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For more than a decade, stochastic,
or geostatistical, modeling methods
have been increasingly used to “map”
spatially correlated data. Recall that
kriging is a deterministic method
whose function has a unique solution
and that does not attempt to represent
actual variability of the studied
attribute. Thus, the smoothing prop-
erty of kriging dismisses local detail
in place of a good average. However,
often the geoscientist or reservoir
engineer is more interested in fine-
scale details captured by the estima-
tion variance than a map of local
estimates of the mean.

Geostatistical jargon is confusing.
For example, many authors often use
stochastic, probabilistic and conditional
simulation interchangeably. We con-
sider a stochastic model to be condi-
tional when it honors the measured
data and the spatial model (vari-
ogram or covariance). But for the sake
of simplicity, we also consider these
terms equivalent in this article.

To many, stochastic methods are
analogous to tossing a coin. They are
suspicious because it is well known
that the natural processes responsible
for creating reservoirs are not random.
In light of this, stochastic methodolo-
gies are often rejected outright.
Although it is true that reservoirs are
not products of random processes, it
is also true that they have attributes
that cause them to behave as if they
were random. For example, physical
and chemical processes often change
reservoir characteristics from their ini-
tial state, confounding our ability to
make predictions even when the
processes are understood. Such

Editor’s Note: Part 1 of this article (TLE,
May 2000) defined geostatistics, examined
its origins, and reviewed the concepts of the
spatial model and the kriging interpolation
algorithm. This article describes geostatisti-
cal conditional simulation, also known as sto-
chastic modeling, and its use for generating
realistic maps of reservoir heterogeneity,
uncertainty analysis, and economic risk analy-
sis.The Geologic Column, which appears
monthly in TLE, is (1) produced cooperatively
by the SEG Interpretation Committee and the
AAPG Geophysical Integration Committee
and (2) coordinated by M. Ray Thomasson
and Lee Lawyer.
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Reference image
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Figure 1. Distribution of sand (white) and shale (black). Vertical sampling =

5 m and lateral resolution = 100 m in reference image. Three “wells” penetrate
the section. Sand along the well bore is blue and shale is yellow. Inverse dis-
tance, kriging, and conditional simulations A-D are based on well data.
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changes, though, result in behavior
that can be captured using stochastic
principles.

Additionally, like the traditional
deterministic approach, stochastic
modeling preserves “hard” data
where known and interpretative
“soft” data where informative. But
unlike the deterministic approach, it
provides geoscientists and reservoir
engineers many equally probable
models called realizations. The kriged
solution is the average of numerous
realizations, and the variability
among different outcomes is simply
a measure of uncertainty at any loca-
tion. Thus, the standard deviation of
all values simulated at a fixed loca-
tion is a quantification of its uncer-
tainty.

What do we want? Before describing
various simulation methods, it is use-
ful to ask what it is that we want from
a stochastic modeling effort. The
method we choose depends on the
goal and—to a great extent—the types
of available data. Not all conditional
simulation studies need a Cadillac
when a Volkswagen will do.

Anumber of reasons exist for per-
forming stochastic simulation; four
important ones are: (1) capturing het-
erogeneity; (2) simulating facies or
rock properties or both; (3) honoring
and integrating complex information;
(4) assessing uncertainty.

Capturing heterogeneity. A good model
of heterogeneity implies better under-
standing of connectivity between per-
meable and nonpermeable zones,
resulting in better sweep efficiencies
and production forecasts. Over the
past decade, it has become increas-
ingly apparent that reservoir perfor-
mance predictions are more accurate
when based on models that reflect
possible reservoir heterogeneity. We
are painfully aware of countless
examples of failed predictions due to
overly simplistic models.

Although detailed models of het-
erogeneity are not necessarily
required for volumetric calculations,
heterogeneity does have great impact
on flow characteristics. Each realiza-
tion should have about the same net-
to-gross ratio, although generally
somewhat more conservative than
simple deterministic models.
However, because stochastic simula-
tion preserves the variance from
observed data, the realizations are
“rougher” in appearance, showing
more variability numerically in the
interwell space and thus emulating
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Figure 2. Uncertainty map showing the probability of occurrence of sand
computed from 50 simulations based on the three wells in Figure 1.

more realistic conditions. Although
each stochastic realization results in
a different picture of fluid flow, each
realization generally provides more
realistic information about the actual
flow behavior than conventional
deterministic models.

The reference image in Figure 1
shows distribution of sand (white)
and shale (black) with vertical sam-
pling of 5 m and lateral resolution of
100 m. Three “wells” penetrate the
section, with sand (blue) and shale
(yellow) noted along the well bore.
The images of inverse distance, krig-
ing, and four conditional simulations
are based on data from the three wells;
each image is different. The reference
image shows more heterogeneity
with a net-to-gross (N/G) ratio of
46.3%. Inverse distance (N /G 44.5%)
and kriging (N /G 46.1%) show much
more lateral connectivity of shales—
not unexpected because of the
smoothing property of interpolation
methods. Four of 50 simulations, also
based on three wells, look similar
globally but different locally and have
the “look and feel” of the reference
image. N/G ratios range from a low
of 42.9% to a high of 50.8% but aver-
age 46.3%. Although many stochastic
realizations are created to understand
and quantify uncertainty, quite often
only a single realization is used for
flow simulation and performance pre-
diction.

Simulating facies or rock properties (or
both). Modelers generally follow a
multistep approach when construct-
ing a stochastic reservoir model. The
reservoir architecture, usually the first
priority, consists of the overall struc-
tural elements—faults, top and base
of reservoir, etc. The second step is
identifying different geologic units,

based on sequence stratigraphic prin-
ciples, and defining internal bedding
geometries (onlap, offlap, etc.) for
each unit. The next step typically
involves modeling spatial distribution
of depositional facies (e.g. eolian, deep-
water fan, channels, etc.), or log-
derived facies (lithofacies). Depo-
sitional facies information generally
provides the greatest clarity in terms
of spatial geometries, but this is not
always available. Lithofacies are more
easily obtainable but are not guaran-
teed to honor actual depositional facies
boundaries. However, the two are usu-
ally strongly related, and it is common
at this point to group facies exhibit-
ing similar petrophysical and satura-
tion properties into more general
units called lithotypes. The lithotypes
are then modeled and the results
should reflect the spatial arrangement
of the flow units. The final step in
building the static (high-resolution)
geologic model is to populate the
lithotypes with rock and fluid prop-
erties. The important difference
between modeling facies and model-
ing rock properties is that the former
is a categorical variable and the latter
are continuous variables.

Honoring secondary data. Stochastic
methods, such as kriging also allow us
to incorporate a broad range of infor-
mation that most conventional meth-
ods cannot accommodate. Many are
interested in the stochastic simulation
not for its range of plausible outcomes
but for its ability to simultaneously
integrate additional “soft” data (e.g.,
seismic or well tests) because it
improves reliability away from con-
trol points where only secondary
forms of data are available.

Assessing uncertainty. Anyone who



forecasts reservoir performance
understands that there is always
uncertainty in the reservoir model.
Performance forecasts or volumetric
predictions are often based on a “best-
case” model. However, a reservoir
asset team may also be interested in
other models, such as the “pes-
simistic” and “optimistic” cases. A
minimum of three models allows the
team to assess whether the develop-
ment plan, based on the best-case sce-
nario, is flexible enough to handle a
range of uncertainty.

Stochastic simulation lends itself
to Monte Carlo risk analysis because
the methods offer many models con-
sistent with the input data. One crit-
ical aspect is the belief in some “space
of uncertainty” that has been sam-
pled unbiasedly and adequately by a
set of realizations. Results can then be
summarized as a probability distrib-
ution rather than a simple selection of
some limited number of plausible
realizations from a larger set.

Stochastic simulation is not an
estimation method like kriging. The
value simulated at any fixed grid
node represents a value drawn from
a probability distribution. This dis-
tribution is predetermined and is
based on information from the con-
trol data within the search ellipse,
informative “soft” data (if used), and
the spatial model. Thus, 100 stochas-
tic realizations yield 100 simulated
values per grid node.

The questions now become (1)
What do I do with all these simulated
images? and (2) Which is correct?

In answer to the second, any of the
simulated images is, technically,
equally probable. However, just
because each realization is equally
probable does not mean each is geo-
logically acceptable. Each simulated
image should be examined to deter-
mine whether it is a reasonable rep-
resentation of what is known about
the reservoir. If not, it should be dis-
carded.

The first question is answered with
an example. Let us say that a geosta-
tistical study used collocated kriging
for porosity with seismic acoustic
impedance as the secondary attribute.
How reliable is the map? In other
words, what level of confidence is
associated with the results? The same
question could be asked about a map
created with the inverse-distance
method or any traditional interpola-
tion method (including hand-con-
touring).

Because stochastic modeling gen-
erates independent realizations, the
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numerous outcomes are often post-
processed to quantify uncertainty.
Possible maps generated from a suite
of simulated images include:

* Mean: This map is the average of n
conditional simulations. At each
cell, the program computes the
average value based on the values
at that location from all simulations.
When n is large, the map converges
to the kriged solution.

Standard deviation: A map of the
standard deviation at each grid cell
computed from all input maps. This
measures the standard error and is
used to analyze uncertainty.

¢ Uncertainty or risk: This map dis-
plays the probability of meeting or
exceeding a user-specified thresh-
old at each grid cell. Grid cell val-
ues range from 0 to 100%.
Isoprobability: These maps display
the attribute value at a constant
probability threshold.

Figure 2 is an uncertainty map for
the occurrence of sand computed
from 50 simulations based on the
three wells in Figure 1. Remember
that blue along the well bore indicates
sand and that yellow is shale. Thus,
the most likely locations of porous
rock can be readily identified and
locally validated by well-bore infor-
mation.

Stochastic simulation. Stochastic
simulation is a Monte Carlo technique
designed to honor measured data;
closely reproduce the data histogram;
honor the spatial model; be consis-
tent with secondary data; and assess
uncertainty in the reservoir model.
Several simulation methods are
available. The choice depends on
goals and data types and availability.
Commonly used methods are turning
bands, sequential simulation, simu-
lated annealing, probability field,
matrix decomposition, and Boolean
(or object-based models such as
marked-point process).

Turning bands. This, one of the earli-
est simulation methods, first creates
smooth kriged models along a set of
random lines on top of a regular grid.
Next, residual values are added to
each value along a given line to repro-
duce the original data variance. The
residual values are added through a
nonconditional simulation step that
uses the same histogram and spatial
model as in kriging but does not use
the actual data values at the wells.
The number of lines is controlled by

the modeler and the nodes between
lines are linearly interpolated—the
more lines, the less interpolation. The
final model honors the original data,
the spatial model, and the original
variance and has an appropriate level
of spatial heterogeneity.

Sequential simulation. Three sequen-
tial simulation procedures use the
same basic algorithm for different
data types.

® Sequential Gaussian simulation
(SGS) simulates continuous vari-
ables, such as petrophysical prop-
erties. The procedure is essentially
the same as kriging, with the addi-
tion of a bias.

Categorical sequential indicator
simulation (SIS) simulates discrete
variables. It is possible to create a
grid of Os and 1s, using the same
methodology as SGS, which repre-
sent “lithofacies” (pay/nonpay, or
sand/shale).

Bayesian sequential indicator sim-
ulation, a newer form of SIS, allows
direct integration of seismic attrib-
utes using a combination of classi-
fication and indicator methods.

The general process is:

1) Select at random a node not yet
simulated in the grid.

2) Use kriging to compute a local con-
ditional probability distribution
function (Icpd), with zero mean
and unit variance. Computing the
lcpd depends on the simulation
method used.

3) Draw at random a single value, zi
from the lcpd, whose maximum
spread is two standard deviations
about the mean, mi.

4) Create a newly simulated value
Z5i* = mi + zi.

5) Include the newly simulated value
ZSi* in the set of conditioning data.
This ensures that closely spaced
values have the correct short-scale
correlation.

6) Repeat until all grid nodes have a
simulated value.

The order in which grid nodes are
randomly simulated influences the
cumulative feedback effect on the
outcome. The selection process is ran-
dom but repeatable. For each simu-
lation, grid nodes are shuffled into an
order defined by a random seed
value. Each random seed corresponds
to a unique order of the grid nodes
and different random seed values



produce different paths through the
grid. Although the total possible num-
ber of orderings is very large, each
random path is uniquely identified
and repeatable.

Simulated annealing. This method was
borrowed from metallurgy. When two
pieces of metal are fused, the zone of
attachment is heated to a point at
which the atomic structure can be
rearranged. As the metal cools, abond
is formed where the two pieces of
metal are joined. As applied to sto-
chastic modeling, the idea is to pro-
duce an initial starting realization,
introduce some particular conditions
(new pieces of metal to be fused),
“heat” it up, and “cool” it down. The
result is to rearrange the pixels to
match the particular conditions intro-
duced. The method constructs the
reservoir model via iterative trial and
error and does not use an explicit ran-
dom function model. The simulated
image is formulated as an optimiza-
tion process.

For example, our desired result
might be an image of a sand/shale
model with a 70% net-to-gross ratio,
an average shale length of 60 m, and
average shale thickness of 10 m. The
starting image has pixels arranged
randomly with sand and shale in the
correct global proportion, but net-to-
gross is incorrect due to the random
assignment of the sand and shale. In
addition, the average shale length and
width are too short. During the com-
putation, the annealing algorithm
attempts to modify the initial image
by swapping information from node
to node until the final image matches
the statistics of the input data. This
produces excellent results but can be
inefficient; i.e., millions of perturba-
tions may be required to arrive at the
desired image. However, these meth-
ods are becoming more attractive
because of the availability of faster
computers with more memory.

Probability field. This method is an
alternative to the sequential simula-
tion methods described earlier. In
sequential simulation, the value
drawn from the local cumulative
probability distribution (lcpd) at a
particular grid node is treated as hard
data and included as local condition-
ing data. This ensures that closely
spaced values have the correct short-
scale correlation. Otherwise, the sim-
ulated image would contain too much
short-scale (high-frequency noise)
variability. The idea behind probabil-
ity field, or P-field, simulation is to
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increase the efficiency of computing
the Icpd from the original well data
only. P-field simulation gets around
the problem of too much short-scale
variability by controlling the sam-
pling of the distributions rather than
controlling the distributions as in
sequential simulation. The method
decouples computation of the lpcd
and its sampling. Subsequent real-
izations don’t need to recompute the
Ipcd, greatly speeding up computa-
tion time.

Matrix decomposition. Some simula-
tion techniques involve matrix
decomposition. L-U decomposition,
for example, uses different outcomes
created by multiplying vectors of ran-
dom numbers by a precalculated
matrix derived from spatial continu-
ity information (typically from a var-
iogram or correlogram). Matrix
methods can be viewed as sequential
simulation because multiplication
across the rows of the precalculated
matrix and down the column vector
of the random numbers can be con-
strued as a sequential process in
which the value of each successive
node depends on the values of pre-
viously simulated nodes. Only hun-
dreds of nodes can be simulated at a
time using matrix decomposition
methods. Large models are simulated
by splicing smaller models or by a
moving-window approach.

Boolean (or object-based) techniques.
These methods create reservoir mod-
els based on objects (groupings of pix-
els) that have a genetic significance
rather than having been built up from
one elementary node or pixel at a
time. To use such methods, you need
to select a basic shape for each depo-
sitional facies that describes its geom-
etry. For example, you might want to
model sand channels that look like
half ellipses in cross-section, or deltas
as triangular wedges in map view.
You must specify the proportions of
the shapes in the final model and
choose a distribution for parameters
that describe the shapes. Some algo-
rithms have rules describing how
geobodies are positioned relative to
each other. For example, can they
cross like braided streams or attach
like splays and channels? Do the
objects repulse or attract, or must
there be a minimum distance between
shapes?

Once the distribution of parame-
ters and position rules are chosen, the
remaining steps are:

1) Fill the reservoir model back-
ground with some lithofacies (e.g.,
shale).

2) Randomly select a starting point in
the model.

3 Randomly select one lithofacies
shape and draw it with appropriate
size, anisotropy, and orientation.

4) Check if the shape conflicts with
any conditioning data (e.g., well
data) or with other previously sim-
ulated shapes. If not, keep the
shape; otherwise, reject it and go
back to the previous step.

5) Check to see if the global propor-
tions are correct; if not, return to
step 2.

6) Simulate petrophysical properties
within the geobodies using more
classical geostatistical methods.

If control data must be honored,
this step is typically completed before
the interwell region is simulated. Care
must be taken to ensure that there are
no conflicts with known stratigraphic
and lithologic sequences in the wells.

Boolean or object-based tech-
niques are of current interest in the
petroleum industry—a number of
research/academic institutions and
commercial vendors are working on
implementation algorithms. This
approach to modeling is particularly
satisfying to geologists because the
objects created are based on the sta-
tistics of shapes and facies relation-
ships that have been measured and
because images from the ensuing
depositional facies model look realis-
tic.

In the past, Boolean-type algo-
rithms could not always honor all con-
ditioning data, because the algorithms
were not strict simulators of shape.
However, new technology has greatly
alleviated this problem. The number
of input parameters for Boolean mod-
eling can be large, and this is some-
times a criticism. Nevertheless, most
geologists are very familiar with the
type of information required, and
although this lends a certain amount
of determinism to the model, it is prac-
tical—particularly when the deposi-
tional systems that comprise the
reservoir are understood.

Conclusions. Geostatistics is a rapidly
evolving branch of applied statistics
and mathematics aimed at quantifying
and modeling spatial variability.
Spatial variability includes scales of
heterogeneity and direction within
data sets. Geostatistics is a powerful
formalism that must be applied with
care.



Hopefully, this article has helped
readers understand that stochastic
modeling algorithms are more than
a simple coin-tossing experiment for
simulating interwell space. Geosta-
tistics treats deterministic informa-
tion as such and what is unknown as
probabilistic. Variability between
realizations is a measure of uncer-
tainty (remembering of course, that
there is also uncertainty in the con-
trol data and in the spatial model
applied during the simulation).

The choice of a geostatistical
method depends on the project goal,
data types and availability, deposi-
tional environment, and the scale at
which the model must be used.

In 1998, Dubrule presented some
thoughts about the future of stochas-
tic modeling. Following are some of
our thoughts which expand his ideas:

* Better geologically based rules for
different environments: We need
more effort toward improving and
quantifying rules for geologic input
to geostatistical modeling. As geol-
ogists become more aware of and
comfortable with stochastic model-
ing techniques, geology will drive
the algorithms rather than the oppo-
site.

* Better use of indirect or “soft” infor-
mation: Even though techniques
exist to constrain geostatistical mod-
els by seismic attributes and well
information, the results are not
always accepted, because assump-
tions for their use are not always
clear. Thus, techniques will be devel-
oped to help us better understand
the interrelationships between petro-
physical properties and seismic
attributes, and to combine quantita-
tively static and dynamic data.

* Better quantification of uncertainty:
Uncertainties exist at all levels, from
input data to model assumptions
and model parameters. Techniques
will be developed to help us better
quantify and use these uncertainties
at all phases of modeling to provide
better models for economic risk
analysis.

More effort on developing stochas-

tic structural modeling methods:

Quite often, geologic surprises in the

fluid-flow modeling could be related

to poor use of fine-scaled structural
features such as subseismic faults.

Several modeling packages are now

on the market for modeling and sim-

ulating fault and fractures patterns.

However, it is still difficult to incor-

porate these results into the overall

high-resolution geologic model and
finally in the fluid-flow simulation,
especially as related to the latter,
because flow-simulator software
requires so much upscaling (coars-
ening) of the geologic model that
fine-scale structural and strati-
graphic features are often lost.
Future developments in parallel
processing for flow simulation
should help minimize the need for
so much upscaling.

Integration of geostatistical model-
ing tools in 3-D “earth-modeling”
tools: Great strides have been made
in developing tools which integrate
structural, stratigraphic, sedimen-
tological, and petrophysical infor-
mation into a consistent 3-D “earth
model.” Geostatistical models are
becoming a tool kit within earth-
modeling software.

Suggestions for further reading.
Geostatistics in Petroleum Geology by
Dubrule (AAPG Continuing Education
Course Notes No. 38, 1998). Geostatistics
and Petroleum Geology by Hohn (Kluwer
Academic Publishers, 1999). Stochastic
Modeling and Geostatistics, edited by
Yarus and Chambers (AAPG Computer
Applications in Geology, No. 3,1994). E
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