
This is the first of two articles
intended to describe petroleum geo-
statistics for the nongeostatistician.
There are many misconceptions about
geostatistics, what it is, and what it
can or can’t do for the petroleum
industry.

The first article defines geostatis-
tics, examines its origins, and reviews
the spatial model and the kriging inter-
polation algorithm. The second article
describes geostatistical conditional
simulation and its use for uncertainty
(risk) analysis.

Earth science data exhibit spatial
correlation to greater or lesser degrees.
As the distance between two data
points increases, the similarity
between the two measurements
decreases. Geostatistics is a rapidly
evolving branch of applied statistics
and mathematics that offers a collec-
tion of tools which quantify and model
spatial variability. Spatial variability
includes scales of variability (hetero-
geneity) and directionality within data
sets.

Origins of geostatistics. The origins of
geostatistics are found exclusively in
the mining industry. D. G. Krige, a
South African mining engineer, and
H. S. Sichel, a statistician, developed a
new estimation method in the early
1950s when “classical” statistics was
found unsuitable for estimating dis-
seminated ore reserves.

Georges Matheron, a French engi-
neer, developed Krige’s innovative
concepts and formalized them within
a single framework with his Theory of
Regionalized Variables. Matheron, at the
Centre de Geostatistique, pioneered
the use of mining geostatistics in the
early 1960s. The word kriging was
coined in recognition of D. G. Krige.

It is interesting that geostatistics
was not originally developed to solve
interpolation problems (kriging) but
to address what is called the support
effect. In ore mining, this refers to the

difference between the variance of
average values measured from large
samples and the variance of average
values measured from small samples,
which leads to a systematic bias in esti-
mates. Support means the volume on
which a property is measured. Most of
us unwittingly overlook the support
effect in the petroleum industry, espe-
cially when combining well-log mea-
surements and seismic attributes, or
core and well test permeabilities.

By the early 1970s, kriging had
proved to be very useful in the min-
ing industry. Geostatistics was intro-
duced to the petroleum community
in the mid-1970s through its first
commercial software package,
BLUEPACK.

The technique spread to many
other areas of earth science in the 1970s
with the advent of high-speed com-
puters. However, it was not until the
mid- to late 1980s that geostatistical
techniques were used to any extent in
the petroleum industry, and its popu-
larity has grown every year since.

Geostatistics in the petroleum indus-
try. Maps and mapmaking are inte-
gral parts of reservoir characterization.
A map is a numerical model of an
attribute’s (e.g., porosity, permeabil-
ity, thickness, structure) spatial distri-
bution. However, mapping an
attribute is rarely the goal; rather, a
map is used to make a prediction about
the reservoir. To paraphrase Andre
Journel of Stanford University, “Amap
is a poor model of reality if it does not
depict characteristics of the real spa-

tial distribution of those attributes that
most affect how the reservoir
responds.”

The enormous up-front invest-
ments for developing heterogeneous
fields and the desire to increase ulti-
mate recovery have spurred oil com-
panies to use innovative reservoir
characterization techniques. Geostat-
istics is one of many new technologies
often incorporated into the process.
For more than a decade, geostatistical
techniques, especially when incorpo-
rating 3-D seismic data, have been an
accepted technology to characterize
petroleum reservoirs.

Geostatistical application necessi-
tates and facilitates cooperation
between geoscientists and reservoir
engineers, allowing each discipline to
contribute fully. This is quite different
from the past, because the mathemat-
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Figure 1.

Figure 2. Anisotropic variogram
showing a short-scale correlation
range of 800 m and a long-scale
range of 2200 m.
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Editor’s Note: The Geologic Column, which
appears monthly in TLE, is (1) produced coop-
eratively by the SEG Interpretation Committee
and the AAPG Geophysical Integration
Committee and (2) coordinated by M. Ray
Thomasson and Lee Lawyer.



ical formalization was often left to the
reservoir engineer. Thus, part of the
geostatistical philosophy is to ensure
that geologic reality does not get lost
during reservoir model building.

Geostatistics attempts to improve
predictions by developing a different
type of quantitative model. The goal
is to construct a more realistic model
of reservoir heterogeneity using meth-
ods that do not average important
reservoir properties. Like the tradi-
tional deterministic approach, it pre-
serves indisputable “hard” data where
they are known and interpretative
“soft” data where they are informative.
However, unlike the deterministic
approach, geostatistics provides
numerous plausible results. The
degree to which the various models
differ is a reflection of the unknown or
a measurement of the “uncertainty.”
Some outcomes may challenge pre-
vailing geologic wisdom and will
almost certainly provide a range of
economic scenarios, from optimistic to
pessimistic. Having more than one
result to analyze changes the para-
digm of traditional reservoir analysis
and may require multiple reservoir
flow simulations. However, the bene-
fits outweigh the additional time and
cost.

Again, to paraphrase Journel, “...
it is better to have a model of uncer-
tainty than an illusion of reality.”

Basic elements of a geostatistical
study. Once initial data sets are pre-
pared, quality controlled, and loaded
into the geostatistical software, a typ-
ical work flow, with iterations, might
be: (1) data mining; (2) spatial conti-
nuity analysis and modeling; (3) search
ellipse design; (4) model crossvalida-
tion; (5) kriging; (6) conditional simu-
lation; (7) model uncertainty
assessment.

The first five steps are discussed in
this article. Topics 6 and 7 will be
described next month.

Data mining. An early and funda-
mental step in any science starts at the
descriptive stage. Until facts are accu-
rately gathered and described, an
analysis of their causes is premature.
Because statistics generally deals with
quantities of data, not with a single
datum, we need some means to deal
with the data in a manageable form.
Thus, much of statistics deals with
ways of describing the data and under-
standing relationships between pairs
of variables. Data speak most clearly
when they are organized (Isaaks and
Srivastava, 1989).

Because there is no one set of pre-
scribed steps in data mining, you
should follow your instincts in explain-
ing anomalies in the data set. By using
various tools, you gain clearer under-
standing of your data and also dis-
cover possible sources of errors. Errors
are easily overlooked, especially in
large data sets and when computers
are involved, because we simply
become detached from our data.
Thorough analysis fosters an intimate
understanding of the data that can flag
spurious results.

The petroleum industry has a clas-
sic dilemma that can be summarized
as:

• very few direct “hard” observations
(well data) are available

• “soft” data (e.g., seismic, well tests)
are only indirectly related to the
“hard” data (e.g., core, logs)

• few observations lead to much
uncertainty

• it is still necessary to make predic-
tions about the reservoir

Because there is no economic way
to improve the ratio between hard and
soft data, the use of geostatistical tech-
niques is inevitable. Before discussing
some of these techniques, here is some
background concerning the “classical”
approach.

Classical statistical data analysis
includes data posting, computation of
means and variances, making scatter-
plots to investigate the relationship
between two variables, and identifi-
cation of subpopulations and potential
outliers.

Histograms, graphical representa-
tions of the data distribution of a sin-
gle variable, record how often values
fall within specified intervals or
classes. A bar depicts each class, and
its height is proportional to the num-
ber of values within that class. The his-
togram shape informs us about the
distribution of the data values. Ideally,
we like to see a bell-shaped, symmet-
rical distribution around the mean
value. This is referred to as a normal,
or Gaussian, distribution and has a
predictable shape based on the data
mean and variance. Many statistical
and geostatistical methods assume
such a data model. If the shape is
skewed to either side of the mean, then
often it is necessary to adjust the shape
by transforming the data into Gaussian
form. Complex histograms may indi-
cate mixing of multiple distributions.
Categorization of the data (e.g., by
facies) often identifies the underlying
distributions.

Spatial continuity analysis and mod-
eling. Variables of interest in the petro-
leum industry (e.g., porosity,
permeability, saturation, sand/shale
volumes, etc.) are the product of a vast
number of complex physical and
chemical processes. These processes
superimpose a spatial pattern on reser-
voir rock properties, and it is impor-
tant to understand the scales and
directional aspects of these features for
efficient hydrocarbon production. The
spatial component makes these vari-
ables complicated, and we are forced
to admit uncertainty about their dis-
tribution between wells. Because
deterministic models do not handle
uncertainties associated with these
variables, a geostatistical approach is
used because its foundation is proba-
bilistic theory (covariance models) that
recognizes these inevitable uncertain-
ties.

Consider the two images in Figure
1. The image on the left has a nearly
random appearance but does show
some preferential alignment from
northwest to southeast. The right
image has a higher degree of spatial
continuity and anisotropy, also aligned
northwest to southeast. Visually, the
images appear quite different, but their
mean values and variances are identi-
cal. Classical statistical analysis can-
not properly address the spatial
continuity and directionality inherent
in earth science data. Thus, we require
a model describing the continuity,
anisotropy, and azimuthal properties
in the data. The spatially correlated
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Figure 3. An anisotropic search
ellipse with eight sectors and a
maximum of two data points per
sector. The minor axis has a length
of 1000 m. The major axis (N15E)
has a length of 4000 m. The center
of the ellipse is the target grid
node for estimation. There are 55
sample points (x) in the study area.
Weights (in %) are shown for data
control points used for estimation
at the target point.



variable and its mathematical expres-
sion form the foundation of geostatis-
tics.

The spatial model. Spatial continuity
analysis quantifies the variability of
sample properties with respect to dis-
tance and direction (geographic loca-
tion is considered only if the data
exhibit a trend, a property known as
nonstationarity).

Quantifying spatial information
involves comparing data values at one
location with values of the same
attribute at other locations. For exam-
ple, two wells in close proximity are
more likely to have similar reservoir
properties than two wells farther apart.
The key question—what we want to
know—is what measured values tell us
about reservoir properties at unsampled
locations.

Spatial continuity or spatial corre-
lation analysis includes two main
steps:

1) Compute experimental measures of
spatial continuity, accounting for
anisotropy and azimuthal directions
(e.g., variogram or covariance).

2) Model the experimental variogram
or covariance for use in mapping.

If data are sampled on a regular
grid, the calculation search strategy is
simple. Unfortunately, well data rarely
form a neat regular array; therefore, to
extract as much information from the
data as possible, we search for data
within a bin rather than searching
along a simple vector. Spatial conti-
nuity is often very frustrating and
sometimes seemingly hopeless;
remember that it is an iterative process
and much is learned about the data in
the process of executing the process.
The two common measures of spatial
continuity are the variogram and the
covariance.

Variogram. For each azimuth and lag
(separation) distance studied, all mea-
sured values can be spatially corre-
lated and expressed as a statistical
value known as the variogram (γ):

where Z(xi) = the sample value at loca-
tion xi; Z(xi+h) = the sample value at
location xi + h, h = the lag distance, and
n = the number of data pairs.

The (semi)variogram correlation
term is a measure of dissimilarity, or
increasing variance as a function of
distance. The variogram is the sum of
the squared differences of all data pairs

falling within a bin (lag) divided by
twice the number of pairs found for
that lag. Computing and plotting
gamma as a function of increasing lag
distance, h, results in a plot of the
experimental variogram.

Covariance. The covariance, another
measure of spatial dependence, is
derived from the variogram. The var-
iogram increases with separation dis-
tance, but the covariance decreases.
Thus, the covariance is a measure of
similarity (correlation).

The relationship, where C(o) is the
variogram sill,

C(h) = C(o) - γ(h)
confirms the above statement that the
covariance behaves inversely with the
variogram.

Computing the covariance for
increasing lags (double, triple, etc.)
results in a plot showing decreasing
covariance (correlation) with distance.
The correlation scale length is deter-
mined when the covariance value
reaches zero (no correlation). 

Anatomy of an anisotropic correlation
model. With increasing distance, γ(h) (or
C(h)) tends to reach a constant value,
known as the sill (dashed horizontal
line in Figure 2). For a variogram, the
sill is the variance (�2) of measured
data. The distance at which the sill is
reached by the variogram is called the
range or correlation length. The covari-
ance reaches its range when C(h) = 0.
The range for a variogram and the
covariance should be the same for a
given set of search parameters. The sill
and range are useful properties when
one compares directional trends in the
data. Often the variogram and covari-
ance show a discontinuity at the ori-
gin, termed the nugget effect. The
nugget effect is considered random
noise and may represent short-scale

variability, measurement error, sam-
ple rate, etc.

Spatial continuity analysis is one
of the most important steps in a geo-
statistical study, because it strongly
influences the kriging and conditional
simulation results and associated
uncertainties.

Kriging and conditional simula-
tion applications require knowledge
of the correlation function for all pos-
sible distances and azimuths. This
requires a model of the experimental
variogram (covariance) in order to
know the variance (covariance) at any
location, not just along specific inter-
distance vectors corresponding to
angular/distance classes. Spatial mod-
eling is not curve fitting, in the least-
squares sense, because the selected
model must ensure that the kriging
variance is ≥ 0—a condition not nec-
essarily satisfied by least-squares or
other fitting methodologies.

Search ellipse design. Because com-
puters are used in mapping, we must
instruct the program how to gather
and use control points during inter-
polation. Most familiar with computer
mapping know that this involves
designing a search ellipse or neigh-
borhood. We must specify the length
of the search radius, the number of
sectors (typically four or eight), and
the number of data points per sector.
Most common mapping programs
allow the user to specify only one
radius; thus, the search ellipse is cir-
cular (isotropic). However, during
geostatistical analysis, we often find
that the spatial model is anisotropic.
Thus, we should design the search
ellipse based on the spatial model
correlation scales, aligning the search
ellipse azimuth with the major axis
of anisotropy (Figure 3).
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Figure 4. The difference between inverse weighted difference interpola-
tion (left) and kriging (right) using a 3:1 anisotropic variogram model ori-
ented N60E. The neighborhood search ellipse is identical for both.

  



Model crossvalidation. Crossvalid-
ation tests the “goodness” of the spa-
tial model and the search ellipse
design. The procedure compares esti-
mated values with measured values,
just as one computes residuals
between predicted and observed val-
ues in regression or analysis of vari-
ance. The procedure is:

For each sample in the data set,
compute a kriged estimate at the
same location, using the spatial
model and search ellipse parame-
ters but ignoring that sample value
during reestimation. Thus, each
sample value of a data set has a
reestimated value and a measure of
the kriging variance. From this
information, various displays are
created which are often humbling.
One common display is a scatter-
plot of measured versus reesti-
mated values. If the model were
perfect, the scatterplot would be a
straight line, but this never occurs.
However, if the kriged estimates
are unbiased, averages of the esti-
mated and measured values should
be equal.

Another usual display is the his-
togram of the standardized estima-
tion error, which is the reestimated
minus the observed values, divided
by the kriging variance. If the his-
togram is symmetrical about a mean
of 0, the estimates are unbiased. This
ensures that anywhere in the mapped
area, interpolated values have an
equal chance of being over- or under-
estimates of the true value.

Kriging. Contouring data by hand or
by computer uses some type of inter-
polation procedure. Many algorithms
are used in computer mapping, and
all require some criterion to be satis-
fied. Quite often a computer-gener-
ated map is unsatisfactory because it
doesn’t look “real”—that is, it does-
n’t depict the geology as we envision
it. Thus, the computer map often
requires much editing. The geoscien-
tist working by hand interpolates
between data points, draws connect-
ing contours, smoothes the map to
make it look real, and biases the con-
tours based on a geologic model.

Inverse weighted distance is a
commonly used mapping algorithm,
and its formulation is easily under-
stood. The weights used in the inter-
polation are based on how far each
control point (observed value) is from
the target (grid node). Thus, control
points closest to the target receive

higher weights. However, if the data
exhibit strong anisotropy, it does not
hold that the closest control point
should receive the greatest weight;
rather, more distant control points
need to have greater influence on the
interpolated value.

Kriging is a geostatistical inter-
polation technique. It is a linear
weighted-averaging method, similar
to inverse weighted distance.
However, kriging weights depend on
a model of spatial correlation.
Therefore, it is possible to create a
map exhibiting strong anisotropy,
resulting in a map that “looks” more
geologically plausible (Figure 4).

Conclusions. Geostatistics is not
magic or a panacea. It is not a replace-
ment for good data and is not a
replacement for thorough under-
standing and analysis of the data. The
results must be interpreted and vali-
dated in light of reservoir geology, rock
physics, and reservoir engineering
information/principles. Geostatistics
is a tool for helping to incorporate geo-
logic concepts into a quantitative 2-D
or 3-D representation.

Kriging is a deterministic method
that has a unique solution offering
the best estimate. It does not pretend
to represent the actual variability of
the studied attribute. It can be used
in the traditional way that other math-
ematical interpolation methods have
been used. It has the added value of
incorporating the spatial model and
thus more reliably depicting the
shapes of geologic features.

Next month’s paper will develop
the concept of stochastic modeling
and how it is used to model reservoir
heterogeneity more realistically by
creating many plausible representa-
tions of an attribute of interest. This
method not only captures the spatial
continuity like kriging but, unlike
kriging, it also preserves the vari-
ability.

Suggestions for further reading.
Geostatistics in Petroleum Geology by
Dubrule (AAPG Continuing Education
Course Note Series No. 38, 1998).
Geostatistics and Petroleum Geology by
Hohn (Kluwer Academic Publishers,
1999). Stochastic Modeling and Geostat-
istics, edited by Yarus and Chambers
(AAPG Computer Applications in
Geology No. 3, 1994). An Introduction
to Applied Geostatistics by Isaaks and
Srivastava (Oxford, 1989).  LE
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Opportunities
Abound…for
Attending Technical Program
Presentations in Calgary
This year’s Technical Program is slated to be
the largest in SEG history. Additional sessions,
with more opportunities to attend presenta-
tions, are a product of the record number of
715 Expanded Abstracts submitted. To accom-
modate the increased participation, Technical
Program presentations will begin at 10:30 AM

on Monday, August 7, and end at 5 PM on
Thursday, August 10. Full details of the
Technical Program and Convention Workshops
can be found online at http://meeting.seg.org/
techprog.

SEG/Calgary 2000
Convention Workshops
In past years, the Workshops began on
Thursday afternoon, but this year all work-
shops will be held on Friday, August 11, in the
same location as the Technical Program,
Stampede Park. (Organizers’ names are in
parentheses)

Through support of the SEG External Activities
Committee:
W-1 Seismic sources and marine mammals

(Jack Caldwell)

Through support of the SEG Research
Committee:
W-2 Using converted waves for lithology and

fluids discrimination and interpretation
(Ron Ward, Mark Meadows, Mrinal
Sengupta)

W-3 Beyond Biot-Gassmann (Randy
McKnight, Jim Berryman, Nader Dutta)

W-4 The role of geophysics in intelligent oil-
fields (Guillaume Cambois, Kurt Strack,
Leon Thomsen, Ali Tura)

W-5 Advances in electrical methods for petro-
leum applications (Kurt Strack, Geoff
Dorn, Mike Schoenberg)

W-6 Definition of attributes for rock physics
parameters (Larry Myer, Fred Aminzadeh)

W-7 Quantitative time-lapse geophysics:
Obtaining dynamic reservoir parameters
(Ian Jack, Colin Macbeth)

Through support of the SEG Interpretation
Committee:
W-8 Pitfalls in seismic interpretation (Larry

Lines)

Through support of the SEG Gravity and
Magnetics Committee:
W-9 The Crust and its structure (Guy

Flanagan)

Through support of the SEG Development &
Production Committee:
W-10 Quantitative prediction of reservoir prop-

erties using geophysical data (Ashley
Francis, John Eastwood, Jack Caldwell)


