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1 Summary

1.1 Goals

The goal of this project is the implementation of the Rijndael algorithm (one of the
AES candidates - see []) on a Pamette. This cipher works on blocks of NBx8 bytes,
for NB between 4 and 6. In this implementation, we decided to work with NB=4.
The blocks are therefore 128bits long.The encryption is divided in 10 rounds, the
last one being slightly different from the others, one step being removed. Data goes
by words of 32 bits - 4 bytes actually - so a complete round takes four cycles. This
allows us to keep the encoder very small, and to unfold the loop. The division of
the blocks in columns also allows different sizes of blocks, with little enlargement of
the design (only bigger counters, and a bigger key).

In our basic design, data goes through the design 10 times, one for each round,
and a complete encoding takes 40 cycles. We intended to put several copies of the
design in the Pamette, in order to reduce the loop length, but we did not have
enough time. This could be easily done, though : our designs (the encoder and the
decoder) fit in half a chip of a XC4044, so this would only be a matter of counters.

1.2 The Rijndael algorithm

The field used for all arithmetic operations is GF(2%), which can be seen as the
set of polynomials over GF(2) modulo an irreductible polynomial of degree 8 -
¥+t +23 4+ 2+1 for example. The addition is a simple XOR, and the multiplication
is the usual multplication of polynomials, followed by a modulo.

The rounds of the encoder are composed of :

1. RoundKey : only for the first round, the key is XORed with the block.
2. ShiftRow : the 4 lines of the block are shifted to the left, by 0,1,2 and 3
3. ByteSub : each byte is changed by a non-linear fonction

4. MixColumn : a linear function is applied to each column of the block. It is a
multiplication by a fixed polynomial over GF(2%), modulo z* + 1. This step
is skipped in the last round.

5. RoundKey : each byte is XORed with the key. Key length is 128 bits, but a
proper computing gives a 1280+128 bits key, 128 bits for the first XOR (it is
the original key, and 128 bits by round. The key expansion is not computed
by hardware, since it is not changed often. For the time being, it is put into
a ROM, and we intend to load it dynamically before any encoding.



Note : in our implementation, ShiftRow comes before ByteSub, which has no
consequence on the results, since ByteSub works on the value of the bytes, whereas
ShiftRow which works on their position.

The inverse cipher is very similar to the cipher : most of the steps can be
switched, and some of them are their own inverse, or they are very similar. The
only problem is the MixColumn inverse : the polynomial chosen is easy to use, but
its inverse is much more complicated. In the end, we have :

1. RoundKey : only for the first round, the last part of the expanded key is
XORed with the block.

2. MixColumn : a linear function is applied to each column of the block. It is a
multiplication by a fixed polynomial over GF(2%), modulo z* + 1. This step
is skipped in the first round.

3. ShiftRow : the 4 columns of the block are shifted to the right, by 0,1,2 and 3
4. ByteSub : each byte is changed by a non-linear fonction
5. RoundKey : each byte is XORed with the key, but the order is reversed.

For more precise information of the Rijndael algorithm, see [].

1.3 Area, timings

Our design fits into of 20x40 array of cells, including the interface with the PCI bus.
The Pamette we used (the XC4044) contains four 40x40 chips, which would have
allowed us to put several encoders/decoders. If we had put 5 copies of the encoder,
there would only be 2 rounds, and the bandwith would be multiplied by 5, so a
complete encoding would take only 8 cycles. Since we compute two encryption at
the same time - cf ShiftRow -, we would have 16 cycles for two blocks, which is the
best we can expect : 8 cycles for reading, 8 cycles for writing.

The inside of our encoder can run at 50 MHz, which would allow a bandwith
of 160 Mbit/s, and the unfolded design would run at 800 Mbit/s. The design is
actually limited to 40 MHz by the way out of the pamette.

The major problem we encountered was the interface : at this point, the design
runs and stops many times during the uploading and downloading, which slows
down the entire process. On the contrary, once the 8 words are set, the design
runs at full speed. The expected results with the unfolded design are therefore
impossible.

1.4 Interface

In the design, data runs in 32bits words, ie one column of the Rijndael block by
cycle. This way, with four cycles, a complete round is achieved. Actually, the
32bits words are divided in four 8bits words, since this is the convenient structure
for ShiftRow and ByteSub.

In order to implement ShiftRow efficiently, two blocks are encoded at the same
time. Therefore, the design reads 8 words in the 8 first cycles, and writes 8 words
when all the rounds are complete.

We have put some delay between the output of the design and the writing on
the bus : this way, the output comes just after the input. The interface stops the
design clock when there is not enough data ready in the input FIFO, or when there
is not enough room on the output FIFO. Since the FIFOs can hold only 16 words,
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Figure 1: Read and write cycles

and the signal for stopping the clock can take up to 12 cycles, the input FIFO must
hold 13 to 16 words and the output FIFO 0 to 3 words for the design to run.

The software interface must therefore write two words, then read two words
back, and so on. The design gives data back at the time he takes some, so this
order works. The problem is, we have to wait for the design to «eat» the words
before we can send another one, and the small range allowed - four - makes the
design stop, then start again when the words have arrived. Another problem is,
since we can only write two words at the same time, we cannot take advantage of
the BUS bursts. The throughput is therefore rather low.
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3 Details of the parts

3.1 ShiftRow : Ram8x32

ShiftRow shifts the rows of the block by 0,1,2,3, so we need all the columns of one
block to get the resulting column. Two blocs are computed serially : what comes
in ShiftRow is written in one block, what goes out is read from the other one, and
the two blocks are exchanged every four cycles.
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Figure 3: ShiftRow

In this figure, each column represents a cycle. There is a four cycles delay
between the input and the output. Since we have put another register, for retiming
purposes, there is actually a five cycles delay.

We need a 8x4 words RAM, ie a 8x32 bits, with four distinct addresses for writing
and four other for reading (only one read-address is needed for the encoding, but
for the decoding, we need four read-addresses and one write address). We use CLB
as RAMD, each CLB is used as a 16x1 bit RAM. Addresses are coded on four bits,

the last one being set to zero.
_/_

O Counter for waddr{3]

Ram 168

Counter for waddr{2]

Counter for raddr

Counter for waddr{1]

Ram 1668

Counter for waddr[0]

Ram 16:8

Figure 4: Ram8x32

The size of this structure is 4 blocks of 1x8 CLBs. We must also put 4 counters
mod 4 and one counter mod 8 in the same column, in the 8 CLBs left : for the
encoding, the only read-address is given by a counter mod 4, plus one bit that
indicates which block data is read in, and the four write-addresses are given by four
shifted counters mod 4, the last bit being the opposite of the read-address one.

For the decoder, we can either exchange read and write adresses, or write in
diagonal the other way (by setting the initial values of the counter to their opposite),



and read the same way - column by column.

3.2 ByteSub : Rom8x8

The S-bozes are too complex to be implemented directly : we use look-up tables
(LUT), initially loaded with the correct values. Each of them takes 8 bit and gives
8 bit back, we need four 8x8bit ROM.

The 8bit input is divided in 3 parts : the bits 0,1,2,3 are used as an adress for
16bit ROMs, the bits 4,5,6 are used to control which ROM is controlling the bus,
and the last bit chooses which bus will be read.

Each S-Box is 9x9 CBLs. The main part is 8x8 CLBs : each CLB contains two
16x1 ROMs, connected to a bus by a TBuf. There is two buses by line of CLB. The
ninth CLB is used for the decoders which control the TBufs : they take the bits
4,5,6, and the control is set to one iff the value matches the row. The decoders can
be put above or under the ROMs, by calling placement up or placement _down.

Horizontally, we have 8 CLBs, one for each value of the bits 4,5,6, plus one for
the mux between the two buses, controlled by bit 7.
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Figure 5: Rom8x8

3.3 MixColumn, MixColumn inverse

MixColumn is very easy to implement : it can be done is 3 XORs. If A[l..4] are
the four 8bit words of input, and B[1...4] the four output words, we have

tmp = A[1] ~ A[2] ~ A[3] ~ A[4];

tm = A[1] ~ A[2]; tm = xtime(tm); B[1] = tm ~ tmp;
tm = A[2] ~ A[3]; tm = xtime(tm); B[2] = tm ~ tmp;
tm = A[3] ~ A[4]; tm = xtime(tm); B[3] = tm ~ tmp;
tm = A[4] =~ A[1]; tm = xtime(tm); B[4] = tm ~ tmp;

where xtime is the multiplication by 00000010 in GF(28).
We can implement xtime as a shift and a XOR against 00011011 if the highest
bit is 1 :
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Figure 6: xtime

The matching bits of the four 8 bits words are XORed, we get all _zor. Then,
only two are XORed, we get couple zor. We apply ztime on these couple xor,
and we XOR ztime(couple_zxor) and all _zor.

No placement has been done, since this is mostly a problem of routing.

The inverse is much more difficult to implement : MixColumn is a multiplication
by the polynomial 0000001122 40000000122+ 00000001z 400000010 modulo z*+1.
It has of course an inverse, 00001011z 4+ 0000110122 + 00001001z 4+ 00001111, but
the constant multiplication is much more complex. We have to compute 00001001.a,
00000100.a and 00000010.a for the four a. This can be done by ztime and XORs.
Then we must take the right values and XOR them to get the expected result : for

b[0] = 00001111.a[0] + 00001001.a[1] + 00001101.a[2] + 00001011.a[3]
we have to XOR

e 00001001.a[0
¢ 00000100.a[0
e 00000010.a[0
e 00001001.a[1
e 00001001.a[2
¢ 00000100.a[2
e 00001001.a[3
e 00000010.a[3

We have 8 values, ie 3 XORs by bit. The indexes for other values can be obtained
by a circular permutation (for the second 8bit words, 00012233 becomes 11123300).

The size of this structure is two CLBs for the xtimes - the XOR for 00001001.a
being put with the last one, three for the register cut, but one can be shared with
the last xtime and the XOR, and one or two for the three last XORs. This make 5
or 6 CLBs.

]
]
]
]
]
]
]
]

3.4 RoundKey

It is only an XOR against the expanded key, so we need four 40x8 ROMs, and a
counter. Since we have two blocks at the same time, we must have the columns
0,1,2,3,0,1,2,3 then 4,5,6,7,4,5,6,7... in this order coming from the ROM. We use a
special counter, that is a counter mod 80, whose third bit is ignored, the output is
bits 654310.
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Figure 7: Multipliers in MixColumn inverse
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Figure 8: Placement of the multipliers
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Figure 9: XORs for the MixColumnInverse

4 Pipelining, loop unrolling

4.1 Pipelining

The introduction of registers is easy, and necessary because of the implementation
of ShiftRow. Since our design works by groups of 4 cycles, four cuts are needed.
With this four cycles delay, and the four cycles delay introduced by ShiftRow, we
get a synchronized input : 8 words, then the 8 words after one round, then the 8
words after two rounds...
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Figure 10: Round Key addition

The operations of Rijndael are very simple, except the ByteSub, which cannot
be split easily. We therefore decided to put a register just before and just after the
S-Boxes. The two remaining cut were set after after MixColumn, and before the
loop.

4.2 Loop unrolling

We wanted to dispose several encoders/decoders on the same FPGA. This way, the
number of rounds in each encoder could be reduced, and the design could have a
better troughput. If we had put 5 on the whole board, data would go trough each
encoder only twice - instead of 10 times - we could therefore treat 5 times more
data. We would have a beginning encoder, with the initial round key addition, (it
is also the fifth, but there is no initial round key addition in the fifth round), 3
intermediate encoders, with no initial addition, and no test for the MixColumn,
and a last encoder, with a test for the MixColumn.

Each encoder would be a bit smaller than the “general purpose” encoder, because
some parts could be removed, and we only need a part of the expanded key for each
encoder, whereas the unique encoder needs the whole round key in ROM. The
counters would also be smaller and simpler (modulo 16 and not 80).

We wanted to dispose the five encoders this way : which is rather easy, since
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Figure 11: Five encoders on a FPGA

the designs fits (even with the complete key and the interface) in half a chip.



