Навигация по сайту

•  Автобиография
     руc •  укр •  фр •  анг

•  Реферат
     руc •  фр

•  Библиотека

•  Ссылки

•  Отчет о поиске

•  Индивидуальное задание

•  ДонНТУ

•  Портал магистров


http://www.compitech.ru/html.cgi/arhiv/01_01/stat-48.htm



О пьезокерамике и перспективах ее применения



Явление пьезоэлектрического эффекта

     Пьезоэлектрический эффект был открыт в 1880 году Джексом и Пьером Кюри. Они заметили, что в некоторых кристаллах при механическом воздействии на них появляется электрическая поляризация, причем степень ее пропорциональна величине воздействия. Позже Кюри открыл инверсионный пьезоэлектрический эффект — деформирование материалов, помещенных в электрическое поле. Эти явления еще называют прямым и обратным пьезо- электрическим эффектом.

     Пьезоэлектрический эффект присущ некоторым природным кристаллам, таким как кварц и турмалин, которые в течение многих лет использовались в качестве электромеханических преобразователей. Кристаллическая решетка кристаллов, обладающих пьезоэлектрическим эффектом, не имеет центра симметрии. Воздействие (сжимающее или растягивающее), приложенное к такому кристаллу, приводит к поляризации после разделения положительных и отрицательных зарядов, имеющихся в каждой отдельной элементарной частице. Эффект практически линейный, то есть степень поляризации прямо пропорциональна величине прилагаемого усилия, но направление поляризации зависимо, так как усилие сжатия или растяжения генерируют электрические поля, а следовательно, и напряжение, противоположной полярности. Соответственно, при помещении кристалла в электрическое поле упругая деформация вызовет увеличение или уменьшение его длины в соответствии с величиной и направлением полярности поля.

Пьезоэлектрические материалы

     Пьезоэлектрические материалы условно можно разбить на две группы:

     1. Пьезоэлектрические монокристаллы.

     Природные пьезоэлектрические материалы имеют достаточно высокую стоимость. В связи с этим потребности бурно развивающейся электроники в настоящее время удовлетворяются синтетическими пьезоэлектрическими монокристаллами, которые выращиваются в специальных установках. Пьезоэлектрические свойства таких кристаллов с достаточно высокой повторяемостью можно задавать путем композиции входящих в него компонентов.

     Выращенные кристаллы определенным образом режутся на пластины, некоторые (сегнетоэлектрики) поляризуются, и из них путем шлифования и нанесения электродов изготавливаются пьезоэлектрические элементы.

     2. Пьезоэлектрическая керамика (пьезокерамика).

     По физическим свойствам это поликристаллический сегнетоэлектрик, представляющий собой химическое соединение или твердый раствор (порошок) зерен (кристаллитов).

     По химическому составу это сложный оксид, включающий ионы двухвалентного свинца или бария, а также ионы четырехвалентного титана или циркония. Путем изменения основного соотношения исходных материалов и введения добавок синтезируют разные составы пьезокерамики, обладающие определенными электрофизическими и пьезоэлектрическими характеристиками. Наибольшее распространение получила группа пьезокерамических материалов типа ЦТС (цирконата-титаната свинца). Вместе с тем используется керамика на основе титаната бария (ТБ) и титаната свинца (ТС). В последние годы разрабатываются новые пьезокерамические материалы со свойствами, позволяющими в некоторых случаях использовать их вместо более дорогостоящих пьезоэлектрических кристаллов. В частности, разработана и производится группа материалов на основе ниобата свинца, которая уже нашла практическое применение благодаря возможности ее использования в диапазоне частот до 30 и более МГц. Значительные исследования проводятся по созданию пьезокерамических композитных материалов, а также многослойной керамики. Зарубежные производители в зависимости от пьезоэлектрических свойств делят ее на сегнетожесткую и сегнетомягкую. В отечественной практике существует дополнительное деление на керамику средней сегнетожесткости, а также выделяются высокостабильные, высокотемпературные и т. п. материалы.

     Качество пьезокерамики характеризуется следующими, принятыми за рубежом, основными параметрами:

     KT33T330) — относительная диэлектрическая проницаемость;

     tg δ — тангенс угла диэлектрических потерь при частоте 1 кГц в слабых полях;

     Tc(Tk) — температура точки Кюри;

     Kp K33 K31 K15 — коэффициенты электромеханической связи;

     d33-d31 d15 — пьезоэлектрические модули;

     g33 g31 g15 — электрические коэффициенты по напряжению;

     YE11E33 — модули Юнга;

     NL NT NR — частотные постоянные;

     SE11 SE33 — параметр эластичности;

     ρ — плотность;

     Qm — механическая добротность.

Пьезокерамические элементы

     В отличие от пьезоэлектрических кристаллов, пьезокерамические элементы изготавливаются методом полусухого прессования, шликерного литья, горячего литья под давлением, экструзии или изостатического прессования с последующим обжигом на воздухе при температуре 1000–1400 градусов по Цельсию. С целью уменьшения пористости обжиг может проводиться в среде кислорода, или элемент изготавливается с помощью метода горячего литья. По специальной технологии на поверхность заготовок наносятся электроды.

     После этого керамику делают пьезоэлектрической с любым выбранным направлением поляризации путем помещения ее в сильное электрическое поле при температуре ниже так называемой точки Кюри. Поляризация обычно является окончательным процессом при изготовлении пьезокерамических элементов, хотя за ним следует термостабилизация и контроль параметров.

     Пьезоэлектрическая керамика представляет собой твердый, химически инертный материал, совершенно нечувствительный к влажности и другим атмосферным воздействиям. По механическим качествам она подобна керамическим изоляторам.

     В зависимости от предназначения пьезоэлементы могут иметь самую разнообразную конфигурацию — от плоской до объемной (сферы, полусферы и т. п.)

     Для последующего понимания целесообразно ввести следующее общепринятое в зарубежной практике условное деление типовых пьезоэлементов в зависимости от их конфигурации (см. приложение): пластина (plate), диск (disc), кольцо (ring), брусок (bar), стержень (rod), цилиндр (cylinder). Существуют также гибкие пьезокерамические элементы: пластинчатые (plate bender) и дисковые (disc bender), которые, в свою очередь, подразделяются на юниморфы (unimorph), то есть однослойные, и биморфы (bimorph) — двухслойные.

     Такое условное деление не безупречно (цилиндр по сути дела является трубкой и в зависимости от высоты его можно назвать кольцом; в то время как кольцо по своей конфигурации напоминает шайбу). Вместе с тем, оно общепринято и позволяет упростить в процессе заказа описание требуемого элемента. В нашей же практике один и тот же элемент потребители называют по-разному, и без чертежа или более подробного описания трудно представить порой, какой элемент хотел бы приобрести заказчик. Например, «кольцо» у нас называют кольцом, шайбой и таблеткой, «диск» — диском, шайбой и таблеткой.

Применение пьезокерамических элементов

     Пьезоэлектрические элементы идеальны при использовании в качестве электромеханических преобразователей. Они достаточно широко используются для изготовления пьезокерамических компонентов, узлов и устройств. Некоторые пьезокерамические элементы уже изначально могут выполнять функции компонента или узла (например, пластинчатые биморфы) и не нуждаются в дополнительной доработке. Все изделия, изготовленные на базе пьезокерамики, подразделяют на следующие основные группы: генераторы, датчики (сенсоры), актюаторы (пьезоприводы), преобразователи и комбинированные системы.

     а) Пьезокерамические генераторы

     Они преобразуют механическое воздействие в электрический потенциал, используя прямой пьезоэффект. Примерами могут служить искровые воспламенители нажимного и ударного типов, применяемые в разного рода зажигалках и поджигающих системах, а также твердотельные батареи на основе многослойной пьезокерамики, применяемые в современных электронных схемах.

     б) Пьезокерамические датчики

     Пьезокерамические датчики преобразуют механическую силу или движение в пропорциональный электрический сигнал, то есть также основаны на прямом пьезоэффекте.

     В условиях активного внедрения компьютерной техники датчики являются незаменимыми устройствами, позволяющими согласовывать механические системы с электронными системами контроля и управления.

     Выделяются два основных типа пьезокерамических датчиков: осевые (механическая сила действует вдоль оси поляризации, мода 33) и гибкие (сила действует перпендикулярно оси поляризации (мода 31)).

     В осевых датчиках в качестве пьезоэлементов используют диски, кольца, цилиндры и пластины. В качестве примеров можно привести датчики ускорения (акселерометры), датчики давления, датчики детонации, датчики разрушения и т. п.

     Гибкие датчики строятся на основе последовательных (слои керамики имеют противоположную направленность поляризации) и параллельных (направленность поляризации слоев совпадает) пьезокерамических биморфов. Наиболее распространены датчики силы и ускорения.

     в) Пьезокерамические актюаторы (пьезоприводы)

     Актюаторы строятся на принципе обратного пьезоэффекта и поэтому предназначены для преобразования электрических величин (напряжения или заряда) в механическое перемещение (сдвиг) рабочего тела.

     Актюаторы подразделяются на три основные группы: осевые (мода d33), поперечные (мода d31) и гибкие (мода d31). Осевые и поперечные актюаторы имеют еще общее название — многослойные пакетные, так как набираются из нескольких пьезоэлементов (дисков, стержней, пластин или брусков) в пакет. Они могут развивать значительное усилие (блокирующую силу) до 10 кН при управляющем напряжении 1 кВ, но при очень малых отклонениях рабочей части (от единиц нанометров до сотен микрон). Такие актюаторы также называют мощными.

     Гибкие актюаторы (биморфы) развивают незначительную блокирующую силу при малых (сотни микрон) отклонениях рабочей части. Однако американской компании APC International Inc. удалось создать и выйти на рынок с новым типом пластинчатого биморфа — «ленточным актюатором» (зарегистрированная торговая марка). Ленточный актюатор может обеспечивать блокирующую силу 0,95 Н и величину отклонения 1,2 мм или отклонение до 3 мм и блокирующую силу 0,6 Н.

     Гибкие актюаторы относятся к группе маломощных. К этой же группе будут относиться и перспективные осевые актюаторы, представляющие собой моноблок, изготовленный по технологии многослойной пьезокерамики.

     Пакетные актюаторы могут производиться предприятиями, не связанными с производством пьезокерамики. Гибкие же и осевые актюаторы из многослойной керамики сами по себе являются пьезокерамическими элементами. Их могут производить только предприятия, владеющие технологиями и оборудованием для производства пьезокерамических элементов.

     г) Пьезокерамические преобразователи

     Предназначены для преобразования электрической энергии в механическую. Так же как и актюаторы, основываются на принципе обратного пьезоэффекта.


     Преобразователи в зависимости от диапазона частот подразделяются на три вида:

      - звуковые (ниже 20 кГц) — зуммеры, телефонные микрофоны, высокочастотные громкоговорители, сирены и т. п.;

      - ультразвуковые — высокоинтенсивные излучатели для сварки и резки, мойки и очистки материалов, датчики уровня жидкостей, дисперсионные распылители, генераторы тумана, ингаляторы, увлажнители воздуха. Значительной группой выделяются так называемые ультразвуковые измерители расстояния в воздушной среде (Air Transducers), являющиеся пьезокерамическими компонентами. Они используются в качестве измерителей расстояния для автотракторной техники, сенсоров наличия и движения в охранных системах, в уровнемерах, для дистанционного контроля и управления, в устройствах отпугивания птиц, зверей и сельскохозяйственных вредителей и т. д. Производятся устройства трех типов: передающие, приемные и приемо-передающие;

      - высокочастотные ультразвуковые — оборудование для испытания материалов и неразрушающего контроля, диагностика в медицине и промышленности, линии задержки и т. д.

     д) Комбинированные пьезокерамические системы

     Такие системы преобразуют электрические величины в электрические, при последовательном использовании обратного и прямого пьезоэффектов. В качестве примеров таких систем можно привести эхолоты, измерители потоков, пьезотрансформаторы, "искатель ключа".