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1 IntrodutionThe past two deades of ryptography researh has had amazing suess in putting most of the las-sial ryptographi problems | enryption, authentiation, protools | on omplexity-theoretifoundations. However, there still remain several important problems in ryptography about whihtheory has had little or nothing to say. One suh problem is that of program obfusation. Roughlyspeaking, the goal of (program) obfusation is to make a program \unintelligible" while preservingits funtionality. Ideally, an obfusated program should be a \virtual blak box," in the sense thatanything one an ompute from it one ould also ompute from the input-output behavior of theprogram.The hope that some form of obfusation is possible arises from the fat that analyzing programsexpressed in rih enough formalisms is hard. Indeed, any programmer knows that total unintel-ligibility is the natural state of omputer programs (and one must work hard in order to keep aprogram from deteriorating into this state). Theoretially, results suh as Rie's Theorem andthe hardness of the Halting Problem and Satisfiability all seem to imply that the only usefulthing that one an do with a program or iruit is to run it (on inputs of ones hoie). However, thisinformal statement is, of ourse, an over-generalization, and the existene of obfusators requiresits own investigation.To be a bit more lear (though still informal), an obfusator O is an (eÆient, probabilisti)\ompiler" that takes as input a program (or iruit) P and produes a new programO(P ) satisfyingthe following two onditions:� (funtionality) O(P ) omputes the same funtion as P .� (\virtual blak box" property) \Anything that an be eÆiently omputed from O(P ) an beeÆiently omputed given orale aess to P ."While there are heuristi approahes to obfusation in pratie (f., Figure 1 and [CT00℄), therehas been little theoretial work on this problem. This is unfortunate, sine obfusation, if it werepossible, would have a wide variety of ryptographi and omplexity-theoreti appliations.In this work, we initiate a theoretial investigation of obfusation. We examine various formal-izations of the notion, in an attempt to understand what we an and annot hope to ahieve. Ourmain result is a negative one, showing that obfusation (as it is typially understood) is impossible.Before desribing this result and others in more detail, we outline some of the potential appliationsof obfusators, both for motivation and to larify the notion.1.1 Some Appliations of ObfusatorsSoftware Protetion. The most diret appliations of obfusators are for various forms of soft-ware protetion. By de�nition, obfusating a program protets it against reverse engineering. Forexample, if one party, Alie, disovers a more eÆient algorithm for fatoring integers, she may wishto sell another party, Bob, a program for apparently weaker tasks (suh as breaking the RSA ryp-tosystem) that use the fatoring algorithm as a subroutine without atually giving Bob a fatoringalgorithm. Alie ould hope to ahieve this by obfusating the program she gives to Bob.Intuitively, obfusators would also be useful in watermarking software (f., [CT00, NSS99℄). Asoftware vendor ould modify a program's behavior in a way that uniquely identi�es the person towhom it is sold, and then obfusate the program to guarantee that this \watermark" is diÆult toremove. 2



#inlude<stdio.h> #inlude<string.h>main(){har*O,l[999℄="'`ago\177~|xp .-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";while(O=fgets(l+45,954,stdin)){*l=O[strlen(O)[O-1℄=0,strspn(O,l+11)℄;while(*O)swith((*l&&isalnum(*O))-!*l){ase-1:{har*I=(O+=strspn(O,l+12)+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+*I---'-')<80);puthar(O&93?*I&8||!( I=memhr( l , O , 44 ) ) ?'?':I-l+47:32); break; ase 1: ;}*l=(*O&31)[l-15+(*O>61)*32℄;while(puthar(45+*l%2),(*l=*l+32>>1)>35); ase 0:puthar((++O ,32));}puthar(10);}}Figure 1: The winning entry of the 1998 International Obfusated C Code Contest, an ASCII/Morseode translator by Frans van Dorsselaer [vD98℄ (adapted for this paper).Homomorphi Enryption. A long-standing open problem in ryptography is whether homo-morphi enryption shemes exist (f., [RAD78, FM91, DDN00, BL96, SYY99℄). That is, we seeka seure publi-key ryptosystem for whih, given enryptions of two bits (and the publi key), onean ompute an enryption of any binary Boolean operation of those bits. Obfusators would allowone to onvert any publi-key ryptosystem into a homomorphi one: use the seret key to on-strut an algorithm that performs the required omputations (by derypting, applying the Booleanoperation, and enrypting the result), and publish an obfusation of this algorithm together withthe publi key.1Removing Random Orales. The Random Orale Model [BR93℄ is an idealized ryptographisetting in whih all parties have aess to a truly random funtion. It is (heuristially) hoped thatprotools designed in this model will remain seure when implemented using an eÆient, publilyomputable ryptographi hash funtion in plae of the random funtion. While it is known that thisis not true in general [CGH98℄, it is unknown whether there exist eÆiently omputable funtionswith strong enough properties to be seurely used in plae of the random funtion in various spei�protools (e.g., in Fiat-Shamir type shemes [FS87℄). One might hope to obtain suh funtionsby obfusating a family of pseudorandom funtions [GGM86℄, whose input-output behavior is byde�nition indistinguishable from that of a truly random funtion.Transforming Private-Key Enryption into Publi-Key Enryption. Obfusation analso be used to reate new publi-key enryption shemes by obfusating a private-key enryptionsheme. Given a seret key K of a private-key enryption sheme, one an publish an obfusation1There is a subtlety here, aused by the fat that enryption algorithms must be probabilisti to be semantiallyseure in the usual sense [GM84℄. However, both the \funtionality" and \virtual blak box" properties of obfus-ators beome more omplex for probabilisti algorithms, so in this work, we restrit our attention to obfusatingdeterministi algorithms(exept in Setion 6). This restrition only makes our main (impossibility) result stronger.3



of the enryption algorithm EnK .2 This allows everyone to enrypt, yet only one possessing theseret key K should be able to derypt.Interestingly, in the original paper of DiÆe and Hellman [DH76℄, the above was the reasongiven to believe that publi-key ryptosystems might exist even though there were no andidatesknown yet. That is, they suggested that it might be possible to obfusate a private-key enryptionsheme.31.2 Our ResultsThe Basi Impossibility Result. Most of the above appliations rely on the intuition that anobfusated program is a \virtual blak box." That is, anything one an eÆiently ompute fromthe obfusated program, one should be able to eÆiently ompute given just orale aess to theprogram.Our main result shows that it is impossible to ahieve this notion of obfusation. We prove thisby onstruting (from any one-way funtion) a family F of funtions whih is unobfusatable in thesense that there is some property � : F ! f0; 1g suh that:� Given any program (iruit) that omputes a funtion f 2 F , the value �(f) an be eÆientlyomputed;� Yet, given orale aess to a (randomly seleted) funtion f 2 F , no eÆient algorithm anompute �(f) muh better than by random guessing.Thus, there is no way of obfusating the programs that ompute these funtions, even if (a) theobfusation is meant to hide only one bit of information about the funtion (namely �(f)), and (b)the obfusator itself has unbounded omputation time.We believe that the existene of suh funtions shows that the \virtual blak box" paradigm forobfusators is inherently awed. Any hope for positive results about obfusator-like objets mustabandon this viewpoint, or at least be reoniled with the existene of funtions as above.Approximate Obfusators. The basi impossibility result as desribed above applies to ob-fusators O for whih we require that the obfusated program O(P ) omputes exatly the samefuntion as the original program P . However, for some appliations it may suÆe that, for everyinput x, O(P ) and P agree on x with high probability (over the oin tosses of O). Using someadditional ideas, our impossibility result extends to suh approximate obfusators.2This appliation involves the same subtlety pointed out in Footnote 1. Thus, our results regarding the(un)obfusatability of private-key enryption shemes (desribed later) refer to a relaxed notion of seurity in whihmultiple enryptions of the same message are not allowed (whih is onsistent with a deterministi enryption algo-rithm).3From [DH76℄: \A more pratial approah to �nding a pair of easily omputed inverse algorithms E and D; suhthat D is hard to infer from E, makes use of the diÆulty of analyzing programs in low level languages. Anyone whohas tried to determine what operation is aomplished by someone else's mahine language program knows that Eitself (i.e. what E does) an be hard to infer from an algorithm for E. If the program were to be made purposefullyonfusing through the addition of unneeded variables and statements, then determining an inverse algorithm ould bemade very diÆult. Of ourse, E must be ompliated enough to prevent its identi�ation from input-output pairs.Essentially what is required is a one-way ompiler: one whih takes an easily understood program written in ahigh level language and translates it into an inomprehensible program in some mahine language. The ompiler isone-way beause it must be feasible to do the ompilation, but infeasible to reverse the proess. Sine eÆieny insize of program and run time are not ruial in this appliation, suh ompilers may be possible if the struture ofthe mahine language an be optimized to assist in the onfusion."4



Impossibility of Appliations. To give further evidene that our impossibility result is notan artifat of de�nitional hoies, but rather that there is something inherently awed in the\virtual blak box" idea, we also demonstrate that several of the appliations of obfusators arealso impossible. We do this by onstruting unobfusatable signature shemes, enryption shemes,and pseudorandom funtions. These are objets satisfying the standard de�nitions of seurity(exept for the subtlety noted in Footnote 2), but for whih one an eÆiently ompute the seretkey K from any program that signs (or enrypts or evaluates the pseudorandom funtion, resp.)relative to K. (Hene handing out \obfusated forms" of these keyed-algorithms is highly inseure.)In partiular, we omplement Canetti et. al.'s ritique of the Random Orale Methodology [CGH98℄.They show that there exist (ontrived) protools that are seure in the idealized Random OraleModel (of [BR93℄), but are inseure when the random orale is replaed with any (eÆiently om-putable) funtion. Our results imply that for even for natural protools that are seure in therandom orale model (e.g., Fiat-Shamir type shemes [FS87℄), there exist (ontrived) pseudoran-dom funtions, suh that these protools are inseure when the random orale is replaed with anyprogram that omputes the ontrived pseudorandom funtion.Obfusating restrited omplexity lasses. Even though obfusation of general programs/iruitsis impossible, one may hope that it is possible to obfusate more restrited lasses of omputations.However, using the pseudorandom funtions of [NR97℄ in our onstrution, we an show that theimpossibility result holds even when the input program P is a onstant-depth threshold iruit (i.e.,is in TC0), under widely believed omplexity assumptions (e.g., the hardness of fatoring).Obfusating Sampling Algorithms. Another way in whih the notion of obfusators an beweakened is by hanging the funtionality requirement. Up to now, we have onsidered programsin terms of the funtions they ompute, but sometimes one is interested in other kinds of behavior.For example, one sometimes onsiders sampling algorithms, i.e. probabilisti programs that takeno input (other than, say, a length parameter) and produe an output aording to some desireddistribution. We onsider two natural de�nitions of obfusators for sampling algorithms, and provethat the stronger de�nition is impossible to meet. We also observe that the weaker de�nition impliesthe nontriviality of statistial zero knowledge.Software Watermarking. As mentioned earlier, there appears to be some onnetion betweenthe problems of software watermarking and ode obfusation. We onsider a ouple of formalizationsof the watermarking problem and explore their relationship to our results on obfusation.1.3 DisussionOur work rules out the standard, \virtual blak box" notion of obfusators as impossible, alongwith several of its appliations. However, it does not mean that there is no method of makingprograms \unintelligible" in some meaningful and preise sense. Suh a method ould still proveuseful for software protetion.Thus, we onsider it to be both important and interesting to understand whether there arealternative senses (or models) in whih some form of obfusation is possible. Toward this end,we suggest two weaker de�nitions of obfusators that avoid the \virtual blak box" paradigm (andhene are not ruled out by our impossibility proof). These de�nitions ould be the subjet of futureinvestigations, but we hope that other alternatives will also be proposed and examined.5



As is usually the ase with impossibility results and lower bounds, we show that obfusators(in the \virtual blak box" sense) do not exist by presenting a somewhat ontrived ounterexampleof a funtion ensemble that annot be obfusated. It is interesting whether obfusation is possiblefor a restrited lass of algorithms, whih nonetheless ontains some \useful" algorithms. Thisrestrition should not be on�ned to the omputational omplexity of the algorithms: if we try torestrit the algorithms by their omputational omplexity, then there's not muh hope for obfusa-tion. Indeed, as mentioned above, we show that (under widely believed omplexity assumptions)our ounterexample an be plaed in TC0. In general, the omplexity of our ounterexample isessentially the same as the omplexity of pseudorandom funtions, and so a omplexity lass whihdoes not ontain our example will also not ontain many ryptographially useful algorithms.1.4 Additional Related WorkThere are a number of heuristi approahes to obfusation and software watermarking in the lit-erature, as desribed in the survey of Collberg and Thomborson [CT00℄. A theoretial study ofsoftware protetion was previously onduted by Goldreih and Ostrovsky [GO96℄, who onsideredhardware-based solutions.Hada [Had00℄ gave some de�nitions for ode obfusators whih are stronger than the de�nitionswe onsider in this paper, and showed some impliations of the existene of suh obfusators. (Ourresult rules out also the existene of obfusators aording to the de�nitions of [Had00℄.)Canetti, Goldreih and Halevi [CGH98℄ showed another setting in ryptography where gettinga funtion's desription is provably more powerful than blak-box aess. As mentioned above,they have shown that there exist protools that are seure when exeuted with blak-box aessto a random funtion, but inseure when instead the parties are given a desription of any expliitfuntion.1.5 Organization of the PaperIn Setion 2, we give some basi de�nitions along with (very weak) de�nitions of obfusators. InSetion 3, we prove the impossibility of obfusators by onstruting an unobfusatable funtionensemble. In Setion 4, we give a number of extensions of our impossibility result, inludingimpossibility results for obfusators whih only need to approximately preserve funtionality, forobfusators omputable in low iruit lasses, and for some of the appliations of obfusators.We also show that our main impossibility result does not relativize. In Setion 5, we disusssome onjetural omplexity-theoreti analogues of Rie's Theorem, and use our tehniques toshow that one of these is false. In Setion 6, we examine notions of obfusators for samplingalgorithms. In Setion 7, we propose weaker notions of obfusation that are not ruled out by ourimpossibility results. In Setion 8, we disuss the problem of software watermarking and its relationto obfusation. Finally, in Setion 9, we mention some diretions for further work in this area.2 De�nitions2.1 PreliminariesStandard Notations. TM is shorthand for Turing mahine. PPT is shorthand for probabilistipolynomial-time Turing mahine. By iruit we refer to a standard boolean iruit with AND,ORand NOT gates. If C is a iruit with n inputs and m outputs, and x 2 f0; 1gn then by C(x) wedenote the result of applyingC on input x. We say that C omputes a funtion f : f0; 1gn ! f0; 1gm6



if for any x 2 f0; 1gn, C(x) = f(x). For algorithms A and M and a string x, we denote by AM (x)the output of A when exeuted on input x and orale aess to M . When M is a iruit, thisarries the standard meaning (on answer to orale query x, A reeives M(x)). When M is a TM,this means that A an make orale queries of the form (x; 1t) and reeive in response either theoutput of M on input x (if M halts within t steps on x), or ? (if M does not halt within t steps onx).4 If A is a probabilisti Turing mahine then by A(x; r) we refer to the result of running A oninput x and random tape r. By A(x) we refer to the distribution indued by hoosing r uniformlyand running A(x; r). If D is a distribution then by x R D we mean that x is a random variabledistributed aording to D. If S is a set then by x R S we mean that x is a random variable that isdistributed uniformly over the elements of S. Supp(D) denotes the support of distribution D, i.e.the set of points that have nonzero probability under D. A funtion � : N ! N is alled negligible ifit grows slower than the inverse of any polynomial. That is, for any positive polynomial p(�) thereexists N 2 N suh that �(n) < 1=p(n) for any n > N . We'll sometimes use neg(�) to denote anunspei�ed negligible funtion. We will identify Turing mahines and iruits with their anonialrepresentations as strings in f0; 1g�.Nonstandard Notations. IfM is a TM then we denote by hMi the funtion hMi : 1��f0; 1g� !f0; 1g� given by:hMi(1t; x) def= n y M(x) halts with output y after at most t steps? otherwiseIf C is a iruit then we denote by [C℄ the funtion it omputes. Similarly if M is a TM then wedenote by [M ℄ the (possibly partial) funtion it omputes.2.2 ObfusatorsIn this setion, we aim to formalize the notion of obfusators based on the \virtual blak box"property as desribed in the introdution. Reall that this property requires that \anything thatan adversary an ompute from an obfusation O(P ) of a program P , it ould also ompute givenjust orale aess to P ." We shall de�ne what it means for the adversary to suessfully omputesomething in this setting, and there are several hoies for this (in dereasing order of generality):� (omputational indistinguishability) The most general hoie is not to restrit the nature ofwhat the adversary is trying to ompute, and merely require that it is possible, given justorale aess to P , to produe an output distribution that is omputationally indistinguishablefrom what the adversary omputes when given O(P ).� (satisfying a relation) An alternative is to onsider the adversary as trying to produe an out-put that satis�es an arbitrary (possibly polynomial-time) relation with the original programP , and require that it is possible, given just orale aess to P , to sueed with roughly thesame probability as the adversary does when given O(P ).� (omputing a funtion) A weaker requirement is to restrit the previous requirement to re-lations whih are funtions; that is, the adversary is trying to ompute some funtion of theoriginal program.4In typial ases (i.e., when the running time is a priori bounded), this onvention makes our de�nitions ofobfusator even weaker sine it allows A to learn the atual running-time of M on partiular inputs. This seems thenatural hoie beause a mahine given the ode of M an de�nitely learn its atual running-time on inputs of itsown hoie. 7



� (omputing a prediate) The weakest is to restrit the previous requirement to f0; 1g-valuedfuntions; that is, the adversary is trying to deide some property of the original program.Sine we will be proving impossibility results, our results are strongest when we adopt theweakest requirement (i.e., the last one). This yields two de�nitions for obfusators, one for programsde�ned by Turing mahines and one for programs de�ned by iruits.De�nition 2.1 (TM obfusator) A probabilisti algorithm O is a TM obfusator if the followingthree onditions hold:� (funtionality) For every TM M , the string O(M) desribes a TM that omputes the samefuntion as M .� (polynomial slowdown) The desription length and running time of O(M) are at most poly-nomially larger than that of M . That is, there is a polynomial p suh that for every TM M ,jO(M)j � p(jM j), and if M halts in t steps on some input x, then O(M) halts within p(t)steps on x.� (\virtual blak box" property) For any PPT A, there is a PPT S and a negligible funtion �suh that for all TMs M���Pr [A(O(M)) = 1℄� Pr hShMi(1jM j) = 1i��� � �(jM j):We say that O is eÆient if it runs in polynomial time.De�nition 2.2 (iruit obfusator) A probabilisti algorithm O is a (iruit) obfusator if thefollowing three onditions hold:� (funtionality) For every iruit C, the string O(C) desribes a iruit that omputes the samefuntion as C.� (polynomial slowdown) There is a polynomial p suh that for every iruit C, jO(C)j � p(jCj).� (\virtual blak box" property) For any PPT A, there is a PPT S and a negligible funtion �suh that for all iruits C���Pr [A(O(C)) = 1℄� Pr hSC(1jCj) = 1i��� � �(jCj):We say that O is eÆient if it runs in polynomial time.We all the �rst two requirements (funtionality and polynomial slowdown) the syntati re-quirements of obfusation, as they do not address the issue of seurity at all.There are a ouple of other natural formulations of the \virtual blak box" property. The�rst, whih more losely follows the informal disussion above, asks that for every prediate �, theprobability that A(O(C)) = �(C) is at most the probability that SC(1jCj) = �(C) plus a negligibleterm. It is easy to see that this requirement is equivalent to the one above. Another formulationrefers to the distinguishability between obfusations of two TMs/iruits: ask that for every C1and C2, jPr [A(O(C1)) = 1℄�Pr [A(O(C2))℄ j is approximately equal to jPr �SC1(1jC1j; 1jC2j) = 1��Pr �SC2(1jC1j; 1jC2)� j. This de�nition appears to be slightly weaker than the ones above, but ourimpossibility proof also rules it out. 8



Note that in both de�nitions, we have hosen to simplify the de�nition by using the size ofthe TM/iruit to be obfusated as a seurity parameter. One an always inrease this length bypadding to obtain higher seurity.The main di�erene between the iruit and TM obfusators is that a iruit omputes a funtionwith �nite domain (all the inputs of a partiular length) while a TM omputes a funtion within�nite domain. Note that if we had not restrited the size of the obfusated iruit O(C), then the(exponential size) list of all the values of the iruit would be a valid obfusation (provided we allowS running time poly(jO(C)j) rather than poly(jCj)). For Turing mahines, it is not lear how toonstrut suh an obfusation, even if we are allowed an exponential slowdown. Hene obfusatingTMs is intuitively harder. Indeed, it is relatively easy to prove:Proposition 2.3 If a TM obfusator exists, then a iruit obfusator exists.Thus, when we prove our impossibility result for iruit obfusators, the impossibility of TM ob-fusators will follow. However, onsidering TM obfusators will be useful as motivation for theproof.We note that, from the perspetive of appliations, De�nitions 2.1 and 2.2 are already too weakto have the wide appliability disussed in the introdution. The point is that they are neverthelessimpossible to satisfy (as we will prove).3 The Main Impossibility ResultTo state our main result we introdue the notion of unobfusatable funtion ensemble.De�nition 3.1 An unobfusatable funtion ensemble is an ensemble fHkgk2N of distributions Hkon �nite funtions (from, say, f0; 1glin(k) to f0; 1glout(k)) satisfying:� (eÆient omputability) Every funtion f R Hk is omputable by a iruit of size poly(k).(Moreover, a distribution on iruits onsistent with Hk an be sampled uniformly in timepoly(k).)� (unobfusatability) There exists a funtion � : Sk2N Supp(Hk)! f0; 1g suh that1. �(f) is hard to ompute with blak-box aess to f : For any PPT SPrf R Hk[Sf (1k) = �(f)℄ � 12 + neg(k)2. �(f) is easy to ompute with aess to any iruit that omputes f : There exists a PPTA suh that for any f 2 Sk2N Supp(Hk) and for any iruit C that omputes fA(C) = �(f)We prove in Theorem 3.11 that, assuming one-way funtions exist, there exists an unobfus-atable funtion ensemble. This implies that, under the same assumption, there is no obfusatorthat satis�es De�nition 2.2 (atually we prove the latter fat diretly in Theorem 3.8). Sine theexistene of an eÆient obfusator implies the existene of one-way funtions (Lemma 3.9), weonlude that eÆient obfusators do not exist (unonditionally).However, the existene of unobfusatable funtion ensemble has even stronger impliations. Asmentioned in the introdution, these funtions an not be obfusated even if we allow the followingrelaxations to the obfusator: 9



1. As mentioned above, the obfusator does not have to run in polynomial time | it an be anyrandom proess.2. The obfusator has only to work for funtions in Supp(Hk) and only for a non-negligiblefration of these funtions under the distributions Hk.3. The obfusator has only to hide an a priori �xed property � from an a priori �xed adversaryA.Struture of the Proof of the Main Impossibility Result. We shall prove our result by�rst de�ning obfusators that are seure also when applied to several (e.g., two) algorithms andproving that they do not exist. Then we shall modify the onstrution in this proof to provethat TM obfusators in the sense of De�nition 2.1 do not exist. After that, using an additionalonstrution (whih requires one-way funtions), we will prove that a iruit obfusator as de�nedin De�nition 2.2 does not exist if one-way funtions exist. We will then observe that our proofatually yields an unobfusatable funtion ensemble (Theorem 3.11).3.1 Obfusating two TMs/iruitsObfusators as de�ned in the previous setion provide a \virtual blak box" property when asingle program is obfusated, but the de�nitions do not say anything about what happens whenthe adversary an inspet more than one obfusated program. In this setion, we will onsiderextensions of those de�nitions to obfusating two programs, and prove that they are impossible tomeet. The proofs will provide useful motivation for the impossibility of the original one-programde�nitions.De�nition 3.2 (2-TM obfusator) A 2-TM obfusator is de�ned in the same way as a TMobfusator, exept that the \virtual blak box" property is strengthened as follows:� (\virtual blak box" property) For any PPT A, there is a PPT S and a negligible funtion �suh that for all TMs M;N���Pr [A(O(M);O(N)) = 1℄� Pr hShMi;hNi(1jM j+jN j) = 1i��� � �(minfjM j; jN jg)De�nition 3.3 (2-iruit obfusator) A 2-iruit obfusator is de�ned in the same way as airuit obfusator, exept that the \virtual blak box" property is replaed with the following:� (\virtual blak box" property) For any PPT A, there is a PPT S and a negligible funtion �suh that for all iruits C;D���Pr [A(O(C);O(D)) = 1℄� Pr hSC;D(1jCj+jDj) = 1i��� � �(minfjCj; jDjg)Proposition 3.4 Neither 2-TM nor 2-iruit obfusators exist.Proof: We begin by showing that 2-TM obfusators do not exist. Suppose, for sake of on-tradition, that there exists a 2-TM obfusator O. The essene of this proof, and in fat of allthe impossibility proofs in this paper, is that there is a fundamental di�erene between gettingblak-box aess to a funtion and getting a program that omputes it, no matter how obfusated:A program is a suint desription of the funtion, on whih one an perform omputations (or10



run other programs). Of ourse, if the funtion is (exatly) learnable via orale queries (i.e., onean aquire a program that omputes the funtion by querying it at a few loations), then thisdi�erene disappears. Hene, to get our ounterexample, we will use a funtion that annot beexatly learned with orale queries. A very simple example of suh an unlearnable funtion follows.For strings �; � 2 f0; 1gk, de�ne the Turing mahineC�;�(x) def= n� x = �0k otherwiseWe assume that on input x, C�;� runs in 10 � jxj steps (the onstant 10 is arbitrary). Now wewill de�ne a TM D�;� that, given the ode of a TM C, an distinguish between the ase that Computes the same funtion as C�;� from the ase that C omputes the same funtion as C�0;�0 forany (�0; �0) 6= (�; �). D�;�(C) def= n 1 C(�) = �0 otherwise(Atually, this funtion is unomputable. However, as we shall see below, we an use a modi�edversion of D�;� that only onsiders the exeution of C(�) for poly(k) steps, and outputs 0 if C doesnot halt within that many steps, for some �xed polynomial poly(�). We will ignore this issue fornow, and elaborate on it later.) Note that C�;� and D�;� have desription size �(k).Consider an adversary A, whih, given two (obfusated) TMs as input, simply runs the seondTM on the �rst one. That is, A(C;D) = D(C). (Atually, like we modi�ed D�;� above, we alsowill modify A to only run D on C for poly(jCj; jDj) steps, and output 0 if D does not halt in thattime.) Thus, for any �; � 2 f0; 1gk ,Pr [A(O(C�;�);O(D�;�)) = 1℄ = 1 (1)Observe that any poly(k)-time algorithm S whih has orale aess to C�;� and D�;� has onlyexponentially small probability (for a random � and �) of querying either orale at a point whereits value is nonzero. Hene, if we let Zk be a Turing mahine that always outputs 0k, then for everyPPT S, ���Pr hSC�;� ;D�;�(1k) = 1i� Pr hSZk;D�;�(1k) = 1i��� � 2�
(k); (2)where the probabilities are taken over � and � seleted uniformly in f0; 1gk and the oin tosses ofS. On the other hand, by the de�nition of A we have:Pr [A(O(Zk);O(D�;�)) = 1℄ = 0 (3)The ombination of Equations (1), (2), and (3) ontradit the fat that O is a 2-TM obfusator.In the above proof, we ignored the fat that we had to trunate the running times of A andD�;� .When doing so, we must make sure that Equations (1) and (3) still hold. Equation (1) involvesexeuting (a) A(O(D�;�);O(C�;�)), whih in turn amounts to exeuting (b) O(D�;�)(O(C�;�)).By de�nition (b) has the same funtionality as D�;�(O(C�;�)), whih in turn involves exeuting() O(C�;�)(�). Yet the funtionality requirement of the obfusator de�nition assures us that() has the same funtionality as C�;�(�). By the polynomial slowdown property of obfusators,exeution () only takes poly(10 � k) = poly(k) steps, whih means that D�;�(O(C�;�)) need onlyrun for poly(k) steps. Thus, again applying the polynomial slowdown property, exeution (b) takespoly(k) steps, whih �nally implies that A need only run for poly(k) steps. The same reasoning11



holds for Equation (3), using Zk instead of C�;�.5 Note that all the polynomials involved are �xedone we �x the polynomial p(�) of the polynomial slowdown property.The proof for the 2-iruit ase is very similar to the 2-TM ase, with a related, but slightlydi�erent subtlety. Suppose, for sake of ontradition, that O is a 2-iruit obfusator. For k 2 Nand �; � 2 f0; 1gk , de�ne Zk, C�;� and D�;� in the same way as above but as iruits rather thanTMs, and de�ne an adversary A by A(C;D) = D(C). (Note that the issues of A and D�;�'s runningtimes go away in this setting, sine iruits an always be evaluated in time polynomial in theirsize.) The new subtlety here is that the de�nition of A as A(C;D) = D(C) only makes sense whenthe input length of D is larger than the size of C (note that one an always pad C to a larger size).Thus, for the analogues of Equations (1) and (3) to hold, the input length of D�;� must be largerthan the sizes of the obfusations of C�;� and Zk. However, by the polynomial slowdown propertyof obfusators, it suÆes to let D�;� have input length poly(k) and the proof works as before.3.2 Obfusating one TM/iruitOur approah to extending the two-program obfusation impossibility results to the one-programde�nitions is to ombine the two programs onstruted above into one. This will work in a quitestraightforward manner for TM obfusators, but will require new ideas for iruit obfusators.Combining funtions and programs. For funtions, TMs, or iruits f0; f1 : X ! Y , de�netheir ombination f0#f1 : f0; 1g �X ! Y by (f0#f1)(b; x) def= fb(x). Conversely, if we are givena TM (resp., iruit) C : f0; 1g �X ! Y , we an eÆiently deompose C into C0#C1 by settingCb(x) def= C(b; x); note that C0 and C1 have size and running time essentially the same as that ofC. Observe that having orale aess to a ombined funtion f0#f1 is equivalent to having oraleaess to f0 and f1 individually.Theorem 3.5 TM obfusators do not exist.Proof Sketh: Suppose, for sake of ontradition, that there exists a TM obfusator O. For�; � 2 f0; 1gk , let C�;�, D�;� , and Zk be the TMs de�ned in the proof of Proposition 3.4. Combiningthese, we get the TMs F�;� = C�;�#D�;� and G�;� = Zk#C�;�.We onsider an adversary A analogous to the one in the proof of Proposition 3.4, augmentedto �rst deompose the program it is fed. That is, on input a TM F , algorithm A �rst deomposesF into F0#F1 and then outputs F1(F0). (As in the proof of Proposition 3.4, A atually should bemodi�ed to run in time poly(jF j).) Let S be the PPT simulator for A guaranteed by De�nition 2.1.Just as in the proof of Proposition 3.4, we have:Pr [A(O(F�;�)) = 1℄ = 1 and Pr [A(O(G�;�)) = 1℄ = 0���Pr hSF�;�(1k) = 1i� Pr hSG�;� (1k) = 1i��� � 2�
(k);where the probabilities are taken over uniformly seleted �; � 2 f0; 1gk , and the oin tosses of A,S, and O. This ontradits De�nition 2.1. 25Another, even more minor subtlety that we ignored is that, stritly speaking, A only has running time polynomialin the desription of the obfusations of C�;�, D�;�, and Zk, whih ould oneivably be shorter than the originalTM desriptions. But a ounting argument shows that for all but an exponentially small fration of pairs (�; �) 2f0; 1gk � f0; 1gk, O(C�;�) and O(D�;�) must have desription size 
(k).12



There is a diÆulty in trying to arry out the above argument in the iruit setting. (ThisdiÆulty is related to (but more serious than) the same subtlety regarding the iruit settingdisussed earlier.) In the above proof, the adversary A, on input O(F�;�), attempts to evaluateF1(F0), where F0#F1 = O(F�;�) = O(C�;�#D�;�). In order for this to make sense in the iruitsetting, the size of the iruit F0 must be at most the input length of F1 (whih is the same as theinput length of D�;�). But, sine the output F0#F1 of the obfusator an be polynomially largerthan its input C�;�#D�;� , we have no suh guarantee. Furthermore, note that if we ompute F0,F1 in the way we desribed above (i.e., Fb(x) def= O(F�;�)(b; x)) then we'll have jF0j = jF1j and soF0 will neessarily be larger than F1's input length.To get around this, we modify D�;� in a way that will allow A, when given D�;� and a iruitC, to test whether C(�) = � even when C is larger than the input length of D�;�. Of ourse, oraleaess to D�;� should not reveal � and �, beause we do not want the simulator S to be able totest whether C(�) = � given just orale aess to C and D�;�. We will onstrut suh funtionsD�;� based on pseudorandom funtions [GGM86℄.Lemma 3.6 If one-way funtions exist, then for every k 2 N and �; � 2 f0; 1gk, there is a distri-bution D�;� on iruits suh that:1. Every D 2 Supp(D�;�) is a iruit of size poly(k).2. There is a polynomial-time algorithm A suh that for any iruit C, and any D 2 Supp(D�;�),AD(C; 1k) = 1 i� C(�) = �.3. For any PPT S, Pr �SD(1k) = �� = neg(k), where the probability is taken over �; � R f0; 1gk,D R D�;�, and the oin tosses of S.Proof: Basially, the onstrution implements a private-key \homomorphi enryption" sheme.More preisely, the funtions in D�;� will onsist of three parts. The �rst part gives out an enryp-tion of the bits of � (under some private-key enryption sheme). The seond part provides theability to perform binary Boolean operations on enrypted bits, and the third part tests whether asequene of enryptions onsists of enryptions of the bits of �. These operations will enable oneto eÆiently test whether a given iruit C satis�es C(�) = �, while keeping � and � hidden whenonly orale aess to C and D�;� is provided.We begin with any one-bit (probabilisti) private-key enryption sheme (En;De) that satis�esindistinguishability under hosen plaintext and nonadaptive hosen iphertext attaks. Informally,this means that an enryption of 0 should be indistinguishable from an enryption of 1 even foradversaries that have aess to enryption and deryption orales prior to reeiving the hallengeiphertext, and aess to just an enryption orale after reeiving the hallenge iphertext. (See[KY00℄ for formal de�nitions.) We note that suh enryptions shemes exist if one-way funtionsexist; indeed, the \standard" enryption sheme EnK(b) = (r; fK(r)� b), where r R f0; 1gjKj andfK is a pseudorandom funtion, has this property.Now we onsider a \homomorphi enryption" algorithm Hom, whih takes as input a private-key K and two iphertexts  and d (w.r.t. this key K), and a binary boolean operation � (spei�edby its 2� 2 truth table). We de�neHomK(; d;�) def= EnK(DeK()�DeK(d)):It an be shown that suh an enryption sheme retains its seurity even if the adversary is givenaess to a Hom orale. This is formalized in the following laim:13



Claim 3.7 For every PPT A,��Pr �AHomK ;EnK (EnK(0)) = 1�� Pr �AHomK ;EnK (EnK(1)) = 1��� � neg(k):Proof of laim: Suppose there were a PPT A violating the laim. First, we argue thatwe an replae the responses to all of A'S HomK -orale queries with enryptions of 0 withonly a negligible e�et on A's distinguishing gap. This follows from indistinguishabilityunder hosen plaintext and iphertext attaks and a hybrid argument: Consider hybridswhere the �rst i orale queries are answered aording to HomK and the rest withenryptions of 0. Any advantage in distinguishing two adjaent hybrids must be due todistinguishing an enryption of 1 from an enryption of 0. The resulting distinguisheran be implemented using orale aess to enryption and deryption orales prior toreeiving the hallenge iphertext (and an enryption orale afterward).One we have replaed the HomK-orale responses with enryptions of 0, we have anadversary that an distinguish an enryption of 0 from an enryption of 1 when givenaess to just an enryption orale. This ontradits indistinguishability under hosenplaintext attak. 2Now we return to the onstrution of our iruit family D�;�. For a key K, let EK;� be analgorithm whih, on input i outputs EnK(�i), where �i is the i'th bit of �. Let BK;� be analgorithm whih when fed a k-tuple of iphertexts (1; : : : ; k) outputs 1 if for all i, DeK(i) = �i,where �1; : : : ; �k are the bits of �. A random iruit from D�;� will essentially be the algorithmDK;�;� def= EK;�#HomK#BK;�(for a uniformly seleted key K). One minor ompliation is that DK;�;� is atually a probabilistialgorithm, sine EK;� and HomK employ probabilisti enryption, whereas the lemma requiresdeterministi funtions. This an be solved in the usual way, by using pseudorandom funtions.Let q = q(k) be the input length of DK;�;� and m = m(k) the maximum number of random bitsused by DK;�;� on any input. We an selet a pseudorandom funtion fK0 : f0; 1gq ! f0; 1gm,and let D0K;�;�;K0 be the (deterministi) algorithm, whih on input x 2 f0; 1gq evaluates DK;�;�(x)using randomness fK0(x).De�ne the distribution D�;� to be D0K;�;�;K0, over uniformly seleted keys K and K 0. We arguethat this distribution has the properties stated in the lemma. By onstrution, eah D0K;�;�;K0 isomputable by iruit of size poly(k), so Property 1 is satis�ed.For Property 2, onsider an algorithm A that on input C and orale aess to D0K;�;�;K0 (whih,as usual, we an view as aess to (deterministi versions of) the three separate orales EK;�,HomK , and BK;�), proeeds as follows: First, with k orale queries to the EK;� orale, A obtainsenryptions of eah of the bits of �. Then, A uses the HomK orale to do a gate-by-gate emulationof the omputation of C(�), in whih A obtains enryptions of the values at eah gate of C. Inpartiular, A obtains enryptions of the values at eah output gate of C (on input �). It then feedsthese output enryptions to DK;�, and outputs the response to this orale query. By onstrution,A outputs 1 i� C(�) = �.Finally, we verify Property 3. Let S be any PPT algorithm. We must show that S has onlya negligible probability of outputting � when given orale aess to D0K;�;�;K0 (over the hoie ofK, �, �, K 0, and the oin tosses of S). By the pseudorandomness of fK0, we an replae oraleaess to the funtion D0K;�;�;K0 with orale aess to the probabilisti algorithm DK;�;� with only anegligible e�et on S's suess probability. Orale aess to DK;�;� is equivalent to orale aess to14



EK;�, HomK , and BK;�. Sine � is independent of � and K, the probability that S queries BK;� ata point where its value is nonzero (i.e., at a sequene of enryptions of the bits of �) is exponentiallysmall, so we an remove S's queries to BK;� with only a negligible e�et on the suess probability.Orale aess to EK;� is equivalent to giving S polynomially many enryptions of eah of the bitsof �. Thus, we must argue that S annot ompute � with nonnegligible probability from theseenryptions and orale aess to HomK . This follows from the fat that the enryption shemeremains seure in the presene of a HomK orale (Claim 3.7) and a hybrid argument.Now we an prove the impossibility of iruit obfusators.Theorem 3.8 If one-way funtions exist, then iruit obfusators do not exist.Proof: Suppose, for sake of ontradition, that there exists a iruit obfusator O. For k 2 Nand �; � 2 f0; 1gk , let Zk and C�;� be the iruits de�ned in the proof of Proposition 3.4, and letD�;� be the distribution on iruits given by Lemma 3.6. For eah k 2 N, onsider the followingtwo distributions on iruits of size poly(k):Fk: Choose � and � uniformly in f0; 1gk , D R D�;�. Output C�;�#D.Gk: Choose � and � uniformly in f0; 1gk , D R D�;� . Output Zk#D.Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.6, and onsider a PPT A0whih, on input a iruit F , deomposes F = F0#F1 and evaluates AF1(F0; 1k), where k is theinput length of F0. Thus, when fed a iruit from O(Fk) (resp., O(Gk)), A0 is evaluating AD(C; 1k)where D omputes the same funtion as some iruit from D�;� and C omputes the same funtionas C�;� (resp., Zk). Therefore, by Property 2 in Lemma 3.6, we have:We now argue that for any PPT algorithm S���Pr hSFk(1k) = 1i� Pr hSGk(1k) = 1i��� � 2�
(k);whih will ontradit the de�nition of iruit obfusators. Having orale aess to a iruit fromFk (respetively, Gk) is equivalent to having orale aess to C�;� (resp., Zk) and D R D�;�, where�; � are seleted uniformly in f0; 1gk . Property 3 of Lemma 3.6 implies that the probability thatS queries the �rst orale at � is negligible, and hene S annot distinguish that orale being C�;�from it being Zk.We an remove the assumption that one-way funtions exist for eÆient iruit obfusators viathe following (easy) lemma.Lemma 3.9 If eÆient obfusators exist, then one-way funtions exist.Proof Sketh: Suppose that O is an eÆient obfusator as per De�nition 2.2. For � 2 f0; 1gkand b 2 f0; 1g, let C�;b : f0; 1gk ! f0; 1g be the iruit de�ned byC�;b(x) def= n b x = �0 otherwise.15



Now de�ne fk(�; b; r) def= O(C�;b; r), i.e. the obfusation of C�;b using oin tosses r. We will arguethat f = Sk2N fk is a one-way funtion. Clearly fk an be evaluated in time poly(k). Sine thebit b is information-theoretially determined by fk(�; b; r), to show that f is one-way it suÆes toshow that b is a hard-ore bit of f . To prove this, we �rst observe that for any PPT S,Pr�;b hSC�;b(1k) = bi � 12 + neg(k):By the virtual blak box property of O, it follows that for any PPT A,Pr�;b;r [A(f(�; b; r)) = b℄ = Pr�;b;r [A(O(C�;b; r)) = b℄ � 12 + neg(k):This demonstrates that b is indeed a hard-ore bit of f , and hene that f is one-way. 2Corollary 3.10 EÆient iruit obfusators do not exist (unonditionally).As stated above, our impossibility proof an be ast in terms of \unobfusatable funtions":Theorem 3.11 (unobfusatable funtions) If one-way funtions exist, then there exists an un-obfusatable funtion ensemble.Proof: Let Fk and Gk be the distributions on funtions in the proof of Theorem 3.8,and let Hkbe the distribution that, with probability 1=2 outputs a sample of Fk and with probability 1=2outputs a sample of Gk. We laim that fHkgk2N is an unobfusatable funtion ensemble.The fat that fHkgk2N is eÆiently omputable is obvious. We de�ne �(f) to be 1 if f 2Sk Supp(Fk) and 0 otherwise (note that (Sk Supp(Fk)) \ (Sk Supp(Gk)) = ; and so �(f) = 0 forany f 2 Sk Supp(Gk)). The algorithm A0 given in the proof of Theorem 3.8 shows that �(f) anbe omputed in polynomial time from any iruit omputing f 2 Supp(Hk). Beause orale aessto Fk annot be distinguished from orale aess to Gk (as shown in the proof of Theorem 3.8),it follows that �(f) annot be omputed from an orale for f R Hk with probability notieablygreater than 1=2.4 Extensions4.1 Totally unobfusatable funtionsSome of the extensions of our impossibility result require a somewhat stronger form of unobfus-atable funtions, in whih it is not only possible to ompute �(f) from any iruit for f , buteven to reover the \original" iruit for f . This an be ahieved by a slight modi�ation of ouronstrution. It will also be useful to extend the onstrution so that not only the one bit �(f) isunpreditable given orale aess to f , but rather that there are many bits of information aboutf whih are ompletely pseudorandom. These properties are aptured by the de�nition below. Inthis de�nition, it will be onvenient to identify the funtions f in our family with the anonialiruits that ompute them.De�nition 4.1 A totally unobfusatable funtion ensemble is an ensemble fHkgk2N of distribu-tions Hk on iruits (from, say, f0; 1glin(k) to f0; 1glout(k)) satisfying:� (eÆient omputability) Every iruit f 2 Supp(Hk) is of size poly(k). Moreover, f R Supp(Hk) an be sampled uniformly in time poly(k).16



� (unobfusatability) There exists a poly-time omputable funtion � : Sk2N Supp(Hk)! f0; 1g�,suh that1. �(f) is pseudorandom given blak-box aess to f : For any PPT S����� Prf R Hk[Sf (�(f)) = 1℄� Prf R Hk;z R f0;1gk[Sf (z) = 1℄����� � neg(k)2. f is easy to reonstrut given any other iruit for f : There exists a PPT A suh thatfor any f 2 Sk Supp(Hk) and for any iruit C that omputes the same funtion as fA(C) = f,Note that totally unobfusatable funtions imply unobfusatable funtions: given orale aess to atotally unobfusatable f , pseudorandomness implies that the �rst bit of �(f) annot be omputedwith probability notieably more than 1=2, and given any iruit for f , one an eÆiently �nd theanonial iruit for f , from whih one an ompute �(f) (and in partiular, its �rst bit).Theorem 4.2 (totally unobfusatable funtions) If one-way funtions exist, then there existsa totally unobfusatable funtion ensemble.Proof Sketh: The �rst step is to observe that the ensemble D�;� of Lemma 3.6 an be modi�edso that Property 2 instead says AD(C; 1k) = � if C(�) = � and AD(C; 1k) = 0k otherwise.(To ahieve this, replae BK;� with B0K;�;� whih outputs � when fed a sequene of iphertexts(1; : : : ; k) whose deryptions are the bits of � and outputs 0k otherwise.)Now our totally unobfusatable funtion ensemble Hk is de�ned as follows.Hk: Choose �; �;  uniformly in f0; 1gk , D R D�;�. Output C�;�#D#C�;(D;).(Above, C�;(D;) is the iruit whih on input � outputs (D; ), and on all other inputs outputs0j(D;)j.)EÆieny is learly satis�ed. For unobfusatability, we de�ne �(C�;�#D#C�;(D;)) = . Let'sverify that  is pseudorandom given orale aess. As in the proof of Theorem 3.11, it follows fromProperty 3 of Lemma 3.6 that a PPT algorithm given orale aess to C�;�#D#C�;(D;). will onlyquery C�;(D;) with negligible probability and hene  is indistinguishable from uniform.Finally, let's show that given any iruit C 0 omputing the same funtion as C�;�#D#C�;(D;),we an reonstrut the latter iruit. First, we an deompose C 0 = C1#D0#C2. SineD0 omputesthe same funtion as D and C1(�) = �, we have AD0(C1) = �, where A is the algorithm from (themodi�ed) Property 2 of Lemma 3.6. Given �, we an obtain � = C1(�) and (D; ) = C2(�), whihallows us to reonstrut C�;�#D#C�;(D;). 24.2 Approximate obfusatorsOne of the most reasonable ways to weaken the de�nition of obfusators, is to relax the onditionthat the obfusated iruit must ompute exatly the same funtion as the original iruit. Rather,we an allow the obfusated iruit to only approximate the original iruit.17



We must be areful in de�ning \approximation". We do not want to lose the notion of anobfusator as a general purpose srambling algorithm and therefore we want a de�nition of approx-imation that will be strong enough to guarantee that the obfusated iruit an still be used inthe plae of the original iruit in any appliation. Consider the ase of a signature veri�ationalgorithm VK . A polynomial-time algorithm annot �nd an input on whih VK does not output0 (without knowing the signature key). However, we learly do not want this to mean that theonstant zero funtion is an approximation of VK .4.2.1 De�nition and Impossibility ResultIn order to avoid the above pitfalls we hoose a de�nition of approximation that allows the obfus-ated iruit to deviate on a partiular input from the original iruit only with negligible probabilityand allows this event to depend on only the oin tosses of the obfusating algorithm (rather thanover the hoie of a randomly hosen input).De�nition 4.3 For any funtion f : f0; 1gn ! f0; 1gk, � > 0, the random variable C is alled an�-approximate implementation of f if the following holds:1. C ranges over iruits from f0; 1gn to f0; 1gk2. For any x 2 f0; 1gn , PrC [C(x) = f(x)℄ � 1� �We then de�ne a strongly unobfusatable funtion ensemble to be an unobfusatable funtionensemble where the hard property �(f) an be omputed not only from any iruit that omputesf but also from any approximate implementation of f .De�nition 4.4 A strongly unobfusatable funtion ensemble fHkgk2N is de�ned in the same wayas an unobfusatable funtion ensemble, exept that Part 2 of the \unobfusatability" ondition isreplaed with the following:2. �(f) is easy to ompute with aess to a iruit that approximates f : There exists a PPT Aand a polynomial p(�) suh that for any f 2 Sn2N Supp(Hn) and for any random variable Cthat is an �-approximate implementation of fPr[A(C) = �(f)℄ � 1� � � p(n)Our main theorem in this setion is the following:Theorem 4.5 If one-way funtions exist, then there exists a strongly unobfusatable funtion en-semble.Similarly to the way that Theorem 3.11 implies Theorem 3.8, Theorem 4.5 implies that, assum-ing the existene of one-way funtions, an even weaker de�nition of iruit obfusators (one thatallows the obfusated iruit to only approximate the original iruit) is impossible to meet. Wenote that it some (but not all) appliations of obfusators, a weaker notion of approximation mightsuÆe. Spei�ally, in some ases it suÆes for the obfusator to only approximately preservefuntionality with respet to a partiular distribution on inputs, suh as the uniform distribution.(This is implied, but apparently weaker, than the requirement of De�nition 4.3 | if C is an "-approximate implementation of f , then for for any �xed distribution D on inputs, C and f agree18



on a 1�p" fration of D with probability at least 1�p".) We do not know whether approximateobfusators with respet to this weaker notion exist, and leave it as an open problem.We shall prove this theorem in the following stages. First we will see why the proof of Theo-rem 3.11 does not apply diretly to the ase of approximate implementations. Then we shall de�nea onstrut alled invoker-randomizable pseudorandom funtions, whih will help us modify theoriginal proof to hold in this ase.4.2.2 Generalizing the Proof of Theorem 3.11 to the Approximate CaseThe �rst question is whether the proof of Theorem 3.11 already shows that the ensemble fHkgk2Nde�ned there is atually a strongly unobfusatable funtion ensemble. As we explain below, theanswer is no.To see why, let us reall the de�nition of the ensemble fHkgk2N that is de�ned there and usesthe distributions Fk and Gk that are de�ned in the proof of Theorem 3.8. The distribution Hkis de�ned by taking an element from Fk or Gk, with probability 1=2 eah. The distribution Fk isde�ned by hoosing �; � R f0; 1gk , a funtion D R D�;� and outputting C�;�#D. Similarly, Gk isde�ned by hoosing �; � R f0; 1gk , D R D�;� and outputting Zk#D. The property � is de�nedsimply to distinguish funtions in Fk from those in Gk.That proof gave an algorithm A0 whih omputes �(f) given a iruit omputing any funtionf from H. Let us see why A0 might fail when given only an approximate implementation of f . Oninput a iruit F , A0 works as follows: It deomposes F into two iruits F = F1#F2. F2 is used onlyin a blak-box manner, but the queries A0 makes to it depend on the gate struture of the iruitF1. The problem is that a viious approximate implementation for a funtion C�;�#D 2 Supp(Fk)may work in the following way: hoose a random iruit F1 out of some set C of exponentially manyiruits that ompute C�;�, and take F2 that omputes D. Then see at whih points A0 queries F2when given F1#F2 as input.6 As these plaes depend on F1, it is possible that for eah F1 2 C,there is a point x(F1) suh that A0 will query F2 at the point x(F1), but x(F1) 6= x(F 01) for anyF 01 2 C n fF1g. If the approximate implementation hanges the value of F2 at x(F1), then A0'somputation on F1#F2 is orrupted.One way to solve this problem would be to make the queries that A0 makes to F2 independentof the struture of F1. If A0 had this property, then given an �-approximate implementation ofC�;�#D, eah query of A0 would have only an � hane to get an inorret answer and overall A0would sueed with probability 1 � � � p(k) for some polynomial p(�). (Note that the probabilitythat F1(�) hanges is at most �.)We will not be able to ahieve this, but something slightly weaker that still suÆes. Let's lookmore losely at the struture of D�;� whih is de�ned in the proof of Lemma 3.6. We de�ned therethe algorithm DK;�;� def= EK;�#HomK#BK;�and turned it into a deterministi funtion by using a pseudorandom funtion f 0K and de�ningD0K;�;�;K0 to be the deterministi algorithm that on input x 2 f0; 1gq evaluates DK;�;�(x) usingrandomness fK0(x). We then de�ned D�;� to be D0K;�;�;K0 = E0K;�;K0#Hom0K;K0#BK;� for uni-formly seleted private key K and seed K 0.Now our algorithm A0 (that uses the algorithm A de�ned in Lemma 3.6) treats F2 as threeorales: E, H, and B , where if F2 omputes D = E0K;�;K0#Hom0K;K0#BK;� then E is the orale6Reall that A0 is not some given algorithm that we must treat as a blak-box but rather a spei� algorithm thatwe de�ned ourselves. 19



to E0K;�;K0, H is the orale to Hom0K;K0 and B is the orale to BK;�. The queries to E are at theplaes 1; : : : ; k and so are independent of the struture of F1. The queries that A makes to the Horale, however, do depend on the struture of F1.Reall that any query A0 makes to the H orale are of the form (; d;�) where  and d areiphertexts of some bits, and � is a 4-bit desription of a binary boolean funtion. Just formotivation, suppose that A0 has the following ability: given an enryption , A0 an generate arandom enryption of the same bit (i.e., distributed aording to EnK(DeK(); r) for uniformlyseleted r). For instane, this would be true if the enryption sheme were \random self-reduible."Suppose now that, before querying the H orale with (; d;�), A0 generates 0; d0 that are randomenryptions of the same bits as ; d and query the orale with (0; d0;�) instead. We laim thatif F2 is an �-approximate implementation of D, then for any suh query, there is at most a 64�probability for the answer to be wrong even if (; d;�) depend on the iruit F . The reason is thatthe distribution of the modi�ed query (0; d0;�) depends only on (DeK();DeK(d);�), and thereare only 2 � 2 � 24 = 64 possibilities for the latter. For eah of the 64 possibilities, the probabilityof an inorret answer (over the hoie of F ) is at most �. Choosing (DeK();DeK(d);�) after Fto maximize the probability of an inorret answer multiplies this probability by at most 64.We shall now use this motivation to �x the funtion D so that A0 will essentially have thisdesired ability of randomly self-reduing any enryption to a random enryption of the same bit.Reall that Hom0K;K0(; d;�) = EnK(DeK() �DeK(d); fK0(; d;�)). Now, a naive approah toensure that any query returns a random enryption of DeK()�DeK(d) would be to hange thede�nition of Hom0 to the following: Hom0K;K0(; d;�; r) = EnK(DeK() � DeK(d); r). Then wehange A0 to an algorithm A00 that hooses a uniform r 2 f0; 1gn and thereby ensures that theresult is a random enryption of DeK()�DeK(d). The problem is that this onstrution wouldno longer satisfy Property 3 of Lemma 3.6 (seurity against a simulator with orale aess). Thisis beause the simulator ould now ontrol the random oins of the enryption sheme and use thisto break it. Our solution will be to rede�ne Hom0 in the following way:Hom0K;K0(; d;�; r) = EnK(DeK()�DeK(d); fK0(; d;�; r))but require an additional speial property from the pseudorandom funtion fK0 .4.2.3 Invoker-Randomizable Pseudorandom FuntionsThe property we would like the pseudorandom funtion fK0 to possess is the following:De�nition 4.6 A funtion ensemble ffK0gK02f0;1g� (fK0 : f0; 1gq+n ! f0; 1gn , n ,q polynomiallyrelated to jK 0j) is alled an invoker-randomizable pseudorandom funtion ensemble if the followingholds:1. ffK0gK02f0;1g� is a pseudorandom funtion ensemble2. For any x 2 f0; 1gq , if r is hosen uniformly in f0; 1gn then fK0(x; r) is distributed uniformly(and so independently of x) in f0; 1gn.Fortunately, we an prove the following lemma:Lemma 4.7 If pseudorandom funtions exist then there exist invoker-randomizable pseudorandomfuntions. 20



Proof Sketh: Suppose that fgK0gK02f0;1g� is a pseudorandom funtion ensemble and thatfpSgS2f0;1g� is a pseudorandom funtion ensemble in whih for any S 2 f0; 1g� , pS is a permutation(the existene of suh ensembles is implied by the existene of ordinary pseudorandom funtionensembles [LR88℄).We de�ne the funtion ensemble ffK0gK02f0;1g� in the following way:fK0(x; r) def= pgK0(x)(r)It is lear that this ensemble satis�es Property 2 of De�nition 4.6 as for any x, the funtionr 7! fK0(x; r) is a permutation.What needs to be shown is that it is a pseudorandom funtion ensemble. We do this by showingthat for any PPT D, the following probabilities are idential up to a negligible fator.1. PrK0[DfK0 (1k) = 1℄ (where k = jK 0j).2. PrG[D(x;R)7!pG(x)(R)(1k) = 1℄, where G is a true random funtion.3. PrP1;:::;Pt [DP1;:::;Pt(1k) = 1℄, where t = t(k) is a bound on the number of queries that D makesand eah time D makes a query with a new value of x we use a new random funtion Pi.(This requires a hybrid argument).4. PrF [DF (1k) = 1℄, where F is a truly random funtion. 24.2.4 Finishing the Proof of Theorem 4.5Now, suppose we use a pseudorandom funtion fK0 that is invoker-randomizable, and modify thealgorithm A0 so that all its queries (; d;�) to the H orale are augmented to be of the form(; d;�; r), where r is hosen uniformly and independently for eah query. Then the result of eahsuh query is a random enryption of DeK()�DeK(d). Therefore, as argued above, A0 never getsa wrong answer from the H orale with probability at least 1� p(k) � �, for some polynomial p(�).Indeed, this holds beause aside from the �rst queries whih are �xed and therefore independentof the gate struture of F1, all other queries are of the form (; d;�; r) where  and d are uniformlydistributed and independent enryptions of some bits a and b, and r is uniformly distributed. Only(a; b;�) depend on the gate struture of F1, and there are only 64 possibilities for them. AssumingA0 never gets an inorret answer from the H orale, its last query to the B orale will be auniformly distributed enryption of �1; : : : ; �k, whih is independent of the struture of F1, and sohas only an � probability to be inorret. This ompletes the proof.One point to note is that we have onverted our deterministi algorithm A0 of Theorem 3.11into a probabilisti algorithm.4.3 Impossibility of the appliationsSo far, we have only proved impossibility of some natural and arguably minimalisti de�nitions forobfusation. Yet it might seem that there's still hope for a di�erent de�nition of obfusation, onethat will not be impossible to meet but would still be useful for some intended appliations. We'llshow now that this is not the ase for many of the appliations we desribed in the introdution.Rather, any de�nition of obfusator that would be strong enough to provide them, will be impossibleto meet. 21



Note that we do not prove that the appliations themselves are impossible to meet, but ratherthat there does not exist an obfusator7 that an be used to ahieve them in the ways that aredesribed in Setion 1.1. Our results in the setion also extend to approximate obfusators.Consider, for example, the appliation to transforming private-key enryption to publi-keyones. The iruit fEk in the following de�nition an be viewed as an enryption-key in the orre-sponding publi-key enryption sheme.De�nition 4.8 A private-key enryption sheme (G;E;D) is alled unobfusatable if there existsa PPT A suh that PrK R G(1k)[A(gEK) = K℄ � 1� neg(k)where gEK is any iruit that omputes the enryption funtion with private key K.Note that an unobfusatable enryption sheme is unobfusatable in a very strong sense. Anadversary is able to ompletely break the system given any iruit that omputes the enryptionalgorithm.We prove in Theorem 4.12 that if enryption shemes exist, then so do unobfusatable enryp-tion shemes that satisfy the same seurity requirements.8 This means that any de�nition of anobfusators that will be strong enough to allow the onversion of private-key enryption shemesinto publi-key enryption shemes mentioned in Setion 1.1, would be impossible to meet (beausethere exist unobfusatable enryption shemes).9We present analogous de�nitions for unobfusatable signature shemes, MACs, and pseudoran-dom funtions.De�nition 4.9 A signature sheme (G;S; V ) is alled unobfusatable if there exists a PPT A suhthat Pr(SK ;VK ) R G(1k)[A(gSSK ) = SK ℄ � 1� neg(k)where gSSK is any iruit whih omputes the signature funtion with signing key SK .De�nition 4.10 A message authentiation sheme (G;S; V ) is alled unobfusatable if there existsa PPT A suh that PrK R G(1k)[A(fSK) = K℄ � 1� neg(k)where fSK is any iruit whih omputes the tagging funtion with tagging key K.De�nition 4.11 A pseudorandom funtion ensemble fhKgK2f0;1g� is alled unobfusatable if thereexists a p.p.t A suh that PrK R f0;1gk[A(gHK) = K℄ � 1� neg(k)7By this, we mean any algorithm that satis�es the syntati requirements of De�nition 2.2 (funtionality andpolynomial slowdown).8Reall that, for simpliity, we only onsider deterministi enryption shemes here and relaxed notions of seuritythat are onsistent with them (f., Footnote 2).9Of ourse, this does not mean that publi-key enryption shemes do not exist, nor that there do not existprivate-key enryption shemes where one an give the adversary a iruit that omputes the enryption algorithmwithout loss of seurity (indeed, any publi-key enryption sheme is in partiular suh a private-key enryption).What this means is that there exists no general purpose way to transform a private key enryption sheme into apubli key enryption by obfusating the enryption algorithm.22



where gHK is any iruit that omputes hK .One impliation of the existene of unobfusatable pseudorandom funtion ensembles is thatfor many natural protools that are seure in the random orale model (suh as the Fiat{Shamirauthentiation protool [FS87℄), one an �nd a pseudorandom funtion ensemble fhkgk2f0;1g� suhthat if the random orale is replaed with any iruit that omputes hk, the protool would not beseure.Theorem 4.12 1. If signature shemes exist, then so do unobfusatable signature shemes.2. If private-key enryption shemes exist, then so do unobfusatable enryption shemes.3. If pseudorandom funtion ensembles exist, then so do unobfusatable pseudorandom funtionensembles.4. If message authentiation shemes exist, then so do unobfusatable message authentiationshemes.Proof Sketh: First note that the existene of any one of these primitives implies the existeneof one-way funtions [IL89℄. Therefore, Theorem 4.2 gives us a totally unobfusatable funtionensemble H = fHkg.Now, we shall sketh the onstrution of the unobfusatable signature sheme. All other on-strutions are similar. Take an existing signature sheme (G;S; V ) (where G is the key generationalgorithm, S the signing algorithm, and V the veri�ation algorithm). De�ne the new sheme(G0; S0; V 0) as follows:The generator G0 on input 1k uses the generator G to generate signing and verifying keys(SK ;VK ) R G(1k). It then samples a iruit f R H`, where ` = jSK j. The new signing key SK 0is (SK ; f) while the veri�ation key VK 0 is the same as VK .We an now de�ne S0SK ;f(m) def= (SSK (m); f(m);SK � �(f));where � is the funtion from the unobfusatability ondition in De�nition 4.1.V 0VK (m; (�; x)) def= VVK (m; �)We laim that (G0; S0; V 0) is an unobfusatable, yet seure, signature sheme. Clearly, given anyiruit that omputes S0SK ;f , one an obtain SK � �(f) and a iruit that omputes the samefuntion as f . Possession of the latter enables one to reonstrut the original iruit f itself, fromwhih �(f) and then SK an be omputed.To see that sheme (G0; S0; V 0) retains the seurity of the sheme (G;S; V ), observe that beinggiven orale aess to S0SK ;f is equivalent to being given orale aess to SSK and f , along withbeing given the string �(f) � SK . Using the fats that �(f) is indistinguishable from randomgiven orale aess to f and that f is hosen independently of SK , it an be easily shown that thepresene of f and �(f)� SK does not help an adversary break the signature sheme.The onstrution of an unobfusatable enryption sheme and pseudorandom funtion ensembleis similar. The only detail is that when we onstrut the pseudorandom funtion ensemble, we needto observe that Theorem 4.2 an be modi�ed to give H whih is also a family of pseudorandomfuntions. (To do this, all plaes where the funtions f in H were de�ned to be zero should insteadbe replaed with values of a pseudorandom funtion.) 223



4.4 Obfusating restrited iruit lassesGiven our impossibility results for obfusating general iruits, one may ask whether it is easier toobfusate omputationally restrited lasses of iruits. Here we argue that this is unlikely for allbut very weak models of omputation.Theorem 4.13 If fatoring Blum integers is \hard"10 then there is a family Hk of unobfusatablefuntions suh that every f R Hk is omputable by a onstant-depth threshold iruit of size poly(k)(i.e., in TC0).Proof Sketh: Naor and Reingold [NR97℄ showed that under the stated assumptions, there existsa family of pseudorandom funtions omputable in TC0. Thus, we simply need to hek that wean build our unobfusatable funtions from suh a family without a substantial inrease in depth.Reall that the unobfusatable funtion ensemble Hk onstruted in the proof of Theorem 3.11onsists of funtions of the form C�;�#D or Zk#D, where D is from the family D�;� of Lemma 3.6.It is easy to see that C�;� and Zk are in TC0, so we only need to hek that D�;� onsistsof iruits in TC0. The omputational omplexity of iruits in the family D�;� is dominatedby performing enryptions and deryptions in a private-key enryption sheme (En;De) andevaluating a pseudorandom funtion fK0 whih is used to derandomize the probabilisti iruitDK;�;�. If we use the Naor{Reingold pseudorandom funtions both for fK0 and to onstrut theenryption sheme (in the usual way, setting EnK(b) = (r; fK(r) � b)), then the resulting iruitis in TC0. 24.5 RelativizationIn this setion, we disuss whether our results relativize. To do this, we must larify the de�nitionof an obfusator relative to an orale F : f0; 1g� ! f0; 1g�. What we mean is that all algorithms inthe de�nition, inluding the one being obfusated and inluding the adversary, have orale aessto F . For a iruit, this means that the iruit an have gates for evaluating F . We �x an enodingof (orale) iruits as binary strings suh that a iruit desribed by a string of length s an onlymake orale queries of total length at most s.By inspetion, our initial (easy) impossibility results hold relative to any orale, as the involveonly simulation and diagonalization.Proposition 4.14 Proposition 3.4 (impossibility of 2-iruit obfusators) and Theorem 3.5 (im-possibility of TM obfusators) hold relative to any orale.Interestingly, however, our main impossibility results do not relativize.Proposition 4.15 There is an orale relative to whih eÆient iruit obfusators exist. Thus,Theorem 3.8,3.11, and Corollary 3.10 do not relativize.This an be viewed both as evidene that these results are nontrivial, and as (further) evidenethat relativization is not a good indiation of what we an prove.10This result is also implied if the Deisional DiÆe{Hellman problem is \hard"; see [NR97℄ for preise statementsof these assumptions.
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Proof Sketh: The orale F = Sk Fk will onsist of two parts Fk = Ok#Ek, where Ok :f0; 1gk�f0; 1gk ! f0; 1g6k , and Ek : f0; 1g6k�f0; 1gk ! f0; 1gk . Ok is simply a uniformly randominjetive funtion of the given parameters. Ek(x; y) is de�ned as follows: If there exists a (C; r)suh that Ok(C; r) = x, then Ek(x; y) = CF (y) (where C is viewed as the desription of a iruit).Otherwise, Ek(x; y) = ?. Note that this de�nition of Fk is not irular, beause C an only makeorale queries of size at most jCj = k, and hene an only query Fk0 for k0 � k=2.Now we an view x = Ok(C; r) as an obfusation of C using oin tosses r. This satis�esthe syntati requirements of obfusation, sine jxj = O(jCj) and the Ek allows one to eÆientlyevaluate C(y) given just x and y. (Tehnially, we should de�ne the obfusation of C to be a iruitwhih has x hardwired in and makes an orale query to Ek.)So we only need to prove the virtual blak-box property. By a union bound over polynomial-time adversaries A of desription size smaller than k=2 and iruits C of size k, it suÆes to provethe following laim.11Claim 4.16 For every PPT A there exists a PPT S suh that for every iruit C of size k, thefollowing holds with probability at least 1� 2�2k over F :����� Prr R f0;1gk �AF (Ok(C; r)) = 1�� Pr hSF;C(1k) = 1i����� � 2�
(k)Fix a PPT A. We de�ne the simulator S as follows. SF;C(1k) hooses x R f0; 1g6k and simulatesAF (x), using its own F -orale to answer A's orale queries, exept A's queries to Ek0 for k0 � k.On A's query (x0; y0) to Ek0 , S feeds A the response z omputed as follows:1. If x0 = x, then set z = C(y0) (omputed using orale aess to C).2. Else if x0 = Ok0(C 0; r0) for some previous query (C 0; r0) to the Ok0-orale, then set z =(C 0)F (y0) (omputed reursively using these same rules).3. Else set z = ?.From the fat that a iruit of size s an only make orale queries of total length s, it follows thatthe reursive evaluation of (C 0)F (y) only inurs a polynomial overhead in running time. Also notethat S never queries the Ek0 orale for k0 � k.Let us denote the exeution of the above simulation for a partiular x by SF;C(x). Notie thatwhen x = Ok(C; r) for some r, then SF;C(x) and AF (x) have exatly the same behavior unlessthe above simulation produes some query (x0; y0) suh that x0 2 Image(Ok0), x0 6= x, and x0 wasnot obtained by a previous query to Ok0 . Sine O is a random length-tripling funtion, it followsthat the latter happens with probability at most poly(k) � 22k=26k, taken over the hoie of F anda random r (reall that x = Ok(C; r)).12 Thus, with probability at least 1 � 2�3k over the hoieof F , SF;C(Ok(C; r)) = AF (Ok(C; r)) for all but a 2�
(k) fration of r's.Thus, proving Claim 4.16 redues to showing that:����� Prr R f0;1gk �SF;C(Ok(C; r)) = 1�� PrxR f0;1g6k �SF;C(x) = 1������ � 2�
(k)11Note that we are only proving the virtual blak-box property against adversaries of \bounded nonuniformity,"whih in partiular inludes all uniform PPT adversaries. Presumably it an also be proven against nonuniformadversaries, but we stik to uniform adversaries for simpliity.12Tehnially, this probability (and later ones in the proof) should also be taken over the oin tosses of A/S.25



with high probability (say, 1� 23k) over the hoie of F .In other words, we need to show that the funtion G(r)def=Ok(C; r) is a pseudorandom generatoragainst S. Sine G is a random funtion from f0; 1gk ! f0; 1g6k , this would be obvious were it notfor the fat that S has orale aess to F (whih is orrelated with G). Reall, however, that wemade sure that S does not query the Ek0-orale for any k0 � k. This enables us to use the followinglemma, proven in Appendix B.Lemma 4.17 There is a onstant Æ > 0 suh that the following holds for all suÆiently large Kand any L � K2. Let D be an algorithm that makes at most KÆ orale queries and let G be arandom injetive funtion G : [K℄! [L℄. Then with probability at least 1� 2�KÆ over G,���� Prx2[K℄ �DG(G(x)) = 1�� Pry2[L℄ �DG(y) = 1����� � 1KÆ :Let us see how Lemma 4.17 implies what we want. Let K = 2k and assoiate [K℄ with f0; 1gk .We �x all values of Ok0 for all k0 6= k and Ek0 for all k0 < k. We also �x the values of Ok(C 0; r) forall C 0 6= C, and view G(r) def= Ok(C; r) as a random injetive funtion from [K℄ to the remainingL = K6�(K�1)�K elements of f0; 1g6k . The only orale queries of S that vary with the hoie of Gare queries to Ok at points of the form (C; r), whih is equivalent to queries to G. Thus, Lemma 4.17implies that the output of G is indistinguishable from the uniform distribution on some subset off0; 1g6k of size L. Sine the latter has statistial di�erene (K6�L)=K6 < 1=K4 from the uniformdistribution on f0; 1g6k , we onlude that G is "-pseudorandom (for " = 1=KÆ + 1=K4 = 2�
(k))against S with probability at least 1� 2�KÆ > 1� 2�3k, as desired. 2While our result does not relativize in the usual sense, the proof does work for a slightlydi�erent form of relativization, whih we refer to as bounded relativization (and is how the RandomOrale Model is sometimes interpreted in ryptography.) In bounded relativization, an orale isa �nite funtion with �xed input length (polynomially related to the seurity parameter k), andall algorithms/iruits in the protool an have running time larger than this length (but stillpolynomial in k). In partiular, in the ontext of obfusation, this means that the iruit to beobfusated an have size polynomial in this length.Proposition 4.18 Theorems 3.11 and 3.8 (one-way funtions imply unobfusatable funtions andimpossibility of iruit obfusators), and Corollary 3.10 (unonditional impossibility of eÆientiruit obfusators) hold under bounded relativization (for any orale).Proof Sketh: The only modi�ation needed in the onstrution is to deal with orale gatesin the Hom algorithm in the proof of Lemma 3.6. Let's all say the orale F has input length` and output length 1 (without loss of generality). We augment the HomK to also take inputsof the form (1; : : : ; `; orale) (where (1; : : : ; `) are iphertexts), on whih it naturally outputsEnK(F (DeK(1);DeK(2); : : : ;DeK(`))). The rest of the proof proeeds essentially unhanged.25 On a Complexity Analogue of Rie's TheoremRie's Theorem asserts that the only properties of partial reursive funtions that an be deidedfrom their representations as Turing mahines are trivial. To state this preisely, we denote by [M ℄the (possibly partial) funtion that the Turing Mahine M omputes. Similarly, for [C℄ denotes thefuntion omputed by a iruit C. 26



Rie's Theorem Let L � f0; 1g� be a language suh that for any M;M 0 , [M ℄ � [M 0℄ impliesthat M 2 L () M 0 2 L. If L is deidable, then L is trivial in the sense that either L = f0; 1g�or L = ;.The diÆulty of problems suh as SAT suggest that perhaps Rie's theorem an be \saled-down" and that deiding properties of �nite funtions from their desriptions as iruits is in-tratable.Simply replaing the word \Turing mahine" with \iruit" and \deidable" with \polynomialtime" does not work. A ounterexample is the language L = fC 2 f0; 1g� j C(0) = 0g that anbe deided in polynomial time, even though [C℄ � [C 0℄ implies (C 2 L () C 0 2 L), and bothL 6= f0; 1g� and L 6= ;. Yet, there is a sense in whih L is trivial | to deide whether C 2 LeÆiently one does not need to use C itself, but rather one an do with orale aess to C only.This motivates the following onjeture:Conjeture 5.1 (Saled-down Rie's Theorem) Let L � f0; 1g� be a language suh that foriruits C;C 0, [C℄ � [C 0℄ implies that C 2 L () C 0 2 L. If L 2 BPP, then L is trivial in thesense that there exists a PPT S suh thatC 2 L) Pr[S[C℄(1jCj) = 1℄ > 23C 62 L) Pr[S[C℄(1jCj) = 0℄ > 23We now onsider a generalization of this onjeture to promise problems [ESY84℄, i.e., deisionproblems restrited to some subset of strings. Formally, a promise problem � is a pair � = (�Y ;�N )of disjoint sets of strings, orresponding to yes and no instanes, respetively. The generalizationof Conjeture 5.1 we seek is the following, where BPP is the generalization of BPP to promiseproblems:Conjeture 5.2 Let � = (�Y ;�N ) be a promise problem suh that for iruits C;C 0, [C℄ � [C 0℄implies that both C 2 �Y () C 0 2 �Y and C 2 �N () C 0 2 �N . If � 2 BPP, then � istrivial in the sense that there exists a PPT S suh thatC 2 �Y ) Pr[S[C℄(1jCj) = 1℄ > 23C 2 �N ) Pr[S[C℄(1jCj) = 0℄ > 23Our onstrution of unobfusatable funtions implies that the latter onjeture is false.Theorem 5.3 If one-way funtions exist, then Conjeture 5.2 is false.Proof Sketh: Let H = fHkgk2N be the unobfusatable funtion ensemble given by Theo-rem 3.11, and let � : Sk Supp(Hk) ! f0; 1g be the property guaranteed by the unobfusatabilityondition.Consider the following promise problem � = (�Y ;�N ):�Y = (C : [C℄ 2[k Supp(Hk) and �([C℄) = 1)�N = (C : [C℄ 2[k Supp(Hk) and �([C℄) = 0)27



� 2 BPP beause �(f) is easy to ompute with aess to a iruit that omputes f . But sine�(f) is hard to ompute with blak-box aess to f , no S satisfying Conjeture 5.2 an exist. 2It is an interesting problem to weaken or even remove the hypothesis that one-way funtionsexist. Reasons to believe that this may be possible are: 1. The onjeture is only about worst aseomplexity and not average ase, and 2. The onjetures imply some sort of omputational diÆulty.For instane, if NP � BPP then both onjetures are false, as Ciruit Satisfiability is notdeidable using blak-box aess. (Using blak-box aess, one annot distinguish a iruit that issatis�ed on exatly one randomly hosen input from an unsatis�able iruit.) So if we ould weakenthe hypothesis of Theorem 5.3 to NP 6� BPP, Conjeture 5.2 would be false unonditionally.We have shown that in the ontext of omplexity, the generalization of Saled-down Rie'sTheorem (Conjeture 5.1) to promise problems (i.e., Conjeture 5.2) fails. When trying to �nd outwhat this implies about Conjeture 5.1 itself, one might try to get intuition from what happensin the ontext of omputability. This diretion is pursued in Appendix A. It turns out that theresults in this ontext are inonlusive. We explore three ways to generalize Rie's Theorem topromise problems. The �rst, naive approah fails, and there are two non-naive generalizations, ofwhih one sueeds and one fails.What do our results say about the laim \the best thing you an do with a iruit/program isrun it"? To answer this question, we must �rst interpret this sentene in a more formal way. Theinterpretation we suggest is \deiding any non-trivial semanti property of iruits is intratable"where \nontrivial" is de�ned above and by \semanti property" we mean a property of the funtionthat the iruit omputes, rather than a property of the partiular iruit. This interpretation isexpressed in Conjetures 5.1 and 5.2.Sine we haven't disproved Conjeture 5.1, how an we say that obfusation is impossible? Theanswer is that obfusation needs muh more than Conjeture 5.1. Informally, Conjeture 5.1 onlysays that for every nontrivial property (i.e., one whih annot be deided with orale aess), thereexist iruits from whih it is hard to deide the property. Obfusation, on the other hand, requiresthat for every nontrivial property and every funtion f (for whih the property is hard to deidegiven orale aess), there exist iruits that ompute the funtion f from whih it is hard to deidethe property. Still, it may be within reah to also disprove Conjeture 5.1, and we leave this as anopen problem.6 Obfusating Sampling AlgorithmsIn our investigation of obfusators thus far, we have interpreted the \funtionality" of a program asbeing the funtion it omputes. However, sometimes one is interested in other aspets of a program'sbehavior, and in suh ases a orresponding hange should be made to the de�nition of obfusators.In this setion, we onsider programs that are sampling algorithms, i.e. are probabilisti algorithmsthat take no input (other than possibly a length parameter), and produe an output aording tosome desired distribution.For simpliity, we only work with sampling algorithms given by iruits | a iruit C with minput gates and n output gates an be viewed as a sampling algorithm for the distribution hhCii onf0; 1gn obtained by evaluating C on m uniform and independent random bits. If A is an algorithmand C is a iruit, we write AhhCii to indiate that A has sampling aess to C. That is, A anobtain, on request, independent and uniform random samples from the distribution de�ned by C.The natural analogue of the de�nition of iruit obfusators to sampling algorithms follows.28



De�nition 6.1 (sampling obfusator) A probabilisti algorithm O is a sampling obfusator if,for some polynomial p, the following three onditions hold:� (funtionality) For every iruit C, O(C) is a iruit that samples the same distribution asC.� (polynomial slowdown) There is a polynomial p suh that for every iruit C, jO(C)j � p(jCj).� (\virtual blak box" property) For any PPT A, there is a PPT S and a negligible funtion �suh that for all iruits C���Pr [A(O(C)) = 1℄� Pr hShhCii(1jCj) = 1i��� � �(jCj):We say that O is eÆient if it runs in polynomial time.We do not know whether this de�nition is impossible to meet, but we an rule out the following(seemingly) stronger de�nition.De�nition 6.2 (strong sampling obfusator) A strong sampling obfusator is de�ned in thesame way as a sampling obfusator, expet that the \virtual blak box" property is replaed with thefollowing.� (\virtual blak box" property) For any PPT A, there is a PPT S suh that the ensemblesfA(O(C))gC and fShhCii(1jCj)gC are omputationally indistinguishable. That is, for everyPPT D, there is a negligible funtion � suh that���Pr [D(C;A(O(C))) = 1℄� Pr hD(C;ShhCii(1jCj)) = 1i��� � �(jCj):Proposition 6.3 If one-way funtions exist, then strong sampling obfusators do not exist.Proof Sketh: If one-way funtions exist, then there exist message authentiation odes (MACs)that are existentially unforgeable under hosen message attak. Let TagK denote the tagging (i.e.,signing) algorithm for suh a MAC with key K, and de�ne a iruit CK(x) = (x;TagK(x)). Thatis, the distribution sampled by CK is simply a random message together with its tag. Now supposethere exists a sampling obfusator O, and onsider the PPT adversary A de�ned by A(C) = C. Bythe de�nition of a sampling obfusator, there exists a PPT simulator S whih, when giving samplingaess to hhCKii, produes an output omputationally indistinguishable from A(O(CK)) = O(CK).That is, after reeiving the tags of polynomially many random messages, S produes a iruit whihis indistinguishable from one whih generates random messages with its tags. This will ontraditthe seurity of the MAC.Let q = q(jKj) be a polynomial bound on the number of samples reeived from hhCKii obtainedby S, and onsider a distinguisher D whih does the following on input (CK ; C 0): Reover the keyK from CK . Obtain q + 1 random samples (x1; y1); : : : ; (xq+1; yq+1) from C 0. Output 1 if the xi'sare all distint and yi = TagK(xi) for all i.Clearly, D outputs 1 with high probability on input (CK ; A(O(CK))). (The only reason itmight fail to output 1 is that the xi's might not all be distint, whih happens with exponentiallysmall probability.) On the other hand, the seurity of the MAC implies that D outputs 1 withnegligible probability on input (CK ; ShhCK ii(1jKj)) (over the hoie of K and the oin tosses of allalgorithms). The reason is that, whenever D outputs 1, the iruit output by S has generated avalid message-tag pair not reeived from the hhCKii-orale. 229



For sampling obfusators in the sense of De�nition 6.1, we do not know how to prove impos-sibility. Interestingly, we an show that they imply the nontriviality of SZK, the lass of promiseproblems possessing statistial zero-knowledge proofs.Proposition 6.4 If eÆient sampling obfusators exist, then SZK 6= BPP.Proof: It is known that the following promise problem � = (�Y ;�N ) is in SZK [SV97℄ (and infat has a noninterative perfet zero-knowledge proof system [DDPY98, GSV99℄):�Y = fC : hhCii = Ung�N = fC : jSupp(C)j � 2n=2g;where n denotes the output length of the iruit C and Un is the uniform distribution on f0; 1gn.Now suppose that an eÆient sampling obfusator O exists. Sine, analogous to Lemma 3.9,suh obfusators imply the existene of one-way funtions, there also exists a length-doublingpseudorandom generator G [HILL99℄. Let Gn : f0; 1gn=2 ! f0; 1gn denote the iruit that evaluatesG on inputs of length n=2.Now, by the de�nition of pseudorandom generators and a hybrid argument, sampling aessto hhGnii is indistinguishable from sampling aess to Un. Thus, by the de�nition of a samplingobfusator, O(Gn) is omputationally indistinguishable from O(Un), where by Un we mean thetrivial iruit that samples uniformly from Un. By funtionality, O(Un) is always a yes instane of� and O(Gn) is always a no instane. It follows that � =2 BPP.Remark 6.5 By using Statistial Differene, the omplete problem for SZK from [SV97℄,in plae of the promise problem �, the above proposition an be extended to the natural de�nitionof approximate sampling obfusators, in whih O(C) only needs to sample a distribution of smallstatistial di�erene from that of C.7 Weaker Notions of ObfusationOur impossibility results rule out the standard, \virtual blak box" notion of obfusators as impos-sible, along with several of its appliations. However, it does not mean that there is no method ofmaking programs \unintelligible" in some meaningful and preise sense. Suh a method ould stillprove useful for software protetion. In this setion, we suggest two weaker de�nitions of obfusa-tors that avoid the \virtual blak box" paradigm (and hene are not ruled out by our impossibilityproof).The weaker de�nition asks that if two iruits ompute the same funtion, then their obfusa-tions should be indistinguishable. For simpliity, we only onsider the iruit version here.De�nition 7.1 (indistinguishability obfusator) An indistinguishability obfusator is de�nedin the same way as a iruit obfusator, exept that the \virtual blak box" property is replaed withthe following:� (indistinguishability) For any PPT A, there is a negligible funtion � suh that for any twoiruits C1; C2 whih ompute the same funtion and are of the same size k,jPr [A(O(C1))℄� Pr [A(O(C2))℄j � �(k):Some (very slight) hope that this de�nition is ahievable omes from the following observation.30



Proposition 7.2 (IneÆient) indistinguishability obfusators exist.Proof: Let O(C) be the lexiographially �rst iruit of size jCj that omputes the same funtionas C.While it would be very interesting to onstrut even indistinguishability obfusators, their use-fulness is limited by the fat that they provide no a priori guarantees about obfusations of iruitsC1 and C2 that ompute di�erent funtions. However, it turns out that, if O is eÆient, then it is\ompetitive" with respet to any pair of iruits. That is, we will show that no eÆient O0 makesC1 and C2 muh more indistinguishable than O does. Intuitively, this will say that an indistin-guishability obfusator is \as good" as any other obfusator that exists. For example, it will implythat if \di�ering-input obfusators" (as we will de�ne later) exist, then any indistinguishabilityobfusator is essentially also a di�ering-input obfusator.To state this preisely, for a iruit C of size at most k, we de�ne Padk(C) to be a trivial paddingof C to size k. Feeding Padk(C) instead of C to an obfusator an be thought of as inreasing the\seurity parameter" from jCj to k. (We hose not to expliitly introdue a seurity parameter intothe de�nition of obfusators to avoid the extra notation.) For the proof, we also need to impose atehnial, but natural, onstraint that the size of O0(C) only depends on the size of C.Proposition 7.3 Suppose O is an eÆient indistinguishability obfusator. Let O0 be any algorithmsatisfying the syntati requirements of obfusation, also satisfying the ondition that jO0(C)j =q(jCj) for some �xed polynomial q. Then for any PPT A, there exists a PPT A0 and a negligiblefuntion � suh that for all iruits C1, C2 of size k,��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A(O(Padq(k)(C2)) = 1���� ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ �(k):Proof: De�ne A0(C) def= A(O(C)). Then, for any iruit Ci of size k, we have��Pr �A(O(Padq(k)(Ci))) = 1�� Pr �A0(O0(Ci)) = 1���= ��Pr �A(O(Padq(k)(Ci))) = 1�� Pr �A(O(O0(Ci))) = 1���� neg(q(k)) = neg(k);where the inequality is beause Padq(k)(Ci) and O0(Ci) are two iruits of size q(k) whih omputethe same funtion and beause O is an indistinguishability obfusator. Thus,��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A(O(Padq(k)(C2))) = 1���� ��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A0(O0(C1)) = 1���+ ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ ��Pr �A0(O0(C2)) = 1�� Pr �A(O(Padq(k)(C2))) = 1���� neg(k) + ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ neg(k):Even with the ompetitiveness property, it still seems important to have expliit guarantees on thebehavior of an obfusator on iruits that ompute di�erent funtions. We now give a de�nitionthat provides suh a guarantee, while still avoiding the \virtual blak box" paradigm. Roughlyspeaking, it says that if it is possible to distinguish the obfusations of a pair of iruits, then onean �nd inputs on whih they di�er given any pair of iruits whih ompute the same funtions.31



De�nition 7.4 (di�ering-inputs obfusator) An di�ering-inputs obfusator is de�ned in thesame way as an indistinguishability obfusator, exept that the \indistinguishability" property isreplaed with the following:� (di�ering-inputs property) For any PPT A, there is a probabilisti algorithm A0 and a negli-gible funtion � suh that the following holds. Suppose C1 and C2 are iruits of size k suhthat " def= jPr [A(O(C1)) = 1℄� Pr [A(O(C2)) = 1℄j > �(k):Then, for any C 01; C 02 of size k suh that C 0i omputes the same funtion as Ci for i = 1; 2,A0(C 01; C 02) outputs an input on whih C1 and C2 di�er in time poly(k; 1=(" � �(k))).This de�nition is indeed stronger than that of indistinguishability obfusators, beause if C1and C2 ompute the same funtion, then A0 an never �nd an input on whih they di�er and hene" must be negligible.8 Watermarking and ObfusationGenerally speaking, (fragile) watermarking is the problem of embedding a message in an objetsuh that the message is diÆult to remove without \ruining" the objet. Most of the work onwatermarking has foused on watermarking pereptual objets, e.g., images or audio �les. (See thesurveys [MMS+98, PAK99℄.) Here we onentrate on watermarking programs, as in [CT00, NSS99℄.A watermarking sheme should onsist of a marking algorithm whih embeds a message m into agiven program, and an extration algorithm whih extrats the message from a marked program.Intuitively, the following properties should be satis�ed:� (funtionality) The marked program omputes the same funtion as the original program.� (meaningfulness) Most programs are unmarked.� (fragility) It is infeasible to remove the mark from the program without (substantially) hang-ing its behavior.There are a various heuristi methods for software watermarking in the literature (f., [CT00℄),but as with obfusation, there has been little rigorous work on this problem. Here we do not attemptto provide a thorough de�nitional treatment of software watermarking, but rather onsider a oupleof weak formalizations whih we relate to our results on obfusation. The diÆulty in formalizingwatermarking omes, of ourse, in apturing the fragility property. Note that it is easy to removea watermark from programs for funtions that are (exatly) learnable with membership queries(by using the learning algorithm to generate a new program (for the funtion) that is independentof the marking). A natural question is whether learnable funtions are the only ones that auseproblems. That is, an the following de�nition be satis�ed?De�nition 8.1 (software watermarking) A (software) watermarking sheme is a pair of (keyed)probabilisti algorithms (Mark;Extrat) satisfying the following properties:� (funtionality) For every iruit C, key K, and message m, the string MarkK(C;m) desribesa iruit that omputes the same funtion as C.� (polynomial slowdown) There is a polynomial p suh that for every iruit C, jMarkK(C;m)j �p(jCj+ jmj+ jKj). 32



� (extration) For every iruit C, key K, and message m, ExtratK(MarkK(C;m)) = m.� (meaningfulness) For every iruit C, PrK [ExtratK(C) 6= ?℄ = neg(jCj).� (fragility) For every PPT A, there is a PPT S suh that for every C and mPrK �A(MarkK(C;m)) = C 0 s.t. C 0 � C and ExtratK(C 0) 6= m�� Pr hSC(1jCj) = C 0 s.t. C 0 � Ci+ neg(jCj);where K is uniformly seleted in f0; 1gmax(jCj;jmj), and C 0 � C means that C 0 and C omputethe same funtion.We say that the sheme is eÆient if Mark and Extrat run in polynomial time.Atually, a stronger fragility property than the one above is probably desirable; the abovede�nition does not exlude the possibility that the adversary an remove the watermark by hangingthe value the funtion at a single loation. Nevertheless, by using our onstrution of totallyunobfusatable funtions, we an prove that this de�nition is impossible to meet.Theorem 8.2 If one-way funtions exist, then no watermarking sheme in the sense of De�ni-tion 8.1 exists.Proof Sketh: Consider the totally unobfusatable funtion ensemble guaranteed by Theo-rem 4.2. No matter how we try to produe a marked iruit from f R H, the algorithm A given bythe unobfusatability ondition in De�nition 4.2 an reonstrut the anonial iruit f , whih bythe meaningfulness property is unmarked with high probability. On the other hand, the simulator,given just orale aess to f , will be unable produe any iruit omputing the same funtion (sineif it ould, then it ould ompute �(f), whih is pseudorandom). 2Corollary 8.3 EÆient watermarking shemes in the sense of De�nition 8.1 do not exist (unon-ditionally).Given these impossibility results, we are led to seek the weakest possible formulation of thefragility ondition | that the any adversary oasionally fails to remove the mark.De�nition 8.4 (oasional watermarking) An oasional software watermarking sheme is de-�ned in the same way as De�nition 8.1, exept that the fragility ondition is replaed with thefollowing:� For every PPT A, there exists a iruit C and a message m suh thatPrK �A(MarkK(C;m)) = C 0 s.t. C 0 � C and ExtratK(C 0) 6= m� � 1� 1=poly(jCj);where K is uniformly seleted in f0; 1gmax(jCj;jmj).Interestingly, in ontrast to the usual intuition, this weak notion of watermarking is inonsistentwith obfusation (even the weakest notion we proposed in Setion 7).33



Proposition 8.5 Oasional software watermarking shemes and eÆient indistinguishability ob-fusators (as in De�nition 7.1) annot both exist. (Atually, we require the watermarking shemeto satisfy the additional natural ondition that jMarkK(C;m)j = q(jCj) for some �xed polynomialq and all jCj = jmj = jKj.)Proof: We view the obfusator O as a \watermark remover." By funtionality of water-marking and obfusation, for every iruit C and key K, O(MarkK(C; 1jCj)) is a iruit om-puting the same funtion as C. Let C 0 be a padding of C to the same length as MarkK(C; 1jCj).By fragility, ExtratK(O(MarkK(C; 1))) = 1 with nonnegligible probability. By meaningfulness,ExtratK(O(C 0)) = 1 with negligible probability. Thus, ExtratK distinguishesO(C 0) andO(MarkK(C; 1jCj)),ontraditing the indistinguishability property of O.Note that this proposition fails if we allow MarkK(C;m) to instead be an approximate imple-mentation of C in the sense of De�nition 4.3. Indeed, in suh a ase it seems that obfusators wouldbe useful in onstruting watermarking shemes, for the watermark ould be embedded by hangingthe value of the funtion at a random input, after whih an obfusator is used to \hide" this hange.Note that approximation may also be relevant in the fragility ondition, for it would be nie toprevent adversaries from produing unmarked approximate implementations of the funtion.As with obfusation, positive theoretial results about watermarking would be very welome.One approah, taken by Naahe, Shamir, and Stern [NSS99℄, is to �nd watermarking shemes forspei� useful families of funtions.9 Diretions for Further WorkWe have shown that obfusation, as it is typially understood (i.e., satisfying a virtual blak-boxproperty), is impossible. However, we view it as an important researh diretion to explore whetherthere are alternative senses in whih programs an be made \unintelligible." These inlude (butare not limited to) the following notions of obfusation whih are not ruled out by our impossibilityresults:� Indistinguishability (or di�ering-input) obfusators, as in De�nition 7.1 (or De�nition 7.4,respetively).� Sampling obfusators, as in De�nition 6.1.� Obfusators that only have to approximately preserve funtionality with respet to a spei�eddistribution on inputs, suh as the uniform distribution. (In Setion 4.2, we have ruled out aobfusators with approximately preserve funtionality in a stronger sense; see disussion afterTheorem 4.5.)� Obfusators for a restrited, yet still nontrivial, lass of funtions. By Theorem 4.13, any suhlass of funtions should not ontain TC0. That leaves only very weak omplexity lasses(e.g., AC0, read-one branhing programs), but the lass of funtions need not be restritedonly by \omputational" power: syntati or funtional restritions may o�er a more fruitfulavenue. We note that the onstrutions of [CMR98℄ an be viewed as some form of obfusatorsfor \delta funtions" (i.e., funtions f : f0; 1gn ! f0; 1g whih take on the value 1 at exatlyone point in f0; 1gn.) 34
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Conjeture A.1 (Rie's Theorem | naive generalization) Let � = (�Y ;�N ) be a promiseproblem losed under [�℄. If � is deidable, then � is trivial in the sense that either �Y = ; or�N = ;.This generalization is really too naive. Consider the following promise problem (�Y ;�N )�Y = fM jM always halts, M(0) = 1g�N = fM jM always halts, M(0) = 0gIt is obviously deidable, non-trivial, and losed under [�℄.Our next attempt at generalizing Rie's Theorem to promise problems is based on the idea of asimulator, whih we use to formalize the interpretation of Rie's Theorem as \the only useful thingyou an do with a mahine is run it." Reall that for a Turing mahine M , the funtion hMi(1t; x)is de�ned to be y if M(x) halts within t steps with output y, and ? otherwise.Theorem A.2 (Rie's Theorem | seond generalization) Let � = (�Y ;�N ) be a promiseproblem losed under [�℄. Suppose that � is deidable, then � is trivial in the sense that there existsa Turing mahine S suh that M 2 �Y ) ShMi(1jM j) = 1M 2 �N ) ShMi(1jM j) = 0Proof: Suppose that � = (�Y ;�N ) is deided by the Turing mahine T . We will build a mahineS whih will satisfy the onlusion of the theorem.We say that a mahine N is n-ompatible with a mahine M if hNi(1t; x) = hMi(1t; x) for alljxj; t � n. Note that:1. n-ompatibility with M an be deided using orale aess to hMi.2. M is n-ompatible with itself for all n.3. If [M ℄ 6� [N ℄ then there exists a number n0 suh that N is not n-ompatible with M for alln > n0.4. It may be the ase than [M ℄ � [N ℄ but N is not n-ompatible with M for some n.With orale hMi and input 1jM j, S does the following for n = 0; 1; 2; : : ::1. Compute the set Sn whih onsists of all the mahines of size jM j that are n-ompatible withM (this an be done in �nite time as there are only �nitely many mahines of size jM j).2. Run T on all the mahines in Sn for n steps. If T halts on all these mahines and returns thesame answer �, then halt and return �. Otherwise, ontinue.It is lear that if S halts then it returns the same answer as T (M). This is beause M isn-ompatible with itself for all n and so M 2 Sn for all n.We laim that S always halts. For any mahine N of size jM j suh that [N ℄ 6� [M ℄ , there's anumber n0 suh that n is not in Sn for all n > n0. Sine there are only �nitely many suh mahines,there's a number n00 suh that all the mahines N 2 Sn for n > n00 satisfy [N ℄ � [M ℄. For any suhmahine N with [N ℄ � [M ℄ , T halts after a �nite number of steps and outputs the same answeras T (M). Again, sine there are only �nitely many of them , there's a number n > n00 suh that Thalts on all the mahines of Sn in n steps and returns the same answer as T (M).38



Our previous proof relied heavily on the fat that the simulator was given an upper bound onthe size of the mahine M . While in the ontext of omplexity we gave this length to the simulatorto allow it enough running time, one may wonder whether it is justi�able to give this bound to thesimulator in the omputability ontext. That is:Conjeture A.3 (Rie's Theorem | third generalization) Let � = (�Y ;�N ) be a promiseproblem losed under [�℄. Suppose that � is deidable. Then � = is trivial in the sense that thereexists a Turing mahine S suh that M 2 �Y ) ShMi() = 1M 2 �N ) ShMi() = 0It turns out that this small hange makes a di�erene.Theorem A.4 Conjeture A.3 is false.Proof: Consider the following promise problem � = (�Y ;�N ):�Y = fM jM always halts, 9x < KC([M ℄) s.t. [M ℄(x) = 1g�N = fM jM always halts, 8x M(x) = 0gwhere for a partial reursive funtion f , KC(f) is the desription length of the smallest Turingmahine that omputes f . It is obvious that � is losed under [�℄.We laim that � is deidable. Indeed, onsider the following Turing mahine T : On input M ,T invokes M(x) for all x < jM j and returns 1 i� it gets a non-zero answer. Sine any mahine in�Y [ �N always halts, T halts in �nite time. If T returns 1 then ertainly M is not in �N . IfM 2 �Y then M(x) = 1 for some x < KC([M ℄) � jM j and so T returns 1.We laim that � is not trivial in the sense of Conjeture A.3. Indeed, suppose for ontraditionthat there exists a simulator S suh thatM 2 �Y ) ShMi() = 1M 2 �N ) ShMi() = 0Consider the mahine Z whih reads its input and then returns 0. We have thathZi(1t; x) = n? t < jxj0 otherwiseAs Z 2 �N , we know that ShZi() will halt after a �nite time and return 0. Let n be an upperbound on jxj and t over all orale queries (1t; x) of ShZi().Let r be a string of Kolmogorov omplexity 2n. Consider the mahine Nn;r whih omputesthe following funtion, Nn;r(x) = ( 0 x � n1 x = n+ 1r x � n+ 2and runs in time jxj on inputs x suh that jxj � n.For any t; jxj � n, hZi(1t; x) = hNn;ri(1t; x). Therefore ShNn;ri() = ShZi() = 0. But Nn;r 2 �Ysine Nn;r(n + 1) = 1 and KC([Nn;r℄) > n + 1. This ontradits the assumption that S deides�. 39



B Pseudorandom OralesIn this setion, we sketh a proof of the following lemma, whih states that a random funtion is apseudorandom generator relative to itself with high probability.Lemma 4.17 There is a onstant Æ > 0 suh that the following holds for all suÆiently large Kand any L � K2. Let D be an algorithm that makes at most KÆ orale queries and let G be arandom injetive funtion G : [K℄! [L℄. Then with probability at least 1� 2�KÆ over G,���� Prx2[K℄ �DG(G(x)) = 1�� Pry2[L℄ �DG(y) = 1����� � 1KÆ : (4)We prove the lemma via a ounting argument in the style of Gennaro and Trevisan's proofthat a random permutation is one-way against nonuniform adversaries [GT00℄. Spei�ally, we willshow that \most" G for whih Inequality (4) fails have a \short" desription given D, and henethere annot be too many of them.Let G be the olletion of G's for whih Inequality (4) fails (for a suÆiently small Æ, whosevalue is impliit in the proof below). We begin by arguing that, for every G 2 G, there is a large setSG � [K℄ of inputs on whih D's behavior is \independent," in the sense that for x 2 S, none of theorale queries made in the exeution of DG(G(x)) are at points in S, yet D still has nonnegligibleadvantage in distinguishing G(x) from random. Atually, we will not be able to a�ord speifyingSG when we \desribe" G, so we atually show that there is a �xed set S (independent of G)suh that for most G, the desired set SG an be obtained by just throwing out a small number ofelements from S.Claim B.1 There is a set S � [K℄ with jSj = K1�5Æ, and G0 � G with jG0j = jGj=2 suh that forall G 2 G0, there is a set SG � S with the following properties:1. jSGj = (1� )jSj, where  = K�3Æ.2. If x 2 SG, then DG(G(x)) never queries its orale at an element of SG.3. ���� Prx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1����� > 12KÆ ;where LG def= [L℄ nG([K℄ n SG). (Note that LG ontains more than a 1�K=L fration of L.)Proof: First onsider hoosing both a random G R G and a random S (among subsets of [K℄of size K1�5Æ). We will show that with probability at least 1=2, there is a good subset SG � Ssatisfying Properties 1{3. By averaging, this implies that there is a �xed set S for whih a goodsubset exists for at least half the G 2 G, as desired. Let's begin with Property 2. For a randomG, S, and a random x 2 S, note that DG(G(x)) initially has no information about S, whih is arandom set of density K�5Æ. Sine D makes at most KÆ queries, the probability that it queriesits orale at some element of S is at most KÆ �K�5Æ = K�4Æ. Thus, with probability at least 3=4over G and S, DG(G(x)) queries its orale at an element of S for at most a 4=K�4Æ <  fration ofx 2 S. Throwing out this  fration of elements of S gives a set SG satisfying Properties 1 and 2.Now let's turn to Property 3. By a Cherno�-like bound, with probability at least 1�exp(
(K1�5Æ �(K�Æ)2)) > 3=4 over the hoie of S,���� Prx2S �DG(G(x)) = 1�� Prx2[K℄ �DG(G(x)) = 1����� � 14KÆ :40



Then we have: ���� Prx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1������ ���� Prx2[K℄ �DG(G(x)) = 1�� Pry2[L℄ �DG(y) = 1������ ���� Prx2SG �DG(G(x)) = 1�� Prx2[S℄ �DG(G(x)) = 1������ ����Prx2S �DG(G(x)) = 1�� Prx2[K℄ �DG(G(x)) = 1������ ���� Pry2[L℄ �DG(y) = 1�� Pry2LG �DG(y) = 1�����> 1=KÆ �  � 1=4KÆ �K=L> 1=2KÆNow we show how the above laim implies that every G 2 G0 has a \small" desription.Claim B.2 Every G 2 G0 an be uniquely desribed by (logB)� 
(K1�7Æ) bits given D, where Bis the number of injetive funtions from [K℄ to [L℄.Proof: For starters, the desription of G will ontains the set SG and the values of G(x) for allx =2 SG. Now we'd like to argue that this information is enough to determine DG(y) for all y. Thiswon't exatly be the ase, but rather we'll show how to ompute MG(y) for some M that is \asgood" as D. From Property 3 in Claim B.1, we havePrx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1� > 12KÆ :(We've dropped the absolute values. The other ase is handled analogously, and the only ost is onebit to desribe whih ase holds.) We will desribe an algorithm M for whih the same inequalityholds, yet M will only use the information in our desription of G instead of making orale queriesto G. Spei�ally, on input y, M simulates D(y), exept that it handles eah orale query z asfollows:1. If z =2 SG, then M responds with G(z) (This information is inluded in our desription of G).2. If z 2 SG, then M halts and outputs 0. (By Property 2 of Claim B.1, this annot happen ify 2 G(SG), hene outputting 0 only improves M 's distinguishing gap.)Thus, given SG and Gj[K℄nSG , we have a funtion M satisfyingPrx2SG [M(G(x)) = 1℄� Pry2LG [M(y) = 1℄ > 12KÆ (5)To omplete the desription of G, we must speify GjSG , whih we an think of as �rst speifyingthe image T = G(SG) � LG and then the bijetion G : SG ! T . However, we an save in ourdesription beause T is onstrained by Inequality (5), whih an be rewritten as:Pry2T [M(y) = 1℄� Pry2LG [M(y) = 1℄ > 12KÆ (6)41



Cherno� Bounds say that most large subsets are good approximators of the average of a booleanfuntion. Spei�ally, at most a exp(�
((1 � )K1�5Æ � (K�Æ)2)) = exp(�
(K1�7Æ)) fration ofsets T � LG of size (1� )K1�5Æ satisfy Equation 6.Thus, usingM , we have \saved" 
(K1�7Æ) bits in desribing G(SG) (over the standard \truth-table" representation of a funtion G). However, we had to desribe the set SG itself, whih wouldhave been unneessary in the truth-table representation. Fortunately, we only need to desribeSG as a subset of S, and this only osts log � K1�5Æ(1�)K1�5Æ� = O(H2()K1�5Æ) < O(K1�8Æ logK) bits(where H2() = O( log(1=)) denotes the binary entropy funtion). So we have a net savings of
(K1�7Æ)�O(K1�8Æ logK) = 
(K1�7Æ) bits.From Claim B.2, G0 an onsist of at most an exp(�
(K1�7Æ)) < K�Æ=2 fration of injetivefuntions [K℄! [L℄, and thus G has density smaller than K�Æ, as desired.
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