate technique to trace the execution of every HTTP request
in user space. Thus, for monitoring the execution of every request in the HTTP pro-
cesses, Webmonitor uses an event-driven technique that required the instrumentation
of the server. However, it is important to note that this instrumentation was designed
to be lightweight to minimize its effect on server processing.

(b) Classes of Requests
Although it would be desirable to have detailed execution information about each
individual request, it is unfeasible, in terms of overhead, to keep track and record
this quantity of information. This is especially true for busy Web servers that are
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overloaded by requests. A possible solution would be to simply accumulate the ex-
ecution information for all requests and to calculate average values for the measure-
ments. However, as we saw earlier in this paper, requests for documents at Web
servers follow heavy tailed probability distributions, that have very large variance.
Thus, average results for the whole population of requests would have no statistical
meaning.

As a compromise to keep overhead as low as possible without impairing the ac-
curacy and significance of the measurements, we catagorized requests into a small
number of classes. A class is defined by a range of file sizes, and these ranges are
chosen to reflect a heavy tailed distribution of file sizes on the server. Thus, each
class comprises requests that are similar with respect to the size of the files they
retrieve. As a result, we group together requests of similar behavior in terms of re-
source usage, which helps reduce the variance of the collected data.

3 EXPERIMENTAL SETUP

This section explains in detail the WWW server which we used in our experiments.
We describe the workload, hardware, and software used to perform the measure-
ments and collect the performance data.

The operating system used is Linux version 2.0.0, which is distributed under the
terms of GNU General Public License [Welsh, 1994]. The server software is Apache,
version 1.1.1, a public domain HTTP server [Robinsonet al., 1995].

Apache was originally based on code and ideas found in NCSA HTTP server [Mc-
Grathet al., 1995]. It is “A PAtCHy server”, in the sense that it was based on some
existing code and a series of “patch files”. Apache can run in two different modes:
from theinetd system process or, in standalone mode. The main disadvantage of
running an HTTP server frominetd is that, for each HTTP connection received, a
new copy of the server is started from scratch; after the connection is complete, this
program exits. Thus, there is a high per-connection overhead. Standalone is there-
fore the most common mode of operation, since it is far more efficient. The server is
started once, and services all subsequent connections.

Another interesting point worth mentioning concerns the management of the HTTP
processes. Apache maintains a pool of child server processes to handle incoming re-
quests. On startup, a master server process spawns a pre-defined number of child
processes and as the load in the server increases, new processes are spawned and in-
cluded in this pool. The master process periodically checks the number of idle child
processes and dynamically adapts this number to the load it sees. There are pre-
defined limits (lower and upper bounds) to the number of idle processes. Besides
this, there are also upper bounds for the number of requests each child is allowed to
process before it dies and on the total number of child processes running, that is, a
limit on the number of clients that can simultaneously connect to the server.

Our Apache server was configured to run in standalone mode. The number of
KeepAlive requests per connection [Robinsonet al., 1995] was set to 0 (only one
HTTP request was serviced per connection). The lower and upper bounds in the
number of idle processes were set to 5 and 10, respectively; and the number of re-
quests a child process serves before dying was set to 30. Our hardware platform was
an Intel Pentium 75MHz system, with 16 Megabytes of main memory and a 0.5 Gi-
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gabyte disk. It has a standard 10 Megabit/second Ethernet card. Linux was installed
on the disk on a partition of 416 Megabytes, and a partition of 36 Megabytes was
allocated for swap space.

To generate a representative WWW workload, we used WebStone [Trentet al.,
1995] (version 2.0), which is an industry-standard benchmark for generating HTTP
requests. WebStone is a configurable client-server benchmark for HTTP servers, that
uses workload parameters and client processes to generate Web requests. This allows
a server to be evaluated in a number of different ways. It makes a number of HTTP
GET requests for specific pages on a Web server and measures the server perfor-
mance, from a client standpoint.

WebStone is a distributed, multi-process benchmark, where a master process spawns,
local or remotely, a pre-defined number of client processes. Each client process gen-
erates requests to the server and collects the performance statistics. After all clients
finish running, the master process collects the client's statistics and calculates the
overall server performance during the execution of the workload. In our experiments,
the client processes were spread over three machines: two SparcStation 20 (128 and
256 megabytes of main memory and operating systems SunOS 4.1.4 and 5.5) and
one SparcStation Ultra (128 megabytes of main memory and SunOS 5.5) In order
to generate load for a WWW server, client processes successively request files from
the server, as fast as the server can answer the requests. A new request is sent out to
the server right after a client receives the answer from a previous request. The main
performance measures collected by WebStone are latency and throughput. The for-
mer represents the response time to complete a request, viewed from the client side.
Throughput is measured in connections per second and also in bytes transferred per
second.

Table 1 Characteristics of HTTP Workload

File size (KBytes) Access probability

Item Number of files Total Average Total Average

HTML 24 180 7.5 0.192 0.008

Images 29 385 13.28 0.754 0.026

Sound 20 3580 179 0.05 0.0025

Video 4 9216 2304 0.004 0.001

The WebStone workload is defined by the number of client processes and by the
configuration file that specifies the number of files, their size and access probabilities.
Table 1 gives baseline information for the HTTP workload used in our experiments.
The parameters that define the workload are representative of the kinds of workload
typically found in busy WWW servers [Arlittet al., 1996]. It is worth noting that the
set of files in this workload consumes 82% of physical memory. Furthermore, once
the kernel and HTTP processes are also present in memory, we observe significant
disk activity in our experiments.
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Figure 1 Overview of the Webmonitor

4 ARCHITECTURE OF THE MONITOR

Figure 1 depicts an overview of Webmonitor. The monitor can be seen as a com-
bination of two main components that operate at different levels of the system and
collect performance data using different techniques. This division in based on the in-
teraction between the monitor and system, the technique of instrumentation used and
the nature of the data collected. The Kernel Module runs independently of the Web
server and collects information about the operating system as a whole. The code of
the Server Module is actually linked with the server code, and therefore runs as part
of the server. It collects information about server performance during the handling
of HTTP requests.

4.1 The Kernel Module (KM)

The Kernel Module (KM) collects resource usage data, not only from a system-wide
standpoint but also from the Web server viewpoint. The information collected is:
processor utilization, disk activity, paging activity, and interrupt rates. This module
also collects information about network activity, which is divided into two groups.
The first one refers to statistics on communication activities through the Ethernet in-
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terface, such as the number of packets transmitted or received, number of errors that
occurred during transmission or reception. The second group provides information
about the number and state of TCP connections to the HTTP port in the server. The
TCP state information is useful for understanding the “lifetime” of connections in
the server.

In addition to the three types of system-wide information activity described above,
KM also obtains information about certain processes. The information is basically
CPU and memory utilization. It also collects the total number of copies of each mon-
itored program (started processes) and the number of copies waiting for run time
(running processes). In our experiments, we chose to monitor the HTTP processes
and the kernel processes responsible for swapping and buffer cache management.
However, since our results show that the vast majority of system resources are con-
sumed by the HTTP processes, we only present results for these processes.

Usually the Linux kernel keeps performance data internally. They can be read
by user programs through the /proc filesystem [Welsh 1994]. This is a “virtual file
system”, in the sense that its contents are not located on disk but in memory. A read
of any file below /proc causes data in the kernel to be copied to memory in user
space. This information is actually copied as a sequence of ASCII characters. Thus,
to find specific data, it is necessary to parse a string for a specific keyword and then
read one or more numeric values.

There is one important disadvantage to using /proc to gather kernel activity infor-
mation. If one needs to gather information scattered throughout several kernel data
structures, one must perform multiple reads (each of which is a system call), or read
very large blocks of data out of the kernel. Both of these alternatives are very expen-
sive. This overhead of reading /proc, to get specific but scattered information, is the
main reason we decided to implement the KM using four new system calls.

The information gathered by the KM is collected through four system calls that
summarize and return specific information about kernel activity in a single buffer.
The KM system calls are as follows:

� my get kstats: returns information about processor utilization, disk activity, pag-
ing activity and interrupt rates.

� my get procstats: returns cpu and memory utilizations for each process with a
given command name.

� my get netstats: returns the number of packets transmitted and received and the
number of errors occurred in the network interface.

� my get connstats: returns the number of connections in each TCP state con-
nected to a given TCP port.

The KM runs as a group of two to four processes, periodically collecting infor-
mation through the system calls described above. The number of samples, the TCP
port to be monitored, the number of different programs to be monitored, the name
of them and the number of KM processes spawned are parameters specified in a
configuration file [Almeida Almeidaet al., 1996].

4.2 The Server Module (SM)

The Server Module (SM) is responsible for collecting information about server per-
formance during the handling of HTTP requests. It is implemented as a library of
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routines compiled and linked with the server code. Calls to specific routines were
inserted at appropriate points in the server code. Instead of being based on sampling,
like the KM described in the last section, the SM collects informating based on a
trace of events that occur during the handling of a single request. The data collected
are: bytes transmitted, connections established, read and write operations, and num-
ber of blocks read and written during the handling of the request. Another important
piece of information is the processing time at the server to handle a request. The time
measured by the SM begins with the establishment of a connection and ends when
the server (i.e., HTTP process) is ready to handle the next request. It is broken into
three components, which are measured in processor time and in elapsed time.Pars-
ing timeis the interval that begins just after the establishment of the connection and
ends when the header of the request has been parsed and is ready to be processed.
Processing timeis the time spent actually processing the request. It does not include
the server logging time. It accounts for the time spent reading the URL (Uniform
Resource Locator) and the time needed to move the file from memory or disk to the
network.Logging timeis the time spent performing standard HTTP logging. After
logging, a server process is ready to handle a new request.

Unfortunately, the Linux timing routines are not accurate enough to account for
the three components of the execution time of a short request. The timing resolu-
tion is on the order of 10 milliseconds [Welsh, 1994]. In order to measure parsing,
processing, and logging times with greater accuracy, we implemented a “stopwatch”
scheme using thegettimeofday routine, that returns the elapsed seconds and mi-
croseconds since a predefined date. This resolution is becausegettimeofday reads
the time directly from the hardware timer. In order to be timed using a stopwatch, a
process must call a system routine to include itself in aCPU Monitored Processes
Table, located in kernel memory. This routine returns the entry allocated in the table
for that process. There are also system calls toStartandStopthe time accounting.
To discount the time that the CPU was used by processes other than the one being
monitored, an entry of theCPU Monitored Processes Tablealso contains the time
betweenStart and Stopspent servicing other processes [Almeida Almeidaet al.,
1996].

A similar scheme was implemented in order to collect per-process disk activity
information. It creates aDisk Monitored Processes Table, where appropriate infor-
mation is kept. To be monitored, a process must allocate an entry in this table through
a system call. Every time a disk request from a process being monitored is served,
the number of read or write operations and the blocks transfered are registered in its
entry in this table.

Each server process collects the statistics described above for the requests that
it services. In addition, the SM incorporates the concept ofrequest classes. Each
request is categorized into one of several predefined classes depending on the size
of the file requested. The classes are defined in a configuration file specifying the
maximum file size for each class. The statistics collected by a server process are
separated by class. Thus, while handling a request, a server updates the counters
associated with the class of the request being serviced. In this manner, the SM gen-
erates cumulative information for each class and each HTTP server process. To keep
overhead low, this information is written to disk by the server processes after 10 re-
quests have been served. After data collection is complete, these cumulative values
can be processed to generate other statistics such as averages, variances, etc.
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4.3 Monitor Overhead

One of the main concerns in the design of the WWW server monitor was to keep
overhead as low as possible. The response time (in seconds) and throughput (conn/s
and Mbits/s) measured by WebStone for the server with the monitor (KM and SM
modules) were 1.74, 17.35 and 3.91, respectively. Without the monitor, WebStone
measured 1.69, 17.96 and 4.02, for the same workload. Thus, the overhead intro-
duced by the monitor is less than 4% for all three measures. We also compared the
cost of using our system calls against the cost of obtaining the same information
through the /proc filesystem. Compared to Webmonitor system calls, collecting the
same data via /proc is between 5 and 200 times more expensive [Almeida Almeida
et al., 1996].

5 RESULTS

Recall that one of the main design goals of our WWW server performance monitor is
to understand how time is spent servicing HTTP requests, and how different compo-
nents of the server software are utilized. The KM addresses this goal by measuring
the CPU user and system time, and the rate at which different kernel services are
invoked (e.g., read calls per second). The SM addresses this goal by measuring the
CPU utilization and latency of servicing requests, as well as tracking per-connection
use of some kernel services (e.g., read calls per connection).

We demonstrate the utility of our WWW server performance monitor at the most
interesting operating point of the server – when it has just become saturated. To de-
termine the saturation point, we ran experiments varying the number of WebStone
clients that communicate with the server. Our results, average values from 3 exper-
iments, are for 30 clients, which cause both the CPU and memory of the server to
be utilized at levels greater than 90%. We discuss these results for the server mod-
ule first, then describe results from the kernel module, and then tie them together.
Finally, we present results for experiments where we change the Linux TCP imple-
mentation tonot keep connections open at the server. Comparing these results with
our original results shows the effect that keeping TCP connections open has on server
performance.

5.1 Server Module Results

Table 2 shows server module (SM) measurements for the three different classes of
requests. Recall that these request classes correspond to different file sizes that span
a heavy-tailed distribution. Furthermore, each class is representative of an object
“class,” as in Table 1. Class 1 requests (for HTML and image documents) are for
small files; they have a mean size of 12.1 KB and make up the vast majority of the
requests (i.e., 94.6%). Class 2 requests (for audio files) are moderate in size and
amount to 5% of requests. Class 3 requests (for video clips) are large (2.3 MB on
average) and make up only 0.4% of the workload. The most interesting result in Ta-
ble 2 lies in the last six rows, which show the processor time and the elapsed time of
the three different phases of execution of an HTTP request. These rows show that in
most cases the majority of the time spent servicing an HTTP request is spent moving
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Table 2 Server Module Results for 30 Clients

Class 1 Class 2 Class 3

conn/s 16.40 0.88 0.07

Mbits/s 1.55 1.17 1.19

reads/conn 0.03 2.67 34.67

CPU parsetime(ms)/conn 4.78 4.81 3.81

CPU processingtime(ms)/conn 18.75 150.56 2231.35

CPU logtime(ms)/conn 5.28 6.99 9.10

elapsed parsetime(ms)/conn 23.45 21.80 6.20

elapsed processingtime(ms)/conn 155.81 3789.95 60578.90

elapsed logtime(ms)/conn 774.31 940.35 827.42

the requested URL from the filesystem to the network (i.e., processing the parsed
request). This is true of CPU time for all three request classes in our workload. Fur-
thermore, the elapsed processing time also dominates the elapsed parse and logging
times for moderate and large (Class 2 and 3) requests. The CPU time and elapsed
time for processing requests increases by three orders of magnitude as the mean file
size for the three classes does also. The other measurements shown in Table 2 which
show the same increase are the read calls per connection. This suggests that disk
activity explains the increase in elapsed time for processing large requests, as one
would expect. One other interesting result in Table 2 is the distribution of network
bandwidth among the three request classes. Note that even though the connections
per second rate decreases with class number (and requested file size), the bandwidth
that each class consumes on the network is about the same (i.e., between 1 and 1.6
Mbps). This is due to the heavy-tailed nature of the file size distribution.

The results from Table 2 suggest that most of the CPU time consumed by the
HTTP processes is spent in the kernel. In other words, the task of moving the re-
quested URL from the filesystem to the network is the most expensive part of han-
dling a request. Since both the filesystem and the networking code are in the kernel,
one would expect time spent in the kernel to be greater than time in user space. We
tested this hypothesis by instrumenting the HTTP processes to callgetrusage after
every 10 requests, and report the user and system time per connection, for the du-
ration of the experiment. These results show that our HTTP processes consume an
average of 50 msec of CPU time in the kernel per connection, compared with only
5.2 msec in user space. We'll see later that the kernel module results also demonstrate
this high (i.e., 10:1) ratio of system CPU time to user CPU time, for the WWW server
as a whole.

5.2 Kernel Module Results

Table 3 shows kernel module (KM) measurements for the workload described above.
Recall that KM measures only kernel-level statistics such as overall CPU user and
system time, and the rate at which different services are invoked. It therefore does
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Table 3 Kernel Module Results formy get kstatsand 30 Clients

cpu user(%) 9.00 pageins/s 137.42

cpu sys(%) 90.65 pageout/s 7.94

cpu idle(%) 0.35 interrupt/s 1011.22

reads/s 5.17 net interrupt/s 620.43

writes/s 4.90 disk interrupt/s 289.90

context switch/s 51.66

Table 4 Kernel Module Results formy get procstatsand 30 Clients

cpu(%) 93.75 started processes 27.55

mem(%) 102.61 running processses 25.01

not separate its measurements according to request class. The most interesting result
in Table 3 is that the ratio of system time to user time is high, and is approximately
the same as for the HTTP processes monitored by the SM, i.e., 10:1. Within the time
spent in the kernel, it is also important to note the relative frequency of certain kernel
operations. For example, there are over 100 page-in's, network interrupts, and disk
interrupts per second. There are several read calls performed per second. However,
there are also a significant number of corresponding write operations per second.
These are presumably due to paging activity and logging of HTTP requests.

We have seen a correspondence between SM and KM statistics looking at Table 2
and then Table 3. We also wanted to show a correspondence in the reverse direc-
tion. Table 4 shows aggregate process statistics for the HTTP processes, measured in
the kernel. Note that the CPU is over 90% utilized, and that memory utilized by the
HTTP processes alone is over 100% (which indicates paging activity) . This explains
why the CPU user and system times for the HTTP processes (measured by SM) and
for the system as a whole (measured by KM) agree. The number of running pro-
cesses suggests that Apache's process management requires 25 processes to service
30 concurrent connections, given our workload. Finally, the measurements obtained
by KM concerning network statistics reported no errors in network interface during
the experiments, which is consistent with WebStone results that also reported no er-
rors on the client side.

We also wanted to show that our main conclusions still held when the set of files
being requested at the server was sufficiently small to reduce disk activity. A new
workload was obtained by dividing the file sizes presented in Table 1 by a factor of
4, but keeping the same number of clients. The results for this workload are shown
in Tables 5 and 6. In Table 6, the SM request class sizes are also scaled down by a
factor of 4. These results show that, despite reduced disk activity, the ratio of system
time to user time remains very high. Both KM and SM results show that over 89% of
the CPU time is spent in the kernel. It is also interesting to note the higher connection
rate, due to a much faster handling of each request.
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Table 5 KM Results for Workload
with Smaller Files

Table 6 SM Results for Workload
with Smaller Files

cpu user(%) 9.87

cpu sys(%) 87.07

cpu idle(%) 3.06

reads/s 0.79

user time(ms)/conn 23.97

system time(ms)/conn 2.83

(aggregate) conn/s 25.74

(aggregate) Mbits/s 1.46

The validation of the results collected by KM and SM was done through compari-
son with similar measurements obtained through the /proc filesystem and WebStone,
respectively. The differences between them are less than 1% [Almeida Almeidaet
al., 1996].

5.3 Effect of Keeping TCP Connections Open

We wanted to use Webmonitor to measure the effect of keeping TCP connections
open on our Web server. Recall that this is a requirement of TCP, to guard against
old data being received by a new connection. To isolate this effect, we reproduced
the experiments described above, but changed Linux's TCP implementation to close
connections without spending any time in the TIMEWAIT state. Although such
a TCP implementation is not “legal,” this modification allowed us to show the ef-
fect of keeping connections open on server behavior. In a legal implementation, the
TIME WAIT state is entered to catch and discard packets from a closed connection,
that were retransmitted by a client. The usual holding time in this state is 60 seconds,
after which the connection is closed (put in the TCPCLOSE state). It has been ob-
served by others [Mogul, 1995a, Mogul, 1995c, Padmanabhanet al., 1994] that the
holding time in the TIMEWAIT state is a possible performance problem for WWW
servers, however, we are the first to quantify this and give some insight into possible
causes.

Table 7 Number of Connections in TCP States (KM)

TCP State TIME WAIT = 0 TIME WAIT = 60 sec

ESTABLISHED 29.14 29.74

TIME WAIT 0 941.84

CLOSE 64.45 35.03

Table 7 gives the average number of connections seen in different TCP states. Al-
though TCP actually has 11 states, the number of connections in the other 8 states
was zero or negligible. The most interesting number in Table 7 is the large num-
ber (over 900) connections in the TIMEWAIT state, when its holding time is 60
seconds. These results are consistent with those in [Mogul, 1995a, Mogul, 1995c].
Fortunately, because of the large number of TCP connections that may be open at
the same time, Linux uses a hashed lookup table with a single entry cache to store its
connection desriptors. Such an implementation guards against connection descriptor
lookup times that increase linearly with the number of open connections (a common
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mistake in older TCP implementations). It is also interesting to note that more time
is spent in the closed state (TCPCLOSE), than in the state where the connections
are actually performing useful work (the ESTABLISHED state).

Table 8 Server Module Results for TIMEWAIT of 60 with 30 Clients

TIME WAIT = 60 sec Class 1 Class 2 Class 3

conn/s 16.40 0.88 0.07

Mbits/s 1.55 1.17 1.19

reads/conn 0.03 2.67 34.67

CPU parsetime(ms)/conn 4.78 4.81 3.81

CPU processingtime(ms)/conn 18.75 150.56 2231.35

CPU logtime(ms)/conn 5.28 6.99 9.10

elapsed parsetime(ms)/conn 23.45 21.80 6.20

elapsed processingtime(ms)/conn 155.81 3789.95 60578.90

elapsed logtime(ms)/conn 774.31 940.35 827.42

Table 9 Server Module Results for TIMEWAIT of 0 with 30 Clients

TIME WAIT = 0 Class 1 Class 2 Class 3

conn/s 24.64 1.25 0.10

Mbit/s 2.33 1.66 1.87

reads/conn 0.02 2.24 33.91

CPU parsetime(ms)/conn 2.41 2.34 2.41

CPU processingtime(ms)/conn 15.84 101.52 1373.71

CPU logtime(ms)/conn 6.09 7.07 7.05

elapsed parsetime(ms)/conn 8.62 6.26 5.83

elapsed processingtime(ms)/conn 77.89 2519.07 37417.10

elapsed logtime(ms)/conn 559.37 559.42 530.52

To understand the impact this large number of TIMEWAIT connections has on
server performance, we first looked at results from the SM. Tables 8 and 9 show SM
results for 30 clients using a TIMEWAIT time of 60 seconds and 0, respectively. The
results for latency and throughput (conn/s and Mbit/s) show a dramatic difference in
performance. Having a TIMEWAIT time of 60 seconds makes all the work that a
server performs (i.e., parsing, processing and logging an HTTP request) take longer.
This is true in terms of both CPU time and elapsed time. For example, the CPU time
to process a large (i.e., Class 3) request is two times greater for a TIMEWAIT time
of 60 seconds than for a TIMEWAIT time of 0.

As a consequence of the increase in latency when the TIMEWAIT time is set to
60, throughput decreases significantly. The performance penalty for the server can
be seen by a 33% higher number of connections serviced (and Mbits sent) per sec-
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ond, when the TIMEWAIT time is 0. It is also interesting to examine the resources
consumed at the server. Our KM results for both configurations (not presented here)
show that the consumption of all resources is roughly the same. Both CPU and mem-
ory utilizations are over 90%, indicating that the server is saturated in both experi-
ments. Furthermore, roughly the same number of HTTP processes are used to handle
the higher request rate when no time is spent in the TIMEWAIT state.

These results clearly show that the impact of the TIMEWAIT holding time is
twofold. First, although roughly the same number of HTTP processes are active at
the same time, these processes are able the handle a lower number of requests. Sec-
ond, that these processes consume more CPU time to serve each request. This is, of
course, only part of the answer to the larger question of whether memory, I/O, or the
CPU is the bottleneck for WWW servers.

6 CONCLUSION

Server performance has become a crucial issue for improving the overall perfor-
mance of the World-Wide Web. This paper describes Webmonitor, a tool for evalu-
ating and understanding server performance, and presents new results for a realistic
workload. These results emphasize the important role of operating system and net-
work protocol implementation in determining Web server performance.

Webmonitor measures activity and resource consumption, both within the kernel
and in HTTP processes running in user space. Webmonitor is implemented using
an efficient combination of sampling and event-driven techniques that exhibit low
overhead (less than 4%). We demonstrate the utility of Webmonitor by measuring
and understanding the performance of a Pentium-based PC acting as a dedicated
WWW server. Our workload, generated by WebStone, uses a file size distribution
with a heavy tail. This captures the fact that Web servers must concurrently handle
some requests for huge files and a large number of requests for small files.

Our results show that in a Web server saturated by client requests, up to 90% of
the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping
connections open, as required by TCP, causes a factor of 2 increase in the elapsed
time required to service an HTTP request. This increase in latency (caused by a high
number of connections in the TIMEWAIT state) is accompanied by a 33% reduction
in server throughput.

Although this paper provides an important understanding of World-Wide Web
server behavior under heavy load, the picture is far from complete. There is still the
question of whether memory, I/O, or the CPU is the bottleneck for Web servers. The
answer to this question will probably depend on the nature of the workload, how-
ever, there will continue to be a demand for server architectures that perform well
for heterogeneous workloads. This suggests the need for new operating system and
network protocol implementations that are designed to perform well when running
on Web servers.
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