В библиотеку

Описание и характеристика материалов, загружаемых в доменную печь

Источник: http://www.referatu.ru/1/26/395.htm

Описывается перечень материалов, загружаемых в доменную печь, их месторождение, классификация, характеристика, химический состав, рассматривается процесс коксования.

Железные руды, природные минеральные образования, содержащие железо в таких количествах и соединениях, при которых промышленное извлечение из них металла экономически целесообразно. Железные руды разнообразны по минеральному составу, содержанию железа, полезных и вредных примесей, условиям образования и промышленным свойствам. Важнейшими рудными минералами являются: магнетит, магномагнетит, титаномагнетит, гематит, гидрогематит, гётит, гидрогётит, сидерит, железистые хлориты (шамозит, тюрингит и др.). Содержание железа в промышленных рудах изменяется в широких пределах – от 16 до 70%. Различают богатые (50% Fe), рядовые (50-25% Fe) и бедные (25% Fe). В зависимости от химического состава железные руды применяются для выплавки чугуна в естественном виде или после обогащения. Железные руды, содержащие меньше 50% Fe, обогащают (до 60% Fe) главным образом методами магнитной сепарации или гравитационного обогащения. Рыхлые и сернистые (>0,3% S) богатые руды, а также концентраты обогащения окусковываются путём агломерации; из концентратов производятся также т. н. окатыши. Железные руды, идущие в доменную шихту, во избежание ухудшения качества стали или условий плавки, не должны содержать более 0,1-0,3% S, Р и Cu и 0,05-0,09% As, Zn, Sn, Pb. Примесь в Железные руды Mn, Cr, Ni, Ti, V, Co, кроме некоторых случаев, полезна. Три первых элемента улучшают качество стали, а Ti, V, Со могут попутно извлекаться при обогащении и металлургическими переделе.

Месторождения железной руды по происхождению разделяются на 3 группы – магматогенные, экзогенные и метаморфогенные. Среди магматогенных различаются: магматические – дайкообразные, неправильные и пластообразные залежи титаномагнетитов, связанные с габбро-пироксенитовыми породами и апатито-магнетитовые залежи, связанные с сиенитами и сиенитдиоритами; контактово-метасоматические, или скарновые, возникают на контактах или вблизи интрузивных массивов; под воздействием высокотемпературных растворов вмещающие карбонатные и др. породы превращаются в скарны, а также пироксен-альбитовые и скаполитовые породы, в которых обособляются сложные по форме залежи сплошных и вкрапленных магнетитовых руд, гидротермальные образуются при участии горячих минерализованных растворов, путём отложения железных руд по трещинам и зонам смятия, а также при метасоматическом замещении боковых пород.

К экзогенным месторождениям относятся: осадочные БД – химические и механические осадки морских и озерных бассейнов, реже в долинах и дельтах рек, возникающие при местном обогащении вод бассейна соединениями железа и при сносе в них железистых продуктов прилегающей суши; слагают пласты или линзы среди осадочных, иногда – вулканогенно-осадочных пород; к этому типу относятся месторождения бурых железняков, частью сидеритов, силикатных руд, месторождения коры выветривания образуются в результате выветривания горных пород с железосодержащими породообразующими минералами; различают остаточные, или элювиальные, месторождения, когда продукты выветривания, обогащенные железом (вследствие выноса из породы др. составных частей), и инфильтрационные (цементационные), когда железо вынесено из выветривающихся пород и переотложено в нижележащих горизонтах.

Метаморфогенные (метаморфизованные) месторождения – преобразованные в условиях высоких давлений и температур ранее существовавшие, преимущественно осадочные, месторождения. Гидроокислы железа и сидериты переходят при этом обычно в гематит и магнетит. Метаморфические процессы иногда дополняются гидротермально-метасоматическим образованием магнетитовых руд.

Основные промышленные типы классифицируются по преобладающему рудному минералу.

Бурые железняки. Рудные минералы представлены гидроокислами железа, больше всего гидрогетитом. Такие руды обычны в осадочных месторождениях и месторождениях коры выветривания. Сложение плотное или рыхлое; осадочные руды часто имеют оолитовую текстуру. Содержание Fe колеблется от 55 до 30% и менее. Обычно требуют обогащения. Т. н. самоплавкие бурые железняки, в которых близко к единице, идут в плавку при содержании Fe до 30% (Лотарингия). В бурых железняках некоторых месторождений находится до 1-1,5% и более Mn. Важное значение имеют комплексные хромо-никелевые бурые железняки; при наличии 32-48% Fe в них нередко содержится также до 1% Ni, до 2% Cr, сотые доли процента Со, иногда V. Из таких руд могут без добавок выплавляться хромо-никелевые чугуны и низколегированная сталь.

Красные железняк и, или гематитовые руды. Основным рудным минералом является гематит. Представлены главным образом в коре выветривания (зона окисления) железистых кварцитов и скарновых магнетитовых руд. Такие руды часто называют мартитовыми (мартит – псевдоморфозы гематита по магнетиту). Среднее содержание Fe от 51 до 60%, иногда выше, с незначительными примесями S и Р. Известны месторождения гематитовых руд с присутствием в них до 15-18% Mn. Менее развиты гидротермальные месторождения гематитовых руд.

Магнитные железняки, или магнетитовые руды. Рудный минерал – магнетит (иногда магнезиальный), нередко мартитизированный. Наиболее характерны для месторождений контактово-метасоматического типа, связанных с известковыми и магнезиальными скарнами. Наряду с богатыми массивными рудами (50-60% Fe) распространены вкрапленные руды, содержащие менее 50% Fe. Известны месторождения руд с присутствием ценных примесей, в частности Со, Mn. Вредные примеси – сульфидная сера, Р, иногда Zn, As. Особую разновидность магнетитовых руд представляют титаномагнетитовые руды, являющиеся комплексными железо-титано-ванадиевыми. Важное промышленное значение приобретают вкрапленные титаномагнетитовые руды, являющиеся по существу основными интрузивными породами с повышенным содержанием породообразующего титаномагнетита. В них обычно присутствует 16-18% Fe, но они легко обогащаются магнитной сепарацией.

Сидеритовые руды (шпатовые железняки) разделяются на кристаллические сидеритовые руды и глинистые шпатовые железняки. Среднее содержание Fe 30-35%. После обжига, в результате удаления CO2, сидеритовые руды превращаются в промышленные ценные тонкопористые железо-окисные (обычно содержат до 1-2% Mn, иногда до 10%). В зоне окисления сидеритовые руды превращаются в бурые железняки.

Силикатные железные руды. Рудными минералами в них являются железистые хлориты, обычно сопровождающиеся гидроокислами железа, иногда сидеритом (Fe 25-40%). Примесь S незначительна, Р до 0,9-1%. Силикатные руды слагают пласты и линзы в рыхлых осадочных породах. Часто обладают оолитовой текстурой. В коре выветривания превращаются в бурые, частью красные железняки. Железистые кварциты (джеспилиты, железистые роговики) – бедные и средние (12-36% Fe) докембрийские метаморфизованные Железные руды, сложенные тонкими чередующимися кварцевыми, магнетитовыми, гематитовыми, магнетит-гематитовыми прослоями, местами с примесью силикатов и карбонатов. В железистых кварцитах мало примесей S, Р. Залежи железистых кварцитов обычно обладают крупными запасами металла. Их обогащение, в особенности магнетитовых разностей, даёт вполне рентабельный концентрат с содержанием 62-68% Fe. В коре выветривания кварц из железистых кварцитов выносится, и возникают крупные залежи богатых гематито-мартитовых руд.

Большая часть используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах служат природными красками (охры) и утяжелителями буровых глинистых растворов. Требования промышленности к качеству и свойствам Железные руды разнообразны. Так, для выплавки некоторых литейных чугунов применяются Железные руды с большой примесью Р (до 0,3-0,4%). Для плавки мартеновских чугунов (главного продукта доменного производства), при плавке на коксе содержание S в руде, вводимой в домну, не должно превышать 0,15%. Для производства чугунов, идущих в мартеновский передел кислым способом, Железные руды должны быть особо малосернистыми и малофосфористыми; для передела основным способом в качающихся мартенах допускается несколько более повышенная примесь в руде Р, но не выше 1,0-1,5% (в зависимости от содержания Fe). Томасовские чугуны плавятся из фосфористых Железные руды с повышенным количеством Fe. При выплавке чугунов любого типа содержание Zn в Железные руды не должно превышать 0,05%. Руда, используемая в домне без предварительного спекания, должна быть механически достаточно прочной. Т. н. мартеновские руды, вводимые в шихту, должны быть кусковыми и иметь высокое содержание Fe при отсутствии примесей S и Р. Обычно таким требованиям удовлетворяют плотные богатые мартитовые руды. Магнетитовые руды с содержанием до 0,3-0,5% Cu используются для получения сталей с повышенной устойчивостью против коррозии.

В мировой добыче и переработке Железные руды различных промышленных типов отчётливо проявляется тенденция значительного увеличения добычи бедных, но хорошо обогащающихся руд, в особенности магнетитовых железистых кварцитов, в меньшей мере вкрапленных титано-магнетитовых руд. Рентабельность использования таких руд достигается крупными масштабами горно-обогатительных предприятий, совершенствованием техники обогащения и окускования получаемых концентратов, в частности получения т. н. окатышей. Вместе с тем сохраняет актуальность задачи увеличения ресурсов Железные руды, не требующих обогащения.

Марганцевые руды, природные минеральные образования, содержание марганца в которых достаточно для экономически выгодного извлечения этого металла или его соединений. Важнейшие рудообразующие минералы: пиролюзит MnO2 (63,2 % Mn), псиломелан MnOMnO2nH2O (45—60 % Mn), манганит MnOMn(OH)2 (62,5 % Mn), вернадит MnO2H2O (44—52 % Mn), браунит Mn2O3 (69,5 % Mn), гаусманит Mn3O4 (72 % Mn), родохрозит MnCO3 (47,8 % Mn), олигонит (Mn, Fe)CO3 (23—32 % Mn), манганокальцит (Ca, Mn)CO3 (до 20—25 % Mn), родонит (Mn, Ca)(Si3O9) (32—41 % Mn), бустамит (Ca, Mn)(Si3O9) (12—20 % Mn). В Марганцевые руды почти всегда присутствуют минералы железа. По генезису наибольшее значение имеют осадочные месторождения, представленные пластовыми и линзообразными залежами, сформировавшимися в древних морских или озёрных бассейнах. Эти руды имеют наибольшее промышленное значение; среди них различают следующие главные типы:

а) окисные псило-мелано-пиролюзитовые и манганитовые руды, образующиеся на небольшой глубине, в зоне максимального насыщения вод растворённым кислородом; содержание Mn по отдельным месторождениям 19-36 %;

б) карбонатные, преимущественно родохрозитовые, олигонитовые, мангано-кальцитовые руды, формирующиеся на больших глубинах, в условиях недостатка кислорода в сопровождении сероводородного брожения; содержание Mn от 16 до 25 %, отличаются от окисных руд повышенным содержанием фосфора. Метаморфические месторождения образуются за счёт изменения осадочных месторождений в недрах Земли под действием высоких температур и давлений; обычно представлены плотными разновидностями руд, в составе которых принимают участие безводные окислы (браунит, гаусманит) и силикаты марганца (родонит и другие); среди них развиты железо-марганцевые руды с содержанием Mn около 10 %, включающие промышленные концентрации минералов Fe (магнетита, гематита и других). Месторождения выветривания представлены мощными древними и современными корами выветривания с вторичной концентрацией в них марганца (месторождения Индии, Бразилии, Ганы, ЮАР); это рыхлые окисленные руды так называемых марганцевых шляп, сложенные пиролюзитом, псило-меланом и другими гидроокислами марганца и железа.

На дне современных океанов находятся скопления железо-марганцевых конкреций, составляющие крупные ресурсы Марганцевые руды

Окатыши, рудный материал, получаемый из мелкой (пылевидной) руды или тонкоизмельчённых концентратов, в виде весьма прочных комков сферической формы крупностью от 2-3 до 30 мм (обычно 10-15 мм); железорудные Окатыши применяются главным образом в доменной плавке. Окатыши способны переносить транспортирование с перегрузками и длительное хранение без заметного разрушения или образования мелочи. Окатыши получают неофлюсованными или офлюсованными (с добавкой флюсов). Железорудные окатыши, в которых часть окислов железа (до 95%) восстановлена до металла, называется металлизованными (используются главным образом в электросталеплавильных печах для получения качественной стали).

Окатывание, окомкование, процесс получения окатышей; осуществляется в барабанных, тарельчатых или конусных грануляторах в результате взаимодействия между частицами руды или концентрата с водой. Поверхностное натяжение тонкой плёнки воды на частицах руды обусловливает сжимающий эффект, а капиллярная влага, располагающаяся в порах между частицами, под действием отрицательного капиллярного давления удерживает их в таком положении. Интенсивность взаимодействия зависит от природы (поверхностных свойств) рудных материалов, их смачиваемости и главным образом от крупности и формы частиц. Укрупнение частиц до требуемых размеров в грануляторе происходит по принципу образования снежного кома. Прочность получающихся окатышей пропорциональна степени гидрофильности и дисперсности частиц. Сырые окатыши затем подвергают упрочняющему обжигу, основанному на образовании керамической связки или слипании частиц при их размягчении; обжиг производится в шахтных печах, конвейерных и кольцевых обжиговых машинах, комбинированных установках «решётка-трубчатая печь» производительностью 0,5-5 млн. т/год. Процесс предложен в 20-х гг. 20 в. Первые промышленные установки были созданы в США в 1945-1955. К 1973 мировые мощности по производству обожжённых окатышей достигли 150 млн. т/год.

Основность в металлургии, отношение (в процентах по массе) содержания основных и кислотных окислов в железорудных материалах (железная руда, агломерат, окатыши и др.), а также в доменных и сталеплавильных шлаках, характеризующее их химический состав и соответственно металлургические свойства. В простейшем случае Основность – отношение содержания СаО к содержанию SiO2 (или суммы СаО и MgO к сумме SiO2 и Al2O3). Для железорудных материалов различают естественную (природную) Основность и полученную в результате добавки флюсов. Основность может изменяться от десятых долей единицы до 2-3.

Кокс (нем. Koks, от англ. соке), искусственное твёрдое топливо повышенной прочности; получается при нагревании до высоких температур (950-1050 °С) без доступа воздуха природных топлив или продуктов их переработки. В зависимости от вида сырья различают каменноугольный, электродный пековый и нефтяной Кокс Основное количество Кокс производится из каменного угля.

Каменноугольный Кокс применяют главным образом в доменном процессе для выплавки чугуна (доменный Кокс). Кокс здесь служит одновременно топливом и восстановителем железной руды. В значительно меньших количествах Кокс используется в литейном производстве (литейный Кокс), для агломерации руд, в химической промышленности, цветной металлургии и др. Производство каменноугольного кокса возникло в 18 в., когда понадобилось заменить становившийся всё более дефицитным древесный уголь для доменных печей.

Каменноугольный Кокс представляет собой удлинённые куски серого цвета. Истинная относительная плотность Кокс 1,80-1,95 г/м3, кажущаяся, с учётом пор, 0,8-1,0, пористость в среднем около 50%. Насыпная масса Кокс 400-500 кг/м3. Теплота сгорания Кокс около 29 Мдж/кг (около 7000 ккал/кг), а его горючей массы около 33 Мдж/кг (около 8000 ккал/кг). Содержание углерода в горючей массе Кокс выше 96%, выход летучих веществ 0,8-1,0%. Содержание влаги в Кокс при сухом тушении не превышает 0,5%, а при мокром – обычно 2-4%. Содержание серы в доменном Кокс из донецких углей составляет 1,5-1,9%, из кузнецких – 0,4-0,5%; для литейного Кокс оно не должно превышать 1,2%. Содержание фосфора в Кокс при выплавке, например, бессемеровского чугуна не должно превышать 0,015%. Зольность доменного Кокс должна быть не выше 9-10,5%. При увеличении количества этих составных частей Кокс ухудшается качество металла, повышается расход Кокс и шихты и резко снижается производительность доменной печи.

Электродный пековый и нефтяной Кокс имеют по сравнению с каменноугольным очень низкую зольность, как правило, не выше 0,3%. Электродный пековый Кокс получают коксованием в камерных динасовых печах высокоплавкого каменноугольного пека. Нефтяной Кокс образуется также при крекинге и пиролизе продуктов перегонки нефти. Электродный пековый и нефтяной Кокс – основное сырьё для производства электродов.

Коксование, промышленный метод переработки природных топлив (главным образом каменного угля) путём нагревания до 950-1050 °С без доступа воздуха. Основной продукт Коксование – кокс.

Коксование возникло в 18 в., когда истребление лесов для получения древесного угля, первоначально шедшего на выплавку чугуна, стало угрожающим и потребовалось заменить этот уголь минеральным топливом. В 1735 в Великобритании была проведена первая доменная плавка на коксе. Кокс выжигался в кучах, подобно тому как до этого выжигался древесный уголь. В конце 18 в. было освоено Коксование в полузакрытых, а с 1830 – в закрытых камерах, причём выделяющиеся летучие продукты сжигались. С 70-х гг. 19 в. начинают использовать ле<a href="#2">тучие продукты; совершенствуются методы обогрева печей для Коксование К началу 20 в. процесс Коксование оформился в современном виде, и в дальнейшем происходило лишь его совершенствование.

Коксование углей протекает в несколько стадий. При нагревании до 250 °С из угля испаряется влага и выделяются продукты разложения – СО и СО2. Затем (300 °С) выделяется небольшое количество лёгкой смолы и образующейся при расщеплении кислородных соединений, входящих в состав угля, т. н. пирогенетической влаги. Приблизительно при 350 °С уголь размягчается, переходя в тестообразное, пластическое состояние. В расплаве происходит интенсивное разложение угля с выделением так называемых первичных продуктов (первичного газа и первичного дегтя), имеющих сложный состав. Тяжелые углеродистые остатки от разложения угля спекаются при температуре около 500 °С, образуется твёрдый пористый продукт – полукокс. При дальнейшем нагревании полукокс теряет остаточные летучие вещества, главным образом водород, и претерпевает усадку, вызывающую его растрескивание. Выше 700 °С полукокс полностью превращается в кокс. Первичные же продукты разложения, соприкасаясь с раскалёнными стенками и сводом печи, а также с коксом, подвергаются пиролизу и превращаются во вторичные продукты. В составе газа преобладающим становится Н2 (50% по объёму) и СН4 (25% по объёму), органические продукты ароматизируются. Вторичные продукты улавливаются и используются как ценное сырьё для химической промышленности.

В коксовой печи Коксование протекает послойно, причём температура слоев снижается от нагретых (выше 1000 °С) стенок печи к середине загрузки. Соответственно этому и состав слоев (начиная от стенок) меняется в последовательности кокс – полукокс – уголь в пластическом состоянии – сухой уголь – сырой уголь. Коксование считается законченным, когда все увеличивающиеся по толщине слои кокса сойдутся в середине печи. К концу Коксование вследствие усадки образовавшийся «коксовый пирог» оказывается разделенным пополам швом-разрывом, идущим параллельно стенкам камеры, а каждая половина «пирога» – расчленённой на более или менее крупные куски трещинами, проходящими перпендикулярно стенке. Коксование длится 13-18 ч. Готовый кокс выдаётся из печи коксовыталкивателем и поступает в тушильный вагон, где раскалённый кокс охлаждают (тушат) водой или инертным газом («мокрым» или «сухим» способом).

Техника Коксование непрерывно совершенствуется: увеличивается размер камер печи и механизируется их обслуживание; вводится загрузка печей высушенной и подогретой (до 200 °С) шихтой. Разрабатываются и принципиально новые, непрерывные методы Коксование, основанные на формрвании в потоке брикетов из угля, переведенного в пластическое состояние, и последующей прокатке брикетов.

В начало