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ator O is an (eÆ
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) \
ompiler" that takes as input aprogram (or 
ir
uit) P and produ
es a new program O(P ) that has the same fun
tionality asP yet is \unintelligible" in some sense. Obfus
ators, if they exist, would have a wide varietyof 
ryptographi
 and 
omplexity-theoreti
 appli
ations, ranging from software prote
tion tohomomorphi
 en
ryption to 
omplexity-theoreti
 analogues of Ri
e's theorem. Most of theseappli
ations are based on an interpretation of the \unintelligibility" 
ondition in obfus
ationas meaning that O(P ) is a \virtual bla
k box," in the sense that anything one 
an eÆ
iently
ompute given O(P ), one 
ould also eÆ
iently 
ompute given ora
le a

ess to P .In this work, we initiate a theoreti
al investigation of obfus
ation. Our main result is that,even under very weak formalizations of the above intuition, obfus
ation is impossible. We provethis by 
onstru
ting a family of fun
tions F that are unobfus
atable in the following sense: thereis a property � : F ! f0; 1g su
h that (a) given any program that 
omputes a fun
tion f 2 F ,the value �(f) 
an be eÆ
iently 
omputed, yet (b) given ora
le a

ess to a (randomly sele
ted)fun
tion f 2 F , no eÆ
ient algorithm 
an 
ompute �(f) mu
h better than random guessing.We extend our impossibility result in a number of ways, in
luding even obfus
ators that(a) are not ne
essarily 
omputable in polynomial time, (b) only approximately preserve thefun
tionality, and (
) only need to work for very restri
ted models of 
omputation (TC0). Wealso rule out several potential appli
ations of obfus
ators, by 
onstru
ting \unobfus
atable"signature s
hemes, en
ryption s
hemes, and pseudorandom fun
tion families.
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1 Introdu
tionThe past two de
ades of 
ryptography resear
h has had amazing su

ess in putting most of the 
las-si
al 
ryptographi
 problems | en
ryption, authenti
ation, proto
ols | on 
omplexity-theoreti
foundations. However, there still remain several important problems in 
ryptography about whi
htheory has had little or nothing to say. One su
h problem is that of program obfus
ation. Roughlyspeaking, the goal of (program) obfus
ation is to make a program \unintelligible" while preservingits fun
tionality. Ideally, an obfus
ated program should be a \virtual bla
k box," in the sense thatanything one 
an 
ompute from it one 
ould also 
ompute from the input-output behavior of theprogram.The hope that some form of obfus
ation is possible arises from the fa
t that analyzing programsexpressed in ri
h enough formalisms is hard. Indeed, any programmer knows that total unintel-ligibility is the natural state of 
omputer programs (and one must work hard in order to keep aprogram from deteriorating into this state). Theoreti
ally, results su
h as Ri
e's Theorem andthe hardness of the Halting Problem and Satisfiability all seem to imply that the only usefulthing that one 
an do with a program or 
ir
uit is to run it (on inputs of ones 
hoi
e). However, thisinformal statement is, of 
ourse, an over-generalization, and the existen
e of obfus
ators requiresits own investigation.To be a bit more 
lear (though still informal), an obfus
ator O is an (eÆ
ient, probabilisti
)\
ompiler" that takes as input a program (or 
ir
uit) P and produ
es a new programO(P ) satisfyingthe following two 
onditions:� (fun
tionality) O(P ) 
omputes the same fun
tion as P .� (\virtual bla
k box" property) \Anything that 
an be eÆ
iently 
omputed from O(P ) 
an beeÆ
iently 
omputed given ora
le a

ess to P ."While there are heuristi
 approa
hes to obfus
ation in pra
ti
e (
f., Figure 1 and [CT00℄), therehas been little theoreti
al work on this problem. This is unfortunate, sin
e obfus
ation, if it werepossible, would have a wide variety of 
ryptographi
 and 
omplexity-theoreti
 appli
ations.In this work, we initiate a theoreti
al investigation of obfus
ation. We examine various formal-izations of the notion, in an attempt to understand what we 
an and 
annot hope to a
hieve. Ourmain result is a negative one, showing that obfus
ation (as it is typi
ally understood) is impossible.Before des
ribing this result and others in more detail, we outline some of the potential appli
ationsof obfus
ators, both for motivation and to 
larify the notion.1.1 Some Appli
ations of Obfus
atorsSoftware Prote
tion. The most dire
t appli
ations of obfus
ators are for various forms of soft-ware prote
tion. By de�nition, obfus
ating a program prote
ts it against reverse engineering. Forexample, if one party, Ali
e, dis
overs a more eÆ
ient algorithm for fa
toring integers, she may wishto sell another party, Bob, a program for apparently weaker tasks (su
h as breaking the RSA 
ryp-tosystem) that use the fa
toring algorithm as a subroutine without a
tually giving Bob a fa
toringalgorithm. Ali
e 
ould hope to a
hieve this by obfus
ating the program she gives to Bob.Intuitively, obfus
ators would also be useful in watermarking software (
f., [CT00, NSS99℄). Asoftware vendor 
ould modify a program's behavior in a way that uniquely identi�es the person towhom it is sold, and then obfus
ate the program to guarantee that this \watermark" is diÆ
ult toremove. 2



#in
lude<stdio.h> #in
lude<string.h>main(){
har*O,l[999℄="'`a
go\177~|xp .-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";while(O=fgets(l+45,954,stdin)){*l=O[strlen(O)[O-1℄=0,strspn(O,l+11)℄;while(*O)swit
h((*l&&isalnum(*O))-!*l){
ase-1:{
har*I=(O+=strspn(O,l+12)+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+*I---'-')<80);put
har(O&93?*I&8||!( I=mem
hr( l , O , 44 ) ) ?'?':I-l+47:32); break; 
ase 1: ;}*l=(*O&31)[l-15+(*O>61)*32℄;while(put
har(45+*l%2),(*l=*l+32>>1)>35); 
ase 0:put
har((++O ,32));}put
har(10);}}Figure 1: The winning entry of the 1998 International Obfus
ated C Code Contest, an ASCII/Morse
ode translator by Frans van Dorsselaer [vD98℄ (adapted for this paper).Homomorphi
 En
ryption. A long-standing open problem in 
ryptography is whether homo-morphi
 en
ryption s
hemes exist (
f., [RAD78, FM91, DDN00, BL96, SYY99℄). That is, we seeka se
ure publi
-key 
ryptosystem for whi
h, given en
ryptions of two bits (and the publi
 key), one
an 
ompute an en
ryption of any binary Boolean operation of those bits. Obfus
ators would allowone to 
onvert any publi
-key 
ryptosystem into a homomorphi
 one: use the se
ret key to 
on-stru
t an algorithm that performs the required 
omputations (by de
rypting, applying the Booleanoperation, and en
rypting the result), and publish an obfus
ation of this algorithm together withthe publi
 key.1Removing Random Ora
les. The Random Ora
le Model [BR93℄ is an idealized 
ryptographi
setting in whi
h all parties have a

ess to a truly random fun
tion. It is (heuristi
ally) hoped thatproto
ols designed in this model will remain se
ure when implemented using an eÆ
ient, publi
ly
omputable 
ryptographi
 hash fun
tion in pla
e of the random fun
tion. While it is known that thisis not true in general [CGH98℄, it is unknown whether there exist eÆ
iently 
omputable fun
tionswith strong enough properties to be se
urely used in pla
e of the random fun
tion in various spe
i�
proto
ols (e.g., in Fiat-Shamir type s
hemes [FS87℄). One might hope to obtain su
h fun
tionsby obfus
ating a family of pseudorandom fun
tions [GGM86℄, whose input-output behavior is byde�nition indistinguishable from that of a truly random fun
tion.Transforming Private-Key En
ryption into Publi
-Key En
ryption. Obfus
ation 
analso be used to 
reate new publi
-key en
ryption s
hemes by obfus
ating a private-key en
ryptions
heme. Given a se
ret key K of a private-key en
ryption s
heme, one 
an publish an obfus
ation1There is a subtlety here, 
aused by the fa
t that en
ryption algorithms must be probabilisti
 to be semanti
allyse
ure in the usual sense [GM84℄. However, both the \fun
tionality" and \virtual bla
k box" properties of obfus-
ators be
ome more 
omplex for probabilisti
 algorithms, so in this work, we restri
t our attention to obfus
atingdeterministi
 algorithms(ex
ept in Se
tion 6). This restri
tion only makes our main (impossibility) result stronger.3



of the en
ryption algorithm En
K .2 This allows everyone to en
rypt, yet only one possessing these
ret key K should be able to de
rypt.Interestingly, in the original paper of DiÆe and Hellman [DH76℄, the above was the reasongiven to believe that publi
-key 
ryptosystems might exist even though there were no 
andidatesknown yet. That is, they suggested that it might be possible to obfus
ate a private-key en
ryptions
heme.31.2 Our ResultsThe Basi
 Impossibility Result. Most of the above appli
ations rely on the intuition that anobfus
ated program is a \virtual bla
k box." That is, anything one 
an eÆ
iently 
ompute fromthe obfus
ated program, one should be able to eÆ
iently 
ompute given just ora
le a

ess to theprogram.Our main result shows that it is impossible to a
hieve this notion of obfus
ation. We prove thisby 
onstru
ting (from any one-way fun
tion) a family F of fun
tions whi
h is unobfus
atable in thesense that there is some property � : F ! f0; 1g su
h that:� Given any program (
ir
uit) that 
omputes a fun
tion f 2 F , the value �(f) 
an be eÆ
iently
omputed;� Yet, given ora
le a

ess to a (randomly sele
ted) fun
tion f 2 F , no eÆ
ient algorithm 
an
ompute �(f) mu
h better than by random guessing.Thus, there is no way of obfus
ating the programs that 
ompute these fun
tions, even if (a) theobfus
ation is meant to hide only one bit of information about the fun
tion (namely �(f)), and (b)the obfus
ator itself has unbounded 
omputation time.We believe that the existen
e of su
h fun
tions shows that the \virtual bla
k box" paradigm forobfus
ators is inherently 
awed. Any hope for positive results about obfus
ator-like obje
ts mustabandon this viewpoint, or at least be re
on
iled with the existen
e of fun
tions as above.Approximate Obfus
ators. The basi
 impossibility result as des
ribed above applies to ob-fus
ators O for whi
h we require that the obfus
ated program O(P ) 
omputes exa
tly the samefun
tion as the original program P . However, for some appli
ations it may suÆ
e that, for everyinput x, O(P ) and P agree on x with high probability (over the 
oin tosses of O). Using someadditional ideas, our impossibility result extends to su
h approximate obfus
ators.2This appli
ation involves the same subtlety pointed out in Footnote 1. Thus, our results regarding the(un)obfus
atability of private-key en
ryption s
hemes (des
ribed later) refer to a relaxed notion of se
urity in whi
hmultiple en
ryptions of the same message are not allowed (whi
h is 
onsistent with a deterministi
 en
ryption algo-rithm).3From [DH76℄: \A more pra
ti
al approa
h to �nding a pair of easily 
omputed inverse algorithms E and D; su
hthat D is hard to infer from E, makes use of the diÆ
ulty of analyzing programs in low level languages. Anyone whohas tried to determine what operation is a

omplished by someone else's ma
hine language program knows that Eitself (i.e. what E does) 
an be hard to infer from an algorithm for E. If the program were to be made purposefully
onfusing through the addition of unneeded variables and statements, then determining an inverse algorithm 
ould bemade very diÆ
ult. Of 
ourse, E must be 
ompli
ated enough to prevent its identi�
ation from input-output pairs.Essentially what is required is a one-way 
ompiler: one whi
h takes an easily understood program written in ahigh level language and translates it into an in
omprehensible program in some ma
hine language. The 
ompiler isone-way be
ause it must be feasible to do the 
ompilation, but infeasible to reverse the pro
ess. Sin
e eÆ
ien
y insize of program and run time are not 
ru
ial in this appli
ation, su
h 
ompilers may be possible if the stru
ture ofthe ma
hine language 
an be optimized to assist in the 
onfusion."4



Impossibility of Appli
ations. To give further eviden
e that our impossibility result is notan artifa
t of de�nitional 
hoi
es, but rather that there is something inherently 
awed in the\virtual bla
k box" idea, we also demonstrate that several of the appli
ations of obfus
ators arealso impossible. We do this by 
onstru
ting unobfus
atable signature s
hemes, en
ryption s
hemes,and pseudorandom fun
tions. These are obje
ts satisfying the standard de�nitions of se
urity(ex
ept for the subtlety noted in Footnote 2), but for whi
h one 
an eÆ
iently 
ompute the se
retkey K from any program that signs (or en
rypts or evaluates the pseudorandom fun
tion, resp.)relative to K. (Hen
e handing out \obfus
ated forms" of these keyed-algorithms is highly inse
ure.)In parti
ular, we 
omplement Canetti et. al.'s 
ritique of the Random Ora
le Methodology [CGH98℄.They show that there exist (
ontrived) proto
ols that are se
ure in the idealized Random Ora
leModel (of [BR93℄), but are inse
ure when the random ora
le is repla
ed with any (eÆ
iently 
om-putable) fun
tion. Our results imply that for even for natural proto
ols that are se
ure in therandom ora
le model (e.g., Fiat-Shamir type s
hemes [FS87℄), there exist (
ontrived) pseudoran-dom fun
tions, su
h that these proto
ols are inse
ure when the random ora
le is repla
ed with anyprogram that 
omputes the 
ontrived pseudorandom fun
tion.Obfus
ating restri
ted 
omplexity 
lasses. Even though obfus
ation of general programs/
ir
uitsis impossible, one may hope that it is possible to obfus
ate more restri
ted 
lasses of 
omputations.However, using the pseudorandom fun
tions of [NR97℄ in our 
onstru
tion, we 
an show that theimpossibility result holds even when the input program P is a 
onstant-depth threshold 
ir
uit (i.e.,is in TC0), under widely believed 
omplexity assumptions (e.g., the hardness of fa
toring).Obfus
ating Sampling Algorithms. Another way in whi
h the notion of obfus
ators 
an beweakened is by 
hanging the fun
tionality requirement. Up to now, we have 
onsidered programsin terms of the fun
tions they 
ompute, but sometimes one is interested in other kinds of behavior.For example, one sometimes 
onsiders sampling algorithms, i.e. probabilisti
 programs that takeno input (other than, say, a length parameter) and produ
e an output a

ording to some desireddistribution. We 
onsider two natural de�nitions of obfus
ators for sampling algorithms, and provethat the stronger de�nition is impossible to meet. We also observe that the weaker de�nition impliesthe nontriviality of statisti
al zero knowledge.Software Watermarking. As mentioned earlier, there appears to be some 
onne
tion betweenthe problems of software watermarking and 
ode obfus
ation. We 
onsider a 
ouple of formalizationsof the watermarking problem and explore their relationship to our results on obfus
ation.1.3 Dis
ussionOur work rules out the standard, \virtual bla
k box" notion of obfus
ators as impossible, alongwith several of its appli
ations. However, it does not mean that there is no method of makingprograms \unintelligible" in some meaningful and pre
ise sense. Su
h a method 
ould still proveuseful for software prote
tion.Thus, we 
onsider it to be both important and interesting to understand whether there arealternative senses (or models) in whi
h some form of obfus
ation is possible. Toward this end,we suggest two weaker de�nitions of obfus
ators that avoid the \virtual bla
k box" paradigm (andhen
e are not ruled out by our impossibility proof). These de�nitions 
ould be the subje
t of futureinvestigations, but we hope that other alternatives will also be proposed and examined.5



As is usually the 
ase with impossibility results and lower bounds, we show that obfus
ators(in the \virtual bla
k box" sense) do not exist by presenting a somewhat 
ontrived 
ounterexampleof a fun
tion ensemble that 
annot be obfus
ated. It is interesting whether obfus
ation is possiblefor a restri
ted 
lass of algorithms, whi
h nonetheless 
ontains some \useful" algorithms. Thisrestri
tion should not be 
on�ned to the 
omputational 
omplexity of the algorithms: if we try torestri
t the algorithms by their 
omputational 
omplexity, then there's not mu
h hope for obfus
a-tion. Indeed, as mentioned above, we show that (under widely believed 
omplexity assumptions)our 
ounterexample 
an be pla
ed in TC0. In general, the 
omplexity of our 
ounterexample isessentially the same as the 
omplexity of pseudorandom fun
tions, and so a 
omplexity 
lass whi
hdoes not 
ontain our example will also not 
ontain many 
ryptographi
ally useful algorithms.1.4 Additional Related WorkThere are a number of heuristi
 approa
hes to obfus
ation and software watermarking in the lit-erature, as des
ribed in the survey of Collberg and Thomborson [CT00℄. A theoreti
al study ofsoftware prote
tion was previously 
ondu
ted by Goldrei
h and Ostrovsky [GO96℄, who 
onsideredhardware-based solutions.Hada [Had00℄ gave some de�nitions for 
ode obfus
ators whi
h are stronger than the de�nitionswe 
onsider in this paper, and showed some impli
ations of the existen
e of su
h obfus
ators. (Ourresult rules out also the existen
e of obfus
ators a

ording to the de�nitions of [Had00℄.)Canetti, Goldrei
h and Halevi [CGH98℄ showed another setting in 
ryptography where gettinga fun
tion's des
ription is provably more powerful than bla
k-box a

ess. As mentioned above,they have shown that there exist proto
ols that are se
ure when exe
uted with bla
k-box a

essto a random fun
tion, but inse
ure when instead the parties are given a des
ription of any expli
itfun
tion.1.5 Organization of the PaperIn Se
tion 2, we give some basi
 de�nitions along with (very weak) de�nitions of obfus
ators. InSe
tion 3, we prove the impossibility of obfus
ators by 
onstru
ting an unobfus
atable fun
tionensemble. In Se
tion 4, we give a number of extensions of our impossibility result, in
ludingimpossibility results for obfus
ators whi
h only need to approximately preserve fun
tionality, forobfus
ators 
omputable in low 
ir
uit 
lasses, and for some of the appli
ations of obfus
ators.We also show that our main impossibility result does not relativize. In Se
tion 5, we dis
usssome 
onje
tural 
omplexity-theoreti
 analogues of Ri
e's Theorem, and use our te
hniques toshow that one of these is false. In Se
tion 6, we examine notions of obfus
ators for samplingalgorithms. In Se
tion 7, we propose weaker notions of obfus
ation that are not ruled out by ourimpossibility results. In Se
tion 8, we dis
uss the problem of software watermarking and its relationto obfus
ation. Finally, in Se
tion 9, we mention some dire
tions for further work in this area.2 De�nitions2.1 PreliminariesStandard Notations. TM is shorthand for Turing ma
hine. PPT is shorthand for probabilisti
polynomial-time Turing ma
hine. By 
ir
uit we refer to a standard boolean 
ir
uit with AND,ORand NOT gates. If C is a 
ir
uit with n inputs and m outputs, and x 2 f0; 1gn then by C(x) wedenote the result of applyingC on input x. We say that C 
omputes a fun
tion f : f0; 1gn ! f0; 1gm6



if for any x 2 f0; 1gn, C(x) = f(x). For algorithms A and M and a string x, we denote by AM (x)the output of A when exe
uted on input x and ora
le a

ess to M . When M is a 
ir
uit, this
arries the standard meaning (on answer to ora
le query x, A re
eives M(x)). When M is a TM,this means that A 
an make ora
le queries of the form (x; 1t) and re
eive in response either theoutput of M on input x (if M halts within t steps on x), or ? (if M does not halt within t steps onx).4 If A is a probabilisti
 Turing ma
hine then by A(x; r) we refer to the result of running A oninput x and random tape r. By A(x) we refer to the distribution indu
ed by 
hoosing r uniformlyand running A(x; r). If D is a distribution then by x R D we mean that x is a random variabledistributed a

ording to D. If S is a set then by x R S we mean that x is a random variable that isdistributed uniformly over the elements of S. Supp(D) denotes the support of distribution D, i.e.the set of points that have nonzero probability under D. A fun
tion � : N ! N is 
alled negligible ifit grows slower than the inverse of any polynomial. That is, for any positive polynomial p(�) thereexists N 2 N su
h that �(n) < 1=p(n) for any n > N . We'll sometimes use neg(�) to denote anunspe
i�ed negligible fun
tion. We will identify Turing ma
hines and 
ir
uits with their 
anoni
alrepresentations as strings in f0; 1g�.Nonstandard Notations. IfM is a TM then we denote by hMi the fun
tion hMi : 1��f0; 1g� !f0; 1g� given by:hMi(1t; x) def= n y M(x) halts with output y after at most t steps? otherwiseIf C is a 
ir
uit then we denote by [C℄ the fun
tion it 
omputes. Similarly if M is a TM then wedenote by [M ℄ the (possibly partial) fun
tion it 
omputes.2.2 Obfus
atorsIn this se
tion, we aim to formalize the notion of obfus
ators based on the \virtual bla
k box"property as des
ribed in the introdu
tion. Re
all that this property requires that \anything thatan adversary 
an 
ompute from an obfus
ation O(P ) of a program P , it 
ould also 
ompute givenjust ora
le a

ess to P ." We shall de�ne what it means for the adversary to su

essfully 
omputesomething in this setting, and there are several 
hoi
es for this (in de
reasing order of generality):� (
omputational indistinguishability) The most general 
hoi
e is not to restri
t the nature ofwhat the adversary is trying to 
ompute, and merely require that it is possible, given justora
le a

ess to P , to produ
e an output distribution that is 
omputationally indistinguishablefrom what the adversary 
omputes when given O(P ).� (satisfying a relation) An alternative is to 
onsider the adversary as trying to produ
e an out-put that satis�es an arbitrary (possibly polynomial-time) relation with the original programP , and require that it is possible, given just ora
le a

ess to P , to su

eed with roughly thesame probability as the adversary does when given O(P ).� (
omputing a fun
tion) A weaker requirement is to restri
t the previous requirement to re-lations whi
h are fun
tions; that is, the adversary is trying to 
ompute some fun
tion of theoriginal program.4In typi
al 
ases (i.e., when the running time is a priori bounded), this 
onvention makes our de�nitions ofobfus
ator even weaker sin
e it allows A to learn the a
tual running-time of M on parti
ular inputs. This seems thenatural 
hoi
e be
ause a ma
hine given the 
ode of M 
an de�nitely learn its a
tual running-time on inputs of itsown 
hoi
e. 7



� (
omputing a predi
ate) The weakest is to restri
t the previous requirement to f0; 1g-valuedfun
tions; that is, the adversary is trying to de
ide some property of the original program.Sin
e we will be proving impossibility results, our results are strongest when we adopt theweakest requirement (i.e., the last one). This yields two de�nitions for obfus
ators, one for programsde�ned by Turing ma
hines and one for programs de�ned by 
ir
uits.De�nition 2.1 (TM obfus
ator) A probabilisti
 algorithm O is a TM obfus
ator if the followingthree 
onditions hold:� (fun
tionality) For every TM M , the string O(M) des
ribes a TM that 
omputes the samefun
tion as M .� (polynomial slowdown) The des
ription length and running time of O(M) are at most poly-nomially larger than that of M . That is, there is a polynomial p su
h that for every TM M ,jO(M)j � p(jM j), and if M halts in t steps on some input x, then O(M) halts within p(t)steps on x.� (\virtual bla
k box" property) For any PPT A, there is a PPT S and a negligible fun
tion �su
h that for all TMs M���Pr [A(O(M)) = 1℄� Pr hShMi(1jM j) = 1i��� � �(jM j):We say that O is eÆ
ient if it runs in polynomial time.De�nition 2.2 (
ir
uit obfus
ator) A probabilisti
 algorithm O is a (
ir
uit) obfus
ator if thefollowing three 
onditions hold:� (fun
tionality) For every 
ir
uit C, the string O(C) des
ribes a 
ir
uit that 
omputes the samefun
tion as C.� (polynomial slowdown) There is a polynomial p su
h that for every 
ir
uit C, jO(C)j � p(jCj).� (\virtual bla
k box" property) For any PPT A, there is a PPT S and a negligible fun
tion �su
h that for all 
ir
uits C���Pr [A(O(C)) = 1℄� Pr hSC(1jCj) = 1i��� � �(jCj):We say that O is eÆ
ient if it runs in polynomial time.We 
all the �rst two requirements (fun
tionality and polynomial slowdown) the synta
ti
 re-quirements of obfus
ation, as they do not address the issue of se
urity at all.There are a 
ouple of other natural formulations of the \virtual bla
k box" property. The�rst, whi
h more 
losely follows the informal dis
ussion above, asks that for every predi
ate �, theprobability that A(O(C)) = �(C) is at most the probability that SC(1jCj) = �(C) plus a negligibleterm. It is easy to see that this requirement is equivalent to the one above. Another formulationrefers to the distinguishability between obfus
ations of two TMs/
ir
uits: ask that for every C1and C2, jPr [A(O(C1)) = 1℄�Pr [A(O(C2))℄ j is approximately equal to jPr �SC1(1jC1j; 1jC2j) = 1��Pr �SC2(1jC1j; 1jC2)� j. This de�nition appears to be slightly weaker than the ones above, but ourimpossibility proof also rules it out. 8



Note that in both de�nitions, we have 
hosen to simplify the de�nition by using the size ofthe TM/
ir
uit to be obfus
ated as a se
urity parameter. One 
an always in
rease this length bypadding to obtain higher se
urity.The main di�eren
e between the 
ir
uit and TM obfus
ators is that a 
ir
uit 
omputes a fun
tionwith �nite domain (all the inputs of a parti
ular length) while a TM 
omputes a fun
tion within�nite domain. Note that if we had not restri
ted the size of the obfus
ated 
ir
uit O(C), then the(exponential size) list of all the values of the 
ir
uit would be a valid obfus
ation (provided we allowS running time poly(jO(C)j) rather than poly(jCj)). For Turing ma
hines, it is not 
lear how to
onstru
t su
h an obfus
ation, even if we are allowed an exponential slowdown. Hen
e obfus
atingTMs is intuitively harder. Indeed, it is relatively easy to prove:Proposition 2.3 If a TM obfus
ator exists, then a 
ir
uit obfus
ator exists.Thus, when we prove our impossibility result for 
ir
uit obfus
ators, the impossibility of TM ob-fus
ators will follow. However, 
onsidering TM obfus
ators will be useful as motivation for theproof.We note that, from the perspe
tive of appli
ations, De�nitions 2.1 and 2.2 are already too weakto have the wide appli
ability dis
ussed in the introdu
tion. The point is that they are neverthelessimpossible to satisfy (as we will prove).3 The Main Impossibility ResultTo state our main result we introdu
e the notion of unobfus
atable fun
tion ensemble.De�nition 3.1 An unobfus
atable fun
tion ensemble is an ensemble fHkgk2N of distributions Hkon �nite fun
tions (from, say, f0; 1glin(k) to f0; 1glout(k)) satisfying:� (eÆ
ient 
omputability) Every fun
tion f R Hk is 
omputable by a 
ir
uit of size poly(k).(Moreover, a distribution on 
ir
uits 
onsistent with Hk 
an be sampled uniformly in timepoly(k).)� (unobfus
atability) There exists a fun
tion � : Sk2N Supp(Hk)! f0; 1g su
h that1. �(f) is hard to 
ompute with bla
k-box a

ess to f : For any PPT SPrf R Hk[Sf (1k) = �(f)℄ � 12 + neg(k)2. �(f) is easy to 
ompute with a

ess to any 
ir
uit that 
omputes f : There exists a PPTA su
h that for any f 2 Sk2N Supp(Hk) and for any 
ir
uit C that 
omputes fA(C) = �(f)We prove in Theorem 3.11 that, assuming one-way fun
tions exist, there exists an unobfus-
atable fun
tion ensemble. This implies that, under the same assumption, there is no obfus
atorthat satis�es De�nition 2.2 (a
tually we prove the latter fa
t dire
tly in Theorem 3.8). Sin
e theexisten
e of an eÆ
ient obfus
ator implies the existen
e of one-way fun
tions (Lemma 3.9), we
on
lude that eÆ
ient obfus
ators do not exist (un
onditionally).However, the existen
e of unobfus
atable fun
tion ensemble has even stronger impli
ations. Asmentioned in the introdu
tion, these fun
tions 
an not be obfus
ated even if we allow the followingrelaxations to the obfus
ator: 9



1. As mentioned above, the obfus
ator does not have to run in polynomial time | it 
an be anyrandom pro
ess.2. The obfus
ator has only to work for fun
tions in Supp(Hk) and only for a non-negligiblefra
tion of these fun
tions under the distributions Hk.3. The obfus
ator has only to hide an a priori �xed property � from an a priori �xed adversaryA.Stru
ture of the Proof of the Main Impossibility Result. We shall prove our result by�rst de�ning obfus
ators that are se
ure also when applied to several (e.g., two) algorithms andproving that they do not exist. Then we shall modify the 
onstru
tion in this proof to provethat TM obfus
ators in the sense of De�nition 2.1 do not exist. After that, using an additional
onstru
tion (whi
h requires one-way fun
tions), we will prove that a 
ir
uit obfus
ator as de�nedin De�nition 2.2 does not exist if one-way fun
tions exist. We will then observe that our proofa
tually yields an unobfus
atable fun
tion ensemble (Theorem 3.11).3.1 Obfus
ating two TMs/
ir
uitsObfus
ators as de�ned in the previous se
tion provide a \virtual bla
k box" property when asingle program is obfus
ated, but the de�nitions do not say anything about what happens whenthe adversary 
an inspe
t more than one obfus
ated program. In this se
tion, we will 
onsiderextensions of those de�nitions to obfus
ating two programs, and prove that they are impossible tomeet. The proofs will provide useful motivation for the impossibility of the original one-programde�nitions.De�nition 3.2 (2-TM obfus
ator) A 2-TM obfus
ator is de�ned in the same way as a TMobfus
ator, ex
ept that the \virtual bla
k box" property is strengthened as follows:� (\virtual bla
k box" property) For any PPT A, there is a PPT S and a negligible fun
tion �su
h that for all TMs M;N���Pr [A(O(M);O(N)) = 1℄� Pr hShMi;hNi(1jM j+jN j) = 1i��� � �(minfjM j; jN jg)De�nition 3.3 (2-
ir
uit obfus
ator) A 2-
ir
uit obfus
ator is de�ned in the same way as a
ir
uit obfus
ator, ex
ept that the \virtual bla
k box" property is repla
ed with the following:� (\virtual bla
k box" property) For any PPT A, there is a PPT S and a negligible fun
tion �su
h that for all 
ir
uits C;D���Pr [A(O(C);O(D)) = 1℄� Pr hSC;D(1jCj+jDj) = 1i��� � �(minfjCj; jDjg)Proposition 3.4 Neither 2-TM nor 2-
ir
uit obfus
ators exist.Proof: We begin by showing that 2-TM obfus
ators do not exist. Suppose, for sake of 
on-tradi
tion, that there exists a 2-TM obfus
ator O. The essen
e of this proof, and in fa
t of allthe impossibility proofs in this paper, is that there is a fundamental di�eren
e between gettingbla
k-box a

ess to a fun
tion and getting a program that 
omputes it, no matter how obfus
ated:A program is a su

in
t des
ription of the fun
tion, on whi
h one 
an perform 
omputations (or10



run other programs). Of 
ourse, if the fun
tion is (exa
tly) learnable via ora
le queries (i.e., one
an a
quire a program that 
omputes the fun
tion by querying it at a few lo
ations), then thisdi�eren
e disappears. Hen
e, to get our 
ounterexample, we will use a fun
tion that 
annot beexa
tly learned with ora
le queries. A very simple example of su
h an unlearnable fun
tion follows.For strings �; � 2 f0; 1gk, de�ne the Turing ma
hineC�;�(x) def= n� x = �0k otherwiseWe assume that on input x, C�;� runs in 10 � jxj steps (the 
onstant 10 is arbitrary). Now wewill de�ne a TM D�;� that, given the 
ode of a TM C, 
an distinguish between the 
ase that C
omputes the same fun
tion as C�;� from the 
ase that C 
omputes the same fun
tion as C�0;�0 forany (�0; �0) 6= (�; �). D�;�(C) def= n 1 C(�) = �0 otherwise(A
tually, this fun
tion is un
omputable. However, as we shall see below, we 
an use a modi�edversion of D�;� that only 
onsiders the exe
ution of C(�) for poly(k) steps, and outputs 0 if C doesnot halt within that many steps, for some �xed polynomial poly(�). We will ignore this issue fornow, and elaborate on it later.) Note that C�;� and D�;� have des
ription size �(k).Consider an adversary A, whi
h, given two (obfus
ated) TMs as input, simply runs the se
ondTM on the �rst one. That is, A(C;D) = D(C). (A
tually, like we modi�ed D�;� above, we alsowill modify A to only run D on C for poly(jCj; jDj) steps, and output 0 if D does not halt in thattime.) Thus, for any �; � 2 f0; 1gk ,Pr [A(O(C�;�);O(D�;�)) = 1℄ = 1 (1)Observe that any poly(k)-time algorithm S whi
h has ora
le a

ess to C�;� and D�;� has onlyexponentially small probability (for a random � and �) of querying either ora
le at a point whereits value is nonzero. Hen
e, if we let Zk be a Turing ma
hine that always outputs 0k, then for everyPPT S, ���Pr hSC�;� ;D�;�(1k) = 1i� Pr hSZk;D�;�(1k) = 1i��� � 2�
(k); (2)where the probabilities are taken over � and � sele
ted uniformly in f0; 1gk and the 
oin tosses ofS. On the other hand, by the de�nition of A we have:Pr [A(O(Zk);O(D�;�)) = 1℄ = 0 (3)The 
ombination of Equations (1), (2), and (3) 
ontradi
t the fa
t that O is a 2-TM obfus
ator.In the above proof, we ignored the fa
t that we had to trun
ate the running times of A andD�;� .When doing so, we must make sure that Equations (1) and (3) still hold. Equation (1) involvesexe
uting (a) A(O(D�;�);O(C�;�)), whi
h in turn amounts to exe
uting (b) O(D�;�)(O(C�;�)).By de�nition (b) has the same fun
tionality as D�;�(O(C�;�)), whi
h in turn involves exe
uting(
) O(C�;�)(�). Yet the fun
tionality requirement of the obfus
ator de�nition assures us that(
) has the same fun
tionality as C�;�(�). By the polynomial slowdown property of obfus
ators,exe
ution (
) only takes poly(10 � k) = poly(k) steps, whi
h means that D�;�(O(C�;�)) need onlyrun for poly(k) steps. Thus, again applying the polynomial slowdown property, exe
ution (b) takespoly(k) steps, whi
h �nally implies that A need only run for poly(k) steps. The same reasoning11



holds for Equation (3), using Zk instead of C�;�.5 Note that all the polynomials involved are �xedon
e we �x the polynomial p(�) of the polynomial slowdown property.The proof for the 2-
ir
uit 
ase is very similar to the 2-TM 
ase, with a related, but slightlydi�erent subtlety. Suppose, for sake of 
ontradi
tion, that O is a 2-
ir
uit obfus
ator. For k 2 Nand �; � 2 f0; 1gk , de�ne Zk, C�;� and D�;� in the same way as above but as 
ir
uits rather thanTMs, and de�ne an adversary A by A(C;D) = D(C). (Note that the issues of A and D�;�'s runningtimes go away in this setting, sin
e 
ir
uits 
an always be evaluated in time polynomial in theirsize.) The new subtlety here is that the de�nition of A as A(C;D) = D(C) only makes sense whenthe input length of D is larger than the size of C (note that one 
an always pad C to a larger size).Thus, for the analogues of Equations (1) and (3) to hold, the input length of D�;� must be largerthan the sizes of the obfus
ations of C�;� and Zk. However, by the polynomial slowdown propertyof obfus
ators, it suÆ
es to let D�;� have input length poly(k) and the proof works as before.3.2 Obfus
ating one TM/
ir
uitOur approa
h to extending the two-program obfus
ation impossibility results to the one-programde�nitions is to 
ombine the two programs 
onstru
ted above into one. This will work in a quitestraightforward manner for TM obfus
ators, but will require new ideas for 
ir
uit obfus
ators.Combining fun
tions and programs. For fun
tions, TMs, or 
ir
uits f0; f1 : X ! Y , de�netheir 
ombination f0#f1 : f0; 1g �X ! Y by (f0#f1)(b; x) def= fb(x). Conversely, if we are givena TM (resp., 
ir
uit) C : f0; 1g �X ! Y , we 
an eÆ
iently de
ompose C into C0#C1 by settingCb(x) def= C(b; x); note that C0 and C1 have size and running time essentially the same as that ofC. Observe that having ora
le a

ess to a 
ombined fun
tion f0#f1 is equivalent to having ora
lea

ess to f0 and f1 individually.Theorem 3.5 TM obfus
ators do not exist.Proof Sket
h: Suppose, for sake of 
ontradi
tion, that there exists a TM obfus
ator O. For�; � 2 f0; 1gk , let C�;�, D�;� , and Zk be the TMs de�ned in the proof of Proposition 3.4. Combiningthese, we get the TMs F�;� = C�;�#D�;� and G�;� = Zk#C�;�.We 
onsider an adversary A analogous to the one in the proof of Proposition 3.4, augmentedto �rst de
ompose the program it is fed. That is, on input a TM F , algorithm A �rst de
omposesF into F0#F1 and then outputs F1(F0). (As in the proof of Proposition 3.4, A a
tually should bemodi�ed to run in time poly(jF j).) Let S be the PPT simulator for A guaranteed by De�nition 2.1.Just as in the proof of Proposition 3.4, we have:Pr [A(O(F�;�)) = 1℄ = 1 and Pr [A(O(G�;�)) = 1℄ = 0���Pr hSF�;�(1k) = 1i� Pr hSG�;� (1k) = 1i��� � 2�
(k);where the probabilities are taken over uniformly sele
ted �; � 2 f0; 1gk , and the 
oin tosses of A,S, and O. This 
ontradi
ts De�nition 2.1. 25Another, even more minor subtlety that we ignored is that, stri
tly speaking, A only has running time polynomialin the des
ription of the obfus
ations of C�;�, D�;�, and Zk, whi
h 
ould 
on
eivably be shorter than the originalTM des
riptions. But a 
ounting argument shows that for all but an exponentially small fra
tion of pairs (�; �) 2f0; 1gk � f0; 1gk, O(C�;�) and O(D�;�) must have des
ription size 
(k).12



There is a diÆ
ulty in trying to 
arry out the above argument in the 
ir
uit setting. (ThisdiÆ
ulty is related to (but more serious than) the same subtlety regarding the 
ir
uit settingdis
ussed earlier.) In the above proof, the adversary A, on input O(F�;�), attempts to evaluateF1(F0), where F0#F1 = O(F�;�) = O(C�;�#D�;�). In order for this to make sense in the 
ir
uitsetting, the size of the 
ir
uit F0 must be at most the input length of F1 (whi
h is the same as theinput length of D�;�). But, sin
e the output F0#F1 of the obfus
ator 
an be polynomially largerthan its input C�;�#D�;� , we have no su
h guarantee. Furthermore, note that if we 
ompute F0,F1 in the way we des
ribed above (i.e., Fb(x) def= O(F�;�)(b; x)) then we'll have jF0j = jF1j and soF0 will ne
essarily be larger than F1's input length.To get around this, we modify D�;� in a way that will allow A, when given D�;� and a 
ir
uitC, to test whether C(�) = � even when C is larger than the input length of D�;�. Of 
ourse, ora
lea

ess to D�;� should not reveal � and �, be
ause we do not want the simulator S to be able totest whether C(�) = � given just ora
le a

ess to C and D�;�. We will 
onstru
t su
h fun
tionsD�;� based on pseudorandom fun
tions [GGM86℄.Lemma 3.6 If one-way fun
tions exist, then for every k 2 N and �; � 2 f0; 1gk, there is a distri-bution D�;� on 
ir
uits su
h that:1. Every D 2 Supp(D�;�) is a 
ir
uit of size poly(k).2. There is a polynomial-time algorithm A su
h that for any 
ir
uit C, and any D 2 Supp(D�;�),AD(C; 1k) = 1 i� C(�) = �.3. For any PPT S, Pr �SD(1k) = �� = neg(k), where the probability is taken over �; � R f0; 1gk,D R D�;�, and the 
oin tosses of S.Proof: Basi
ally, the 
onstru
tion implements a private-key \homomorphi
 en
ryption" s
heme.More pre
isely, the fun
tions in D�;� will 
onsist of three parts. The �rst part gives out an en
ryp-tion of the bits of � (under some private-key en
ryption s
heme). The se
ond part provides theability to perform binary Boolean operations on en
rypted bits, and the third part tests whether asequen
e of en
ryptions 
onsists of en
ryptions of the bits of �. These operations will enable oneto eÆ
iently test whether a given 
ir
uit C satis�es C(�) = �, while keeping � and � hidden whenonly ora
le a

ess to C and D�;� is provided.We begin with any one-bit (probabilisti
) private-key en
ryption s
heme (En
;De
) that satis�esindistinguishability under 
hosen plaintext and nonadaptive 
hosen 
iphertext atta
ks. Informally,this means that an en
ryption of 0 should be indistinguishable from an en
ryption of 1 even foradversaries that have a

ess to en
ryption and de
ryption ora
les prior to re
eiving the 
hallenge
iphertext, and a

ess to just an en
ryption ora
le after re
eiving the 
hallenge 
iphertext. (See[KY00℄ for formal de�nitions.) We note that su
h en
ryptions s
hemes exist if one-way fun
tionsexist; indeed, the \standard" en
ryption s
heme En
K(b) = (r; fK(r)� b), where r R f0; 1gjKj andfK is a pseudorandom fun
tion, has this property.Now we 
onsider a \homomorphi
 en
ryption" algorithm Hom, whi
h takes as input a private-key K and two 
iphertexts 
 and d (w.r.t. this key K), and a binary boolean operation � (spe
i�edby its 2� 2 truth table). We de�neHomK(
; d;�) def= En
K(De
K(
)�De
K(d)):It 
an be shown that su
h an en
ryption s
heme retains its se
urity even if the adversary is givena

ess to a Hom ora
le. This is formalized in the following 
laim:13



Claim 3.7 For every PPT A,��Pr �AHomK ;En
K (En
K(0)) = 1�� Pr �AHomK ;En
K (En
K(1)) = 1��� � neg(k):Proof of 
laim: Suppose there were a PPT A violating the 
laim. First, we argue thatwe 
an repla
e the responses to all of A'S HomK -ora
le queries with en
ryptions of 0 withonly a negligible e�e
t on A's distinguishing gap. This follows from indistinguishabilityunder 
hosen plaintext and 
iphertext atta
ks and a hybrid argument: Consider hybridswhere the �rst i ora
le queries are answered a

ording to HomK and the rest withen
ryptions of 0. Any advantage in distinguishing two adja
ent hybrids must be due todistinguishing an en
ryption of 1 from an en
ryption of 0. The resulting distinguisher
an be implemented using ora
le a

ess to en
ryption and de
ryption ora
les prior tore
eiving the 
hallenge 
iphertext (and an en
ryption ora
le afterward).On
e we have repla
ed the HomK-ora
le responses with en
ryptions of 0, we have anadversary that 
an distinguish an en
ryption of 0 from an en
ryption of 1 when givena

ess to just an en
ryption ora
le. This 
ontradi
ts indistinguishability under 
hosenplaintext atta
k. 2Now we return to the 
onstru
tion of our 
ir
uit family D�;�. For a key K, let EK;� be analgorithm whi
h, on input i outputs En
K(�i), where �i is the i'th bit of �. Let BK;� be analgorithm whi
h when fed a k-tuple of 
iphertexts (
1; : : : ; 
k) outputs 1 if for all i, De
K(
i) = �i,where �1; : : : ; �k are the bits of �. A random 
ir
uit from D�;� will essentially be the algorithmDK;�;� def= EK;�#HomK#BK;�(for a uniformly sele
ted key K). One minor 
ompli
ation is that DK;�;� is a
tually a probabilisti
algorithm, sin
e EK;� and HomK employ probabilisti
 en
ryption, whereas the lemma requiresdeterministi
 fun
tions. This 
an be solved in the usual way, by using pseudorandom fun
tions.Let q = q(k) be the input length of DK;�;� and m = m(k) the maximum number of random bitsused by DK;�;� on any input. We 
an sele
t a pseudorandom fun
tion fK0 : f0; 1gq ! f0; 1gm,and let D0K;�;�;K0 be the (deterministi
) algorithm, whi
h on input x 2 f0; 1gq evaluates DK;�;�(x)using randomness fK0(x).De�ne the distribution D�;� to be D0K;�;�;K0, over uniformly sele
ted keys K and K 0. We arguethat this distribution has the properties stated in the lemma. By 
onstru
tion, ea
h D0K;�;�;K0 is
omputable by 
ir
uit of size poly(k), so Property 1 is satis�ed.For Property 2, 
onsider an algorithm A that on input C and ora
le a

ess to D0K;�;�;K0 (whi
h,as usual, we 
an view as a

ess to (deterministi
 versions of) the three separate ora
les EK;�,HomK , and BK;�), pro
eeds as follows: First, with k ora
le queries to the EK;� ora
le, A obtainsen
ryptions of ea
h of the bits of �. Then, A uses the HomK ora
le to do a gate-by-gate emulationof the 
omputation of C(�), in whi
h A obtains en
ryptions of the values at ea
h gate of C. Inparti
ular, A obtains en
ryptions of the values at ea
h output gate of C (on input �). It then feedsthese output en
ryptions to DK;�, and outputs the response to this ora
le query. By 
onstru
tion,A outputs 1 i� C(�) = �.Finally, we verify Property 3. Let S be any PPT algorithm. We must show that S has onlya negligible probability of outputting � when given ora
le a

ess to D0K;�;�;K0 (over the 
hoi
e ofK, �, �, K 0, and the 
oin tosses of S). By the pseudorandomness of fK0, we 
an repla
e ora
lea

ess to the fun
tion D0K;�;�;K0 with ora
le a

ess to the probabilisti
 algorithm DK;�;� with only anegligible e�e
t on S's su

ess probability. Ora
le a

ess to DK;�;� is equivalent to ora
le a

ess to14



EK;�, HomK , and BK;�. Sin
e � is independent of � and K, the probability that S queries BK;� ata point where its value is nonzero (i.e., at a sequen
e of en
ryptions of the bits of �) is exponentiallysmall, so we 
an remove S's queries to BK;� with only a negligible e�e
t on the su

ess probability.Ora
le a

ess to EK;� is equivalent to giving S polynomially many en
ryptions of ea
h of the bitsof �. Thus, we must argue that S 
annot 
ompute � with nonnegligible probability from theseen
ryptions and ora
le a

ess to HomK . This follows from the fa
t that the en
ryption s
hemeremains se
ure in the presen
e of a HomK ora
le (Claim 3.7) and a hybrid argument.Now we 
an prove the impossibility of 
ir
uit obfus
ators.Theorem 3.8 If one-way fun
tions exist, then 
ir
uit obfus
ators do not exist.Proof: Suppose, for sake of 
ontradi
tion, that there exists a 
ir
uit obfus
ator O. For k 2 Nand �; � 2 f0; 1gk , let Zk and C�;� be the 
ir
uits de�ned in the proof of Proposition 3.4, and letD�;� be the distribution on 
ir
uits given by Lemma 3.6. For ea
h k 2 N, 
onsider the followingtwo distributions on 
ir
uits of size poly(k):Fk: Choose � and � uniformly in f0; 1gk , D R D�;�. Output C�;�#D.Gk: Choose � and � uniformly in f0; 1gk , D R D�;� . Output Zk#D.Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.6, and 
onsider a PPT A0whi
h, on input a 
ir
uit F , de
omposes F = F0#F1 and evaluates AF1(F0; 1k), where k is theinput length of F0. Thus, when fed a 
ir
uit from O(Fk) (resp., O(Gk)), A0 is evaluating AD(C; 1k)where D 
omputes the same fun
tion as some 
ir
uit from D�;� and C 
omputes the same fun
tionas C�;� (resp., Zk). Therefore, by Property 2 in Lemma 3.6, we have:We now argue that for any PPT algorithm S���Pr hSFk(1k) = 1i� Pr hSGk(1k) = 1i��� � 2�
(k);whi
h will 
ontradi
t the de�nition of 
ir
uit obfus
ators. Having ora
le a

ess to a 
ir
uit fromFk (respe
tively, Gk) is equivalent to having ora
le a

ess to C�;� (resp., Zk) and D R D�;�, where�; � are sele
ted uniformly in f0; 1gk . Property 3 of Lemma 3.6 implies that the probability thatS queries the �rst ora
le at � is negligible, and hen
e S 
annot distinguish that ora
le being C�;�from it being Zk.We 
an remove the assumption that one-way fun
tions exist for eÆ
ient 
ir
uit obfus
ators viathe following (easy) lemma.Lemma 3.9 If eÆ
ient obfus
ators exist, then one-way fun
tions exist.Proof Sket
h: Suppose that O is an eÆ
ient obfus
ator as per De�nition 2.2. For � 2 f0; 1gkand b 2 f0; 1g, let C�;b : f0; 1gk ! f0; 1g be the 
ir
uit de�ned byC�;b(x) def= n b x = �0 otherwise.15



Now de�ne fk(�; b; r) def= O(C�;b; r), i.e. the obfus
ation of C�;b using 
oin tosses r. We will arguethat f = Sk2N fk is a one-way fun
tion. Clearly fk 
an be evaluated in time poly(k). Sin
e thebit b is information-theoreti
ally determined by fk(�; b; r), to show that f is one-way it suÆ
es toshow that b is a hard-
ore bit of f . To prove this, we �rst observe that for any PPT S,Pr�;b hSC�;b(1k) = bi � 12 + neg(k):By the virtual bla
k box property of O, it follows that for any PPT A,Pr�;b;r [A(f(�; b; r)) = b℄ = Pr�;b;r [A(O(C�;b; r)) = b℄ � 12 + neg(k):This demonstrates that b is indeed a hard-
ore bit of f , and hen
e that f is one-way. 2Corollary 3.10 EÆ
ient 
ir
uit obfus
ators do not exist (un
onditionally).As stated above, our impossibility proof 
an be 
ast in terms of \unobfus
atable fun
tions":Theorem 3.11 (unobfus
atable fun
tions) If one-way fun
tions exist, then there exists an un-obfus
atable fun
tion ensemble.Proof: Let Fk and Gk be the distributions on fun
tions in the proof of Theorem 3.8,and let Hkbe the distribution that, with probability 1=2 outputs a sample of Fk and with probability 1=2outputs a sample of Gk. We 
laim that fHkgk2N is an unobfus
atable fun
tion ensemble.The fa
t that fHkgk2N is eÆ
iently 
omputable is obvious. We de�ne �(f) to be 1 if f 2Sk Supp(Fk) and 0 otherwise (note that (Sk Supp(Fk)) \ (Sk Supp(Gk)) = ; and so �(f) = 0 forany f 2 Sk Supp(Gk)). The algorithm A0 given in the proof of Theorem 3.8 shows that �(f) 
anbe 
omputed in polynomial time from any 
ir
uit 
omputing f 2 Supp(Hk). Be
ause ora
le a

essto Fk 
annot be distinguished from ora
le a

ess to Gk (as shown in the proof of Theorem 3.8),it follows that �(f) 
annot be 
omputed from an ora
le for f R Hk with probability noti
eablygreater than 1=2.4 Extensions4.1 Totally unobfus
atable fun
tionsSome of the extensions of our impossibility result require a somewhat stronger form of unobfus-
atable fun
tions, in whi
h it is not only possible to 
ompute �(f) from any 
ir
uit for f , buteven to re
over the \original" 
ir
uit for f . This 
an be a
hieved by a slight modi�
ation of our
onstru
tion. It will also be useful to extend the 
onstru
tion so that not only the one bit �(f) isunpredi
table given ora
le a

ess to f , but rather that there are many bits of information aboutf whi
h are 
ompletely pseudorandom. These properties are 
aptured by the de�nition below. Inthis de�nition, it will be 
onvenient to identify the fun
tions f in our family with the 
anoni
al
ir
uits that 
ompute them.De�nition 4.1 A totally unobfus
atable fun
tion ensemble is an ensemble fHkgk2N of distribu-tions Hk on 
ir
uits (from, say, f0; 1glin(k) to f0; 1glout(k)) satisfying:� (eÆ
ient 
omputability) Every 
ir
uit f 2 Supp(Hk) is of size poly(k). Moreover, f R Supp(Hk) 
an be sampled uniformly in time poly(k).16



� (unobfus
atability) There exists a poly-time 
omputable fun
tion � : Sk2N Supp(Hk)! f0; 1g�,su
h that1. �(f) is pseudorandom given bla
k-box a

ess to f : For any PPT S����� Prf R Hk[Sf (�(f)) = 1℄� Prf R Hk;z R f0;1gk[Sf (z) = 1℄����� � neg(k)2. f is easy to re
onstru
t given any other 
ir
uit for f : There exists a PPT A su
h thatfor any f 2 Sk Supp(Hk) and for any 
ir
uit C that 
omputes the same fun
tion as fA(C) = f,Note that totally unobfus
atable fun
tions imply unobfus
atable fun
tions: given ora
le a

ess to atotally unobfus
atable f , pseudorandomness implies that the �rst bit of �(f) 
annot be 
omputedwith probability noti
eably more than 1=2, and given any 
ir
uit for f , one 
an eÆ
iently �nd the
anoni
al 
ir
uit for f , from whi
h one 
an 
ompute �(f) (and in parti
ular, its �rst bit).Theorem 4.2 (totally unobfus
atable fun
tions) If one-way fun
tions exist, then there existsa totally unobfus
atable fun
tion ensemble.Proof Sket
h: The �rst step is to observe that the ensemble D�;� of Lemma 3.6 
an be modi�edso that Property 2 instead says AD(C; 1k) = � if C(�) = � and AD(C; 1k) = 0k otherwise.(To a
hieve this, repla
e BK;� with B0K;�;� whi
h outputs � when fed a sequen
e of 
iphertexts(
1; : : : ; 
k) whose de
ryptions are the bits of � and outputs 0k otherwise.)Now our totally unobfus
atable fun
tion ensemble Hk is de�ned as follows.Hk: Choose �; �; 
 uniformly in f0; 1gk , D R D�;�. Output C�;�#D#C�;(D;
).(Above, C�;(D;
) is the 
ir
uit whi
h on input � outputs (D; 
), and on all other inputs outputs0j(D;
)j.)EÆ
ien
y is 
learly satis�ed. For unobfus
atability, we de�ne �(C�;�#D#C�;(D;
)) = 
. Let'sverify that 
 is pseudorandom given ora
le a

ess. As in the proof of Theorem 3.11, it follows fromProperty 3 of Lemma 3.6 that a PPT algorithm given ora
le a

ess to C�;�#D#C�;(D;
). will onlyquery C�;(D;
) with negligible probability and hen
e 
 is indistinguishable from uniform.Finally, let's show that given any 
ir
uit C 0 
omputing the same fun
tion as C�;�#D#C�;(D;
),we 
an re
onstru
t the latter 
ir
uit. First, we 
an de
ompose C 0 = C1#D0#C2. Sin
eD0 
omputesthe same fun
tion as D and C1(�) = �, we have AD0(C1) = �, where A is the algorithm from (themodi�ed) Property 2 of Lemma 3.6. Given �, we 
an obtain � = C1(�) and (D; 
) = C2(�), whi
hallows us to re
onstru
t C�;�#D#C�;(D;
). 24.2 Approximate obfus
atorsOne of the most reasonable ways to weaken the de�nition of obfus
ators, is to relax the 
onditionthat the obfus
ated 
ir
uit must 
ompute exa
tly the same fun
tion as the original 
ir
uit. Rather,we 
an allow the obfus
ated 
ir
uit to only approximate the original 
ir
uit.17



We must be 
areful in de�ning \approximation". We do not want to lose the notion of anobfus
ator as a general purpose s
rambling algorithm and therefore we want a de�nition of approx-imation that will be strong enough to guarantee that the obfus
ated 
ir
uit 
an still be used inthe pla
e of the original 
ir
uit in any appli
ation. Consider the 
ase of a signature veri�
ationalgorithm VK . A polynomial-time algorithm 
annot �nd an input on whi
h VK does not output0 (without knowing the signature key). However, we 
learly do not want this to mean that the
onstant zero fun
tion is an approximation of VK .4.2.1 De�nition and Impossibility ResultIn order to avoid the above pitfalls we 
hoose a de�nition of approximation that allows the obfus-
ated 
ir
uit to deviate on a parti
ular input from the original 
ir
uit only with negligible probabilityand allows this event to depend on only the 
oin tosses of the obfus
ating algorithm (rather thanover the 
hoi
e of a randomly 
hosen input).De�nition 4.3 For any fun
tion f : f0; 1gn ! f0; 1gk, � > 0, the random variable C is 
alled an�-approximate implementation of f if the following holds:1. C ranges over 
ir
uits from f0; 1gn to f0; 1gk2. For any x 2 f0; 1gn , PrC [C(x) = f(x)℄ � 1� �We then de�ne a strongly unobfus
atable fun
tion ensemble to be an unobfus
atable fun
tionensemble where the hard property �(f) 
an be 
omputed not only from any 
ir
uit that 
omputesf but also from any approximate implementation of f .De�nition 4.4 A strongly unobfus
atable fun
tion ensemble fHkgk2N is de�ned in the same wayas an unobfus
atable fun
tion ensemble, ex
ept that Part 2 of the \unobfus
atability" 
ondition isrepla
ed with the following:2. �(f) is easy to 
ompute with a

ess to a 
ir
uit that approximates f : There exists a PPT Aand a polynomial p(�) su
h that for any f 2 Sn2N Supp(Hn) and for any random variable Cthat is an �-approximate implementation of fPr[A(C) = �(f)℄ � 1� � � p(n)Our main theorem in this se
tion is the following:Theorem 4.5 If one-way fun
tions exist, then there exists a strongly unobfus
atable fun
tion en-semble.Similarly to the way that Theorem 3.11 implies Theorem 3.8, Theorem 4.5 implies that, assum-ing the existen
e of one-way fun
tions, an even weaker de�nition of 
ir
uit obfus
ators (one thatallows the obfus
ated 
ir
uit to only approximate the original 
ir
uit) is impossible to meet. Wenote that it some (but not all) appli
ations of obfus
ators, a weaker notion of approximation mightsuÆ
e. Spe
i�
ally, in some 
ases it suÆ
es for the obfus
ator to only approximately preservefun
tionality with respe
t to a parti
ular distribution on inputs, su
h as the uniform distribution.(This is implied, but apparently weaker, than the requirement of De�nition 4.3 | if C is an "-approximate implementation of f , then for for any �xed distribution D on inputs, C and f agree18



on a 1�p" fra
tion of D with probability at least 1�p".) We do not know whether approximateobfus
ators with respe
t to this weaker notion exist, and leave it as an open problem.We shall prove this theorem in the following stages. First we will see why the proof of Theo-rem 3.11 does not apply dire
tly to the 
ase of approximate implementations. Then we shall de�nea 
onstru
t 
alled invoker-randomizable pseudorandom fun
tions, whi
h will help us modify theoriginal proof to hold in this 
ase.4.2.2 Generalizing the Proof of Theorem 3.11 to the Approximate CaseThe �rst question is whether the proof of Theorem 3.11 already shows that the ensemble fHkgk2Nde�ned there is a
tually a strongly unobfus
atable fun
tion ensemble. As we explain below, theanswer is no.To see why, let us re
all the de�nition of the ensemble fHkgk2N that is de�ned there and usesthe distributions Fk and Gk that are de�ned in the proof of Theorem 3.8. The distribution Hkis de�ned by taking an element from Fk or Gk, with probability 1=2 ea
h. The distribution Fk isde�ned by 
hoosing �; � R f0; 1gk , a fun
tion D R D�;� and outputting C�;�#D. Similarly, Gk isde�ned by 
hoosing �; � R f0; 1gk , D R D�;� and outputting Zk#D. The property � is de�nedsimply to distinguish fun
tions in Fk from those in Gk.That proof gave an algorithm A0 whi
h 
omputes �(f) given a 
ir
uit 
omputing any fun
tionf from H. Let us see why A0 might fail when given only an approximate implementation of f . Oninput a 
ir
uit F , A0 works as follows: It de
omposes F into two 
ir
uits F = F1#F2. F2 is used onlyin a bla
k-box manner, but the queries A0 makes to it depend on the gate stru
ture of the 
ir
uitF1. The problem is that a vi
ious approximate implementation for a fun
tion C�;�#D 2 Supp(Fk)may work in the following way: 
hoose a random 
ir
uit F1 out of some set C of exponentially many
ir
uits that 
ompute C�;�, and take F2 that 
omputes D. Then see at whi
h points A0 queries F2when given F1#F2 as input.6 As these pla
es depend on F1, it is possible that for ea
h F1 2 C,there is a point x(F1) su
h that A0 will query F2 at the point x(F1), but x(F1) 6= x(F 01) for anyF 01 2 C n fF1g. If the approximate implementation 
hanges the value of F2 at x(F1), then A0's
omputation on F1#F2 is 
orrupted.One way to solve this problem would be to make the queries that A0 makes to F2 independentof the stru
ture of F1. If A0 had this property, then given an �-approximate implementation ofC�;�#D, ea
h query of A0 would have only an � 
han
e to get an in
orre
t answer and overall A0would su

eed with probability 1 � � � p(k) for some polynomial p(�). (Note that the probabilitythat F1(�) 
hanges is at most �.)We will not be able to a
hieve this, but something slightly weaker that still suÆ
es. Let's lookmore 
losely at the stru
ture of D�;� whi
h is de�ned in the proof of Lemma 3.6. We de�ned therethe algorithm DK;�;� def= EK;�#HomK#BK;�and turned it into a deterministi
 fun
tion by using a pseudorandom fun
tion f 0K and de�ningD0K;�;�;K0 to be the deterministi
 algorithm that on input x 2 f0; 1gq evaluates DK;�;�(x) usingrandomness fK0(x). We then de�ned D�;� to be D0K;�;�;K0 = E0K;�;K0#Hom0K;K0#BK;� for uni-formly sele
ted private key K and seed K 0.Now our algorithm A0 (that uses the algorithm A de�ned in Lemma 3.6) treats F2 as threeora
les: E, H, and B , where if F2 
omputes D = E0K;�;K0#Hom0K;K0#BK;� then E is the ora
le6Re
all that A0 is not some given algorithm that we must treat as a bla
k-box but rather a spe
i�
 algorithm thatwe de�ned ourselves. 19



to E0K;�;K0, H is the ora
le to Hom0K;K0 and B is the ora
le to BK;�. The queries to E are at thepla
es 1; : : : ; k and so are independent of the stru
ture of F1. The queries that A makes to the Hora
le, however, do depend on the stru
ture of F1.Re
all that any query A0 makes to the H ora
le are of the form (
; d;�) where 
 and d are
iphertexts of some bits, and � is a 4-bit des
ription of a binary boolean fun
tion. Just formotivation, suppose that A0 has the following ability: given an en
ryption 
, A0 
an generate arandom en
ryption of the same bit (i.e., distributed a

ording to En
K(De
K(
); r) for uniformlysele
ted r). For instan
e, this would be true if the en
ryption s
heme were \random self-redu
ible."Suppose now that, before querying the H ora
le with (
; d;�), A0 generates 
0; d0 that are randomen
ryptions of the same bits as 
; d and query the ora
le with (
0; d0;�) instead. We 
laim thatif F2 is an �-approximate implementation of D, then for any su
h query, there is at most a 64�probability for the answer to be wrong even if (
; d;�) depend on the 
ir
uit F . The reason is thatthe distribution of the modi�ed query (
0; d0;�) depends only on (De
K(
);De
K(d);�), and thereare only 2 � 2 � 24 = 64 possibilities for the latter. For ea
h of the 64 possibilities, the probabilityof an in
orre
t answer (over the 
hoi
e of F ) is at most �. Choosing (De
K(
);De
K(d);�) after Fto maximize the probability of an in
orre
t answer multiplies this probability by at most 64.We shall now use this motivation to �x the fun
tion D so that A0 will essentially have thisdesired ability of randomly self-redu
ing any en
ryption to a random en
ryption of the same bit.Re
all that Hom0K;K0(
; d;�) = En
K(De
K(
) �De
K(d); fK0(
; d;�)). Now, a naive approa
h toensure that any query returns a random en
ryption of De
K(
)�De
K(d) would be to 
hange thede�nition of Hom0 to the following: Hom0K;K0(
; d;�; r) = En
K(De
K(
) � De
K(d); r). Then we
hange A0 to an algorithm A00 that 
hooses a uniform r 2 f0; 1gn and thereby ensures that theresult is a random en
ryption of De
K(
)�De
K(d). The problem is that this 
onstru
tion wouldno longer satisfy Property 3 of Lemma 3.6 (se
urity against a simulator with ora
le a

ess). Thisis be
ause the simulator 
ould now 
ontrol the random 
oins of the en
ryption s
heme and use thisto break it. Our solution will be to rede�ne Hom0 in the following way:Hom0K;K0(
; d;�; r) = En
K(De
K(
)�De
K(d); fK0(
; d;�; r))but require an additional spe
ial property from the pseudorandom fun
tion fK0 .4.2.3 Invoker-Randomizable Pseudorandom Fun
tionsThe property we would like the pseudorandom fun
tion fK0 to possess is the following:De�nition 4.6 A fun
tion ensemble ffK0gK02f0;1g� (fK0 : f0; 1gq+n ! f0; 1gn , n ,q polynomiallyrelated to jK 0j) is 
alled an invoker-randomizable pseudorandom fun
tion ensemble if the followingholds:1. ffK0gK02f0;1g� is a pseudorandom fun
tion ensemble2. For any x 2 f0; 1gq , if r is 
hosen uniformly in f0; 1gn then fK0(x; r) is distributed uniformly(and so independently of x) in f0; 1gn.Fortunately, we 
an prove the following lemma:Lemma 4.7 If pseudorandom fun
tions exist then there exist invoker-randomizable pseudorandomfun
tions. 20



Proof Sket
h: Suppose that fgK0gK02f0;1g� is a pseudorandom fun
tion ensemble and thatfpSgS2f0;1g� is a pseudorandom fun
tion ensemble in whi
h for any S 2 f0; 1g� , pS is a permutation(the existen
e of su
h ensembles is implied by the existen
e of ordinary pseudorandom fun
tionensembles [LR88℄).We de�ne the fun
tion ensemble ffK0gK02f0;1g� in the following way:fK0(x; r) def= pgK0(x)(r)It is 
lear that this ensemble satis�es Property 2 of De�nition 4.6 as for any x, the fun
tionr 7! fK0(x; r) is a permutation.What needs to be shown is that it is a pseudorandom fun
tion ensemble. We do this by showingthat for any PPT D, the following probabilities are identi
al up to a negligible fa
tor.1. PrK0[DfK0 (1k) = 1℄ (where k = jK 0j).2. PrG[D(x;R)7!pG(x)(R)(1k) = 1℄, where G is a true random fun
tion.3. PrP1;:::;Pt [DP1;:::;Pt(1k) = 1℄, where t = t(k) is a bound on the number of queries that D makesand ea
h time D makes a query with a new value of x we use a new random fun
tion Pi.(This requires a hybrid argument).4. PrF [DF (1k) = 1℄, where F is a truly random fun
tion. 24.2.4 Finishing the Proof of Theorem 4.5Now, suppose we use a pseudorandom fun
tion fK0 that is invoker-randomizable, and modify thealgorithm A0 so that all its queries (
; d;�) to the H ora
le are augmented to be of the form(
; d;�; r), where r is 
hosen uniformly and independently for ea
h query. Then the result of ea
hsu
h query is a random en
ryption of De
K(
)�De
K(d). Therefore, as argued above, A0 never getsa wrong answer from the H ora
le with probability at least 1� p(k) � �, for some polynomial p(�).Indeed, this holds be
ause aside from the �rst queries whi
h are �xed and therefore independentof the gate stru
ture of F1, all other queries are of the form (
; d;�; r) where 
 and d are uniformlydistributed and independent en
ryptions of some bits a and b, and r is uniformly distributed. Only(a; b;�) depend on the gate stru
ture of F1, and there are only 64 possibilities for them. AssumingA0 never gets an in
orre
t answer from the H ora
le, its last query to the B ora
le will be auniformly distributed en
ryption of �1; : : : ; �k, whi
h is independent of the stru
ture of F1, and sohas only an � probability to be in
orre
t. This 
ompletes the proof.One point to note is that we have 
onverted our deterministi
 algorithm A0 of Theorem 3.11into a probabilisti
 algorithm.4.3 Impossibility of the appli
ationsSo far, we have only proved impossibility of some natural and arguably minimalisti
 de�nitions forobfus
ation. Yet it might seem that there's still hope for a di�erent de�nition of obfus
ation, onethat will not be impossible to meet but would still be useful for some intended appli
ations. We'llshow now that this is not the 
ase for many of the appli
ations we des
ribed in the introdu
tion.Rather, any de�nition of obfus
ator that would be strong enough to provide them, will be impossibleto meet. 21



Note that we do not prove that the appli
ations themselves are impossible to meet, but ratherthat there does not exist an obfus
ator7 that 
an be used to a
hieve them in the ways that aredes
ribed in Se
tion 1.1. Our results in the se
tion also extend to approximate obfus
ators.Consider, for example, the appli
ation to transforming private-key en
ryption to publi
-keyones. The 
ir
uit fEk in the following de�nition 
an be viewed as an en
ryption-key in the 
orre-sponding publi
-key en
ryption s
heme.De�nition 4.8 A private-key en
ryption s
heme (G;E;D) is 
alled unobfus
atable if there existsa PPT A su
h that PrK R G(1k)[A(gEK) = K℄ � 1� neg(k)where gEK is any 
ir
uit that 
omputes the en
ryption fun
tion with private key K.Note that an unobfus
atable en
ryption s
heme is unobfus
atable in a very strong sense. Anadversary is able to 
ompletely break the system given any 
ir
uit that 
omputes the en
ryptionalgorithm.We prove in Theorem 4.12 that if en
ryption s
hemes exist, then so do unobfus
atable en
ryp-tion s
hemes that satisfy the same se
urity requirements.8 This means that any de�nition of anobfus
ators that will be strong enough to allow the 
onversion of private-key en
ryption s
hemesinto publi
-key en
ryption s
hemes mentioned in Se
tion 1.1, would be impossible to meet (be
ausethere exist unobfus
atable en
ryption s
hemes).9We present analogous de�nitions for unobfus
atable signature s
hemes, MACs, and pseudoran-dom fun
tions.De�nition 4.9 A signature s
heme (G;S; V ) is 
alled unobfus
atable if there exists a PPT A su
hthat Pr(SK ;VK ) R G(1k)[A(gSSK ) = SK ℄ � 1� neg(k)where gSSK is any 
ir
uit whi
h 
omputes the signature fun
tion with signing key SK .De�nition 4.10 A message authenti
ation s
heme (G;S; V ) is 
alled unobfus
atable if there existsa PPT A su
h that PrK R G(1k)[A(fSK) = K℄ � 1� neg(k)where fSK is any 
ir
uit whi
h 
omputes the tagging fun
tion with tagging key K.De�nition 4.11 A pseudorandom fun
tion ensemble fhKgK2f0;1g� is 
alled unobfus
atable if thereexists a p.p.t A su
h that PrK R f0;1gk[A(gHK) = K℄ � 1� neg(k)7By this, we mean any algorithm that satis�es the synta
ti
 requirements of De�nition 2.2 (fun
tionality andpolynomial slowdown).8Re
all that, for simpli
ity, we only 
onsider deterministi
 en
ryption s
hemes here and relaxed notions of se
uritythat are 
onsistent with them (
f., Footnote 2).9Of 
ourse, this does not mean that publi
-key en
ryption s
hemes do not exist, nor that there do not existprivate-key en
ryption s
hemes where one 
an give the adversary a 
ir
uit that 
omputes the en
ryption algorithmwithout loss of se
urity (indeed, any publi
-key en
ryption s
heme is in parti
ular su
h a private-key en
ryption).What this means is that there exists no general purpose way to transform a private key en
ryption s
heme into apubli
 key en
ryption by obfus
ating the en
ryption algorithm.22



where gHK is any 
ir
uit that 
omputes hK .One impli
ation of the existen
e of unobfus
atable pseudorandom fun
tion ensembles is thatfor many natural proto
ols that are se
ure in the random ora
le model (su
h as the Fiat{Shamirauthenti
ation proto
ol [FS87℄), one 
an �nd a pseudorandom fun
tion ensemble fhkgk2f0;1g� su
hthat if the random ora
le is repla
ed with any 
ir
uit that 
omputes hk, the proto
ol would not bese
ure.Theorem 4.12 1. If signature s
hemes exist, then so do unobfus
atable signature s
hemes.2. If private-key en
ryption s
hemes exist, then so do unobfus
atable en
ryption s
hemes.3. If pseudorandom fun
tion ensembles exist, then so do unobfus
atable pseudorandom fun
tionensembles.4. If message authenti
ation s
hemes exist, then so do unobfus
atable message authenti
ations
hemes.Proof Sket
h: First note that the existen
e of any one of these primitives implies the existen
eof one-way fun
tions [IL89℄. Therefore, Theorem 4.2 gives us a totally unobfus
atable fun
tionensemble H = fHkg.Now, we shall sket
h the 
onstru
tion of the unobfus
atable signature s
heme. All other 
on-stru
tions are similar. Take an existing signature s
heme (G;S; V ) (where G is the key generationalgorithm, S the signing algorithm, and V the veri�
ation algorithm). De�ne the new s
heme(G0; S0; V 0) as follows:The generator G0 on input 1k uses the generator G to generate signing and verifying keys(SK ;VK ) R G(1k). It then samples a 
ir
uit f R H`, where ` = jSK j. The new signing key SK 0is (SK ; f) while the veri�
ation key VK 0 is the same as VK .We 
an now de�ne S0SK ;f(m) def= (SSK (m); f(m);SK � �(f));where � is the fun
tion from the unobfus
atability 
ondition in De�nition 4.1.V 0VK (m; (�; x)) def= VVK (m; �)We 
laim that (G0; S0; V 0) is an unobfus
atable, yet se
ure, signature s
heme. Clearly, given any
ir
uit that 
omputes S0SK ;f , one 
an obtain SK � �(f) and a 
ir
uit that 
omputes the samefun
tion as f . Possession of the latter enables one to re
onstru
t the original 
ir
uit f itself, fromwhi
h �(f) and then SK 
an be 
omputed.To see that s
heme (G0; S0; V 0) retains the se
urity of the s
heme (G;S; V ), observe that beinggiven ora
le a

ess to S0SK ;f is equivalent to being given ora
le a

ess to SSK and f , along withbeing given the string �(f) � SK . Using the fa
ts that �(f) is indistinguishable from randomgiven ora
le a

ess to f and that f is 
hosen independently of SK , it 
an be easily shown that thepresen
e of f and �(f)� SK does not help an adversary break the signature s
heme.The 
onstru
tion of an unobfus
atable en
ryption s
heme and pseudorandom fun
tion ensembleis similar. The only detail is that when we 
onstru
t the pseudorandom fun
tion ensemble, we needto observe that Theorem 4.2 
an be modi�ed to give H whi
h is also a family of pseudorandomfun
tions. (To do this, all pla
es where the fun
tions f in H were de�ned to be zero should insteadbe repla
ed with values of a pseudorandom fun
tion.) 223



4.4 Obfus
ating restri
ted 
ir
uit 
lassesGiven our impossibility results for obfus
ating general 
ir
uits, one may ask whether it is easier toobfus
ate 
omputationally restri
ted 
lasses of 
ir
uits. Here we argue that this is unlikely for allbut very weak models of 
omputation.Theorem 4.13 If fa
toring Blum integers is \hard"10 then there is a family Hk of unobfus
atablefun
tions su
h that every f R Hk is 
omputable by a 
onstant-depth threshold 
ir
uit of size poly(k)(i.e., in TC0).Proof Sket
h: Naor and Reingold [NR97℄ showed that under the stated assumptions, there existsa family of pseudorandom fun
tions 
omputable in TC0. Thus, we simply need to 
he
k that we
an build our unobfus
atable fun
tions from su
h a family without a substantial in
rease in depth.Re
all that the unobfus
atable fun
tion ensemble Hk 
onstru
ted in the proof of Theorem 3.11
onsists of fun
tions of the form C�;�#D or Zk#D, where D is from the family D�;� of Lemma 3.6.It is easy to see that C�;� and Zk are in TC0, so we only need to 
he
k that D�;� 
onsistsof 
ir
uits in TC0. The 
omputational 
omplexity of 
ir
uits in the family D�;� is dominatedby performing en
ryptions and de
ryptions in a private-key en
ryption s
heme (En
;De
) andevaluating a pseudorandom fun
tion fK0 whi
h is used to derandomize the probabilisti
 
ir
uitDK;�;�. If we use the Naor{Reingold pseudorandom fun
tions both for fK0 and to 
onstru
t theen
ryption s
heme (in the usual way, setting En
K(b) = (r; fK(r) � b)), then the resulting 
ir
uitis in TC0. 24.5 RelativizationIn this se
tion, we dis
uss whether our results relativize. To do this, we must 
larify the de�nitionof an obfus
ator relative to an ora
le F : f0; 1g� ! f0; 1g�. What we mean is that all algorithms inthe de�nition, in
luding the one being obfus
ated and in
luding the adversary, have ora
le a

essto F . For a 
ir
uit, this means that the 
ir
uit 
an have gates for evaluating F . We �x an en
odingof (ora
le) 
ir
uits as binary strings su
h that a 
ir
uit des
ribed by a string of length s 
an onlymake ora
le queries of total length at most s.By inspe
tion, our initial (easy) impossibility results hold relative to any ora
le, as the involveonly simulation and diagonalization.Proposition 4.14 Proposition 3.4 (impossibility of 2-
ir
uit obfus
ators) and Theorem 3.5 (im-possibility of TM obfus
ators) hold relative to any ora
le.Interestingly, however, our main impossibility results do not relativize.Proposition 4.15 There is an ora
le relative to whi
h eÆ
ient 
ir
uit obfus
ators exist. Thus,Theorem 3.8,3.11, and Corollary 3.10 do not relativize.This 
an be viewed both as eviden
e that these results are nontrivial, and as (further) eviden
ethat relativization is not a good indi
ation of what we 
an prove.10This result is also implied if the De
isional DiÆe{Hellman problem is \hard"; see [NR97℄ for pre
ise statementsof these assumptions.
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Proof Sket
h: The ora
le F = Sk Fk will 
onsist of two parts Fk = Ok#Ek, where Ok :f0; 1gk�f0; 1gk ! f0; 1g6k , and Ek : f0; 1g6k�f0; 1gk ! f0; 1gk . Ok is simply a uniformly randominje
tive fun
tion of the given parameters. Ek(x; y) is de�ned as follows: If there exists a (C; r)su
h that Ok(C; r) = x, then Ek(x; y) = CF (y) (where C is viewed as the des
ription of a 
ir
uit).Otherwise, Ek(x; y) = ?. Note that this de�nition of Fk is not 
ir
ular, be
ause C 
an only makeora
le queries of size at most jCj = k, and hen
e 
an only query Fk0 for k0 � k=2.Now we 
an view x = Ok(C; r) as an obfus
ation of C using 
oin tosses r. This satis�esthe synta
ti
 requirements of obfus
ation, sin
e jxj = O(jCj) and the Ek allows one to eÆ
ientlyevaluate C(y) given just x and y. (Te
hni
ally, we should de�ne the obfus
ation of C to be a 
ir
uitwhi
h has x hardwired in and makes an ora
le query to Ek.)So we only need to prove the virtual bla
k-box property. By a union bound over polynomial-time adversaries A of des
ription size smaller than k=2 and 
ir
uits C of size k, it suÆ
es to provethe following 
laim.11Claim 4.16 For every PPT A there exists a PPT S su
h that for every 
ir
uit C of size k, thefollowing holds with probability at least 1� 2�2k over F :����� Prr R f0;1gk �AF (Ok(C; r)) = 1�� Pr hSF;C(1k) = 1i����� � 2�
(k)Fix a PPT A. We de�ne the simulator S as follows. SF;C(1k) 
hooses x R f0; 1g6k and simulatesAF (x), using its own F -ora
le to answer A's ora
le queries, ex
ept A's queries to Ek0 for k0 � k.On A's query (x0; y0) to Ek0 , S feeds A the response z 
omputed as follows:1. If x0 = x, then set z = C(y0) (
omputed using ora
le a

ess to C).2. Else if x0 = Ok0(C 0; r0) for some previous query (C 0; r0) to the Ok0-ora
le, then set z =(C 0)F (y0) (
omputed re
ursively using these same rules).3. Else set z = ?.From the fa
t that a 
ir
uit of size s 
an only make ora
le queries of total length s, it follows thatthe re
ursive evaluation of (C 0)F (y) only in
urs a polynomial overhead in running time. Also notethat S never queries the Ek0 ora
le for k0 � k.Let us denote the exe
ution of the above simulation for a parti
ular x by SF;C(x). Noti
e thatwhen x = Ok(C; r) for some r, then SF;C(x) and AF (x) have exa
tly the same behavior unlessthe above simulation produ
es some query (x0; y0) su
h that x0 2 Image(Ok0), x0 6= x, and x0 wasnot obtained by a previous query to Ok0 . Sin
e O is a random length-tripling fun
tion, it followsthat the latter happens with probability at most poly(k) � 22k=26k, taken over the 
hoi
e of F anda random r (re
all that x = Ok(C; r)).12 Thus, with probability at least 1 � 2�3k over the 
hoi
eof F , SF;C(Ok(C; r)) = AF (Ok(C; r)) for all but a 2�
(k) fra
tion of r's.Thus, proving Claim 4.16 redu
es to showing that:����� Prr R f0;1gk �SF;C(Ok(C; r)) = 1�� PrxR f0;1g6k �SF;C(x) = 1������ � 2�
(k)11Note that we are only proving the virtual bla
k-box property against adversaries of \bounded nonuniformity,"whi
h in parti
ular in
ludes all uniform PPT adversaries. Presumably it 
an also be proven against nonuniformadversaries, but we sti
k to uniform adversaries for simpli
ity.12Te
hni
ally, this probability (and later ones in the proof) should also be taken over the 
oin tosses of A/S.25



with high probability (say, 1� 23k) over the 
hoi
e of F .In other words, we need to show that the fun
tion G(r)def=Ok(C; r) is a pseudorandom generatoragainst S. Sin
e G is a random fun
tion from f0; 1gk ! f0; 1g6k , this would be obvious were it notfor the fa
t that S has ora
le a

ess to F (whi
h is 
orrelated with G). Re
all, however, that wemade sure that S does not query the Ek0-ora
le for any k0 � k. This enables us to use the followinglemma, proven in Appendix B.Lemma 4.17 There is a 
onstant Æ > 0 su
h that the following holds for all suÆ
iently large Kand any L � K2. Let D be an algorithm that makes at most KÆ ora
le queries and let G be arandom inje
tive fun
tion G : [K℄! [L℄. Then with probability at least 1� 2�KÆ over G,���� Prx2[K℄ �DG(G(x)) = 1�� Pry2[L℄ �DG(y) = 1����� � 1KÆ :Let us see how Lemma 4.17 implies what we want. Let K = 2k and asso
iate [K℄ with f0; 1gk .We �x all values of Ok0 for all k0 6= k and Ek0 for all k0 < k. We also �x the values of Ok(C 0; r) forall C 0 6= C, and view G(r) def= Ok(C; r) as a random inje
tive fun
tion from [K℄ to the remainingL = K6�(K�1)�K elements of f0; 1g6k . The only ora
le queries of S that vary with the 
hoi
e of Gare queries to Ok at points of the form (C; r), whi
h is equivalent to queries to G. Thus, Lemma 4.17implies that the output of G is indistinguishable from the uniform distribution on some subset off0; 1g6k of size L. Sin
e the latter has statisti
al di�eren
e (K6�L)=K6 < 1=K4 from the uniformdistribution on f0; 1g6k , we 
on
lude that G is "-pseudorandom (for " = 1=KÆ + 1=K4 = 2�
(k))against S with probability at least 1� 2�KÆ > 1� 2�3k, as desired. 2While our result does not relativize in the usual sense, the proof does work for a slightlydi�erent form of relativization, whi
h we refer to as bounded relativization (and is how the RandomOra
le Model is sometimes interpreted in 
ryptography.) In bounded relativization, an ora
le isa �nite fun
tion with �xed input length (polynomially related to the se
urity parameter k), andall algorithms/
ir
uits in the proto
ol 
an have running time larger than this length (but stillpolynomial in k). In parti
ular, in the 
ontext of obfus
ation, this means that the 
ir
uit to beobfus
ated 
an have size polynomial in this length.Proposition 4.18 Theorems 3.11 and 3.8 (one-way fun
tions imply unobfus
atable fun
tions andimpossibility of 
ir
uit obfus
ators), and Corollary 3.10 (un
onditional impossibility of eÆ
ient
ir
uit obfus
ators) hold under bounded relativization (for any ora
le).Proof Sket
h: The only modi�
ation needed in the 
onstru
tion is to deal with ora
le gatesin the Hom algorithm in the proof of Lemma 3.6. Let's 
all say the ora
le F has input length` and output length 1 (without loss of generality). We augment the HomK to also take inputsof the form (
1; : : : ; 
`; ora
le) (where (
1; : : : ; 
`) are 
iphertexts), on whi
h it naturally outputsEn
K(F (De
K(
1);De
K(
2); : : : ;De
K(
`))). The rest of the proof pro
eeds essentially un
hanged.25 On a Complexity Analogue of Ri
e's TheoremRi
e's Theorem asserts that the only properties of partial re
ursive fun
tions that 
an be de
idedfrom their representations as Turing ma
hines are trivial. To state this pre
isely, we denote by [M ℄the (possibly partial) fun
tion that the Turing Ma
hine M 
omputes. Similarly, for [C℄ denotes thefun
tion 
omputed by a 
ir
uit C. 26



Ri
e's Theorem Let L � f0; 1g� be a language su
h that for any M;M 0 , [M ℄ � [M 0℄ impliesthat M 2 L () M 0 2 L. If L is de
idable, then L is trivial in the sense that either L = f0; 1g�or L = ;.The diÆ
ulty of problems su
h as SAT suggest that perhaps Ri
e's theorem 
an be \s
aled-down" and that de
iding properties of �nite fun
tions from their des
riptions as 
ir
uits is in-tra
table.Simply repla
ing the word \Turing ma
hine" with \
ir
uit" and \de
idable" with \polynomialtime" does not work. A 
ounterexample is the language L = fC 2 f0; 1g� j C(0) = 0g that 
anbe de
ided in polynomial time, even though [C℄ � [C 0℄ implies (C 2 L () C 0 2 L), and bothL 6= f0; 1g� and L 6= ;. Yet, there is a sense in whi
h L is trivial | to de
ide whether C 2 LeÆ
iently one does not need to use C itself, but rather one 
an do with ora
le a

ess to C only.This motivates the following 
onje
ture:Conje
ture 5.1 (S
aled-down Ri
e's Theorem) Let L � f0; 1g� be a language su
h that for
ir
uits C;C 0, [C℄ � [C 0℄ implies that C 2 L () C 0 2 L. If L 2 BPP, then L is trivial in thesense that there exists a PPT S su
h thatC 2 L) Pr[S[C℄(1jCj) = 1℄ > 23C 62 L) Pr[S[C℄(1jCj) = 0℄ > 23We now 
onsider a generalization of this 
onje
ture to promise problems [ESY84℄, i.e., de
isionproblems restri
ted to some subset of strings. Formally, a promise problem � is a pair � = (�Y ;�N )of disjoint sets of strings, 
orresponding to yes and no instan
es, respe
tively. The generalizationof Conje
ture 5.1 we seek is the following, where BPP is the generalization of BPP to promiseproblems:Conje
ture 5.2 Let � = (�Y ;�N ) be a promise problem su
h that for 
ir
uits C;C 0, [C℄ � [C 0℄implies that both C 2 �Y () C 0 2 �Y and C 2 �N () C 0 2 �N . If � 2 BPP, then � istrivial in the sense that there exists a PPT S su
h thatC 2 �Y ) Pr[S[C℄(1jCj) = 1℄ > 23C 2 �N ) Pr[S[C℄(1jCj) = 0℄ > 23Our 
onstru
tion of unobfus
atable fun
tions implies that the latter 
onje
ture is false.Theorem 5.3 If one-way fun
tions exist, then Conje
ture 5.2 is false.Proof Sket
h: Let H = fHkgk2N be the unobfus
atable fun
tion ensemble given by Theo-rem 3.11, and let � : Sk Supp(Hk) ! f0; 1g be the property guaranteed by the unobfus
atability
ondition.Consider the following promise problem � = (�Y ;�N ):�Y = (C : [C℄ 2[k Supp(Hk) and �([C℄) = 1)�N = (C : [C℄ 2[k Supp(Hk) and �([C℄) = 0)27



� 2 BPP be
ause �(f) is easy to 
ompute with a

ess to a 
ir
uit that 
omputes f . But sin
e�(f) is hard to 
ompute with bla
k-box a

ess to f , no S satisfying Conje
ture 5.2 
an exist. 2It is an interesting problem to weaken or even remove the hypothesis that one-way fun
tionsexist. Reasons to believe that this may be possible are: 1. The 
onje
ture is only about worst 
ase
omplexity and not average 
ase, and 2. The 
onje
tures imply some sort of 
omputational diÆ
ulty.For instan
e, if NP � BPP then both 
onje
tures are false, as Cir
uit Satisfiability is notde
idable using bla
k-box a

ess. (Using bla
k-box a

ess, one 
annot distinguish a 
ir
uit that issatis�ed on exa
tly one randomly 
hosen input from an unsatis�able 
ir
uit.) So if we 
ould weakenthe hypothesis of Theorem 5.3 to NP 6� BPP, Conje
ture 5.2 would be false un
onditionally.We have shown that in the 
ontext of 
omplexity, the generalization of S
aled-down Ri
e'sTheorem (Conje
ture 5.1) to promise problems (i.e., Conje
ture 5.2) fails. When trying to �nd outwhat this implies about Conje
ture 5.1 itself, one might try to get intuition from what happensin the 
ontext of 
omputability. This dire
tion is pursued in Appendix A. It turns out that theresults in this 
ontext are in
on
lusive. We explore three ways to generalize Ri
e's Theorem topromise problems. The �rst, naive approa
h fails, and there are two non-naive generalizations, ofwhi
h one su

eeds and one fails.What do our results say about the 
laim \the best thing you 
an do with a 
ir
uit/program isrun it"? To answer this question, we must �rst interpret this senten
e in a more formal way. Theinterpretation we suggest is \de
iding any non-trivial semanti
 property of 
ir
uits is intra
table"where \nontrivial" is de�ned above and by \semanti
 property" we mean a property of the fun
tionthat the 
ir
uit 
omputes, rather than a property of the parti
ular 
ir
uit. This interpretation isexpressed in Conje
tures 5.1 and 5.2.Sin
e we haven't disproved Conje
ture 5.1, how 
an we say that obfus
ation is impossible? Theanswer is that obfus
ation needs mu
h more than Conje
ture 5.1. Informally, Conje
ture 5.1 onlysays that for every nontrivial property (i.e., one whi
h 
annot be de
ided with ora
le a

ess), thereexist 
ir
uits from whi
h it is hard to de
ide the property. Obfus
ation, on the other hand, requiresthat for every nontrivial property and every fun
tion f (for whi
h the property is hard to de
idegiven ora
le a

ess), there exist 
ir
uits that 
ompute the fun
tion f from whi
h it is hard to de
idethe property. Still, it may be within rea
h to also disprove Conje
ture 5.1, and we leave this as anopen problem.6 Obfus
ating Sampling AlgorithmsIn our investigation of obfus
ators thus far, we have interpreted the \fun
tionality" of a program asbeing the fun
tion it 
omputes. However, sometimes one is interested in other aspe
ts of a program'sbehavior, and in su
h 
ases a 
orresponding 
hange should be made to the de�nition of obfus
ators.In this se
tion, we 
onsider programs that are sampling algorithms, i.e. are probabilisti
 algorithmsthat take no input (other than possibly a length parameter), and produ
e an output a

ording tosome desired distribution.For simpli
ity, we only work with sampling algorithms given by 
ir
uits | a 
ir
uit C with minput gates and n output gates 
an be viewed as a sampling algorithm for the distribution hhCii onf0; 1gn obtained by evaluating C on m uniform and independent random bits. If A is an algorithmand C is a 
ir
uit, we write AhhCii to indi
ate that A has sampling a

ess to C. That is, A 
anobtain, on request, independent and uniform random samples from the distribution de�ned by C.The natural analogue of the de�nition of 
ir
uit obfus
ators to sampling algorithms follows.28



De�nition 6.1 (sampling obfus
ator) A probabilisti
 algorithm O is a sampling obfus
ator if,for some polynomial p, the following three 
onditions hold:� (fun
tionality) For every 
ir
uit C, O(C) is a 
ir
uit that samples the same distribution asC.� (polynomial slowdown) There is a polynomial p su
h that for every 
ir
uit C, jO(C)j � p(jCj).� (\virtual bla
k box" property) For any PPT A, there is a PPT S and a negligible fun
tion �su
h that for all 
ir
uits C���Pr [A(O(C)) = 1℄� Pr hShhCii(1jCj) = 1i��� � �(jCj):We say that O is eÆ
ient if it runs in polynomial time.We do not know whether this de�nition is impossible to meet, but we 
an rule out the following(seemingly) stronger de�nition.De�nition 6.2 (strong sampling obfus
ator) A strong sampling obfus
ator is de�ned in thesame way as a sampling obfus
ator, expe
t that the \virtual bla
k box" property is repla
ed with thefollowing.� (\virtual bla
k box" property) For any PPT A, there is a PPT S su
h that the ensemblesfA(O(C))gC and fShhCii(1jCj)gC are 
omputationally indistinguishable. That is, for everyPPT D, there is a negligible fun
tion � su
h that���Pr [D(C;A(O(C))) = 1℄� Pr hD(C;ShhCii(1jCj)) = 1i��� � �(jCj):Proposition 6.3 If one-way fun
tions exist, then strong sampling obfus
ators do not exist.Proof Sket
h: If one-way fun
tions exist, then there exist message authenti
ation 
odes (MACs)that are existentially unforgeable under 
hosen message atta
k. Let TagK denote the tagging (i.e.,signing) algorithm for su
h a MAC with key K, and de�ne a 
ir
uit CK(x) = (x;TagK(x)). Thatis, the distribution sampled by CK is simply a random message together with its tag. Now supposethere exists a sampling obfus
ator O, and 
onsider the PPT adversary A de�ned by A(C) = C. Bythe de�nition of a sampling obfus
ator, there exists a PPT simulator S whi
h, when giving samplinga

ess to hhCKii, produ
es an output 
omputationally indistinguishable from A(O(CK)) = O(CK).That is, after re
eiving the tags of polynomially many random messages, S produ
es a 
ir
uit whi
his indistinguishable from one whi
h generates random messages with its tags. This will 
ontradi
tthe se
urity of the MAC.Let q = q(jKj) be a polynomial bound on the number of samples re
eived from hhCKii obtainedby S, and 
onsider a distinguisher D whi
h does the following on input (CK ; C 0): Re
over the keyK from CK . Obtain q + 1 random samples (x1; y1); : : : ; (xq+1; yq+1) from C 0. Output 1 if the xi'sare all distin
t and yi = TagK(xi) for all i.Clearly, D outputs 1 with high probability on input (CK ; A(O(CK))). (The only reason itmight fail to output 1 is that the xi's might not all be distin
t, whi
h happens with exponentiallysmall probability.) On the other hand, the se
urity of the MAC implies that D outputs 1 withnegligible probability on input (CK ; ShhCK ii(1jKj)) (over the 
hoi
e of K and the 
oin tosses of allalgorithms). The reason is that, whenever D outputs 1, the 
ir
uit output by S has generated avalid message-tag pair not re
eived from the hhCKii-ora
le. 229



For sampling obfus
ators in the sense of De�nition 6.1, we do not know how to prove impos-sibility. Interestingly, we 
an show that they imply the nontriviality of SZK, the 
lass of promiseproblems possessing statisti
al zero-knowledge proofs.Proposition 6.4 If eÆ
ient sampling obfus
ators exist, then SZK 6= BPP.Proof: It is known that the following promise problem � = (�Y ;�N ) is in SZK [SV97℄ (and infa
t has a nonintera
tive perfe
t zero-knowledge proof system [DDPY98, GSV99℄):�Y = fC : hhCii = Ung�N = fC : jSupp(C)j � 2n=2g;where n denotes the output length of the 
ir
uit C and Un is the uniform distribution on f0; 1gn.Now suppose that an eÆ
ient sampling obfus
ator O exists. Sin
e, analogous to Lemma 3.9,su
h obfus
ators imply the existen
e of one-way fun
tions, there also exists a length-doublingpseudorandom generator G [HILL99℄. Let Gn : f0; 1gn=2 ! f0; 1gn denote the 
ir
uit that evaluatesG on inputs of length n=2.Now, by the de�nition of pseudorandom generators and a hybrid argument, sampling a

essto hhGnii is indistinguishable from sampling a

ess to Un. Thus, by the de�nition of a samplingobfus
ator, O(Gn) is 
omputationally indistinguishable from O(Un), where by Un we mean thetrivial 
ir
uit that samples uniformly from Un. By fun
tionality, O(Un) is always a yes instan
e of� and O(Gn) is always a no instan
e. It follows that � =2 BPP.Remark 6.5 By using Statisti
al Differen
e, the 
omplete problem for SZK from [SV97℄,in pla
e of the promise problem �, the above proposition 
an be extended to the natural de�nitionof approximate sampling obfus
ators, in whi
h O(C) only needs to sample a distribution of smallstatisti
al di�eren
e from that of C.7 Weaker Notions of Obfus
ationOur impossibility results rule out the standard, \virtual bla
k box" notion of obfus
ators as impos-sible, along with several of its appli
ations. However, it does not mean that there is no method ofmaking programs \unintelligible" in some meaningful and pre
ise sense. Su
h a method 
ould stillprove useful for software prote
tion. In this se
tion, we suggest two weaker de�nitions of obfus
a-tors that avoid the \virtual bla
k box" paradigm (and hen
e are not ruled out by our impossibilityproof).The weaker de�nition asks that if two 
ir
uits 
ompute the same fun
tion, then their obfus
a-tions should be indistinguishable. For simpli
ity, we only 
onsider the 
ir
uit version here.De�nition 7.1 (indistinguishability obfus
ator) An indistinguishability obfus
ator is de�nedin the same way as a 
ir
uit obfus
ator, ex
ept that the \virtual bla
k box" property is repla
ed withthe following:� (indistinguishability) For any PPT A, there is a negligible fun
tion � su
h that for any two
ir
uits C1; C2 whi
h 
ompute the same fun
tion and are of the same size k,jPr [A(O(C1))℄� Pr [A(O(C2))℄j � �(k):Some (very slight) hope that this de�nition is a
hievable 
omes from the following observation.30



Proposition 7.2 (IneÆ
ient) indistinguishability obfus
ators exist.Proof: Let O(C) be the lexi
ographi
ally �rst 
ir
uit of size jCj that 
omputes the same fun
tionas C.While it would be very interesting to 
onstru
t even indistinguishability obfus
ators, their use-fulness is limited by the fa
t that they provide no a priori guarantees about obfus
ations of 
ir
uitsC1 and C2 that 
ompute di�erent fun
tions. However, it turns out that, if O is eÆ
ient, then it is\
ompetitive" with respe
t to any pair of 
ir
uits. That is, we will show that no eÆ
ient O0 makesC1 and C2 mu
h more indistinguishable than O does. Intuitively, this will say that an indistin-guishability obfus
ator is \as good" as any other obfus
ator that exists. For example, it will implythat if \di�ering-input obfus
ators" (as we will de�ne later) exist, then any indistinguishabilityobfus
ator is essentially also a di�ering-input obfus
ator.To state this pre
isely, for a 
ir
uit C of size at most k, we de�ne Padk(C) to be a trivial paddingof C to size k. Feeding Padk(C) instead of C to an obfus
ator 
an be thought of as in
reasing the\se
urity parameter" from jCj to k. (We 
hose not to expli
itly introdu
e a se
urity parameter intothe de�nition of obfus
ators to avoid the extra notation.) For the proof, we also need to impose ate
hni
al, but natural, 
onstraint that the size of O0(C) only depends on the size of C.Proposition 7.3 Suppose O is an eÆ
ient indistinguishability obfus
ator. Let O0 be any algorithmsatisfying the synta
ti
 requirements of obfus
ation, also satisfying the 
ondition that jO0(C)j =q(jCj) for some �xed polynomial q. Then for any PPT A, there exists a PPT A0 and a negligiblefun
tion � su
h that for all 
ir
uits C1, C2 of size k,��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A(O(Padq(k)(C2)) = 1���� ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ �(k):Proof: De�ne A0(C) def= A(O(C)). Then, for any 
ir
uit Ci of size k, we have��Pr �A(O(Padq(k)(Ci))) = 1�� Pr �A0(O0(Ci)) = 1���= ��Pr �A(O(Padq(k)(Ci))) = 1�� Pr �A(O(O0(Ci))) = 1���� neg(q(k)) = neg(k);where the inequality is be
ause Padq(k)(Ci) and O0(Ci) are two 
ir
uits of size q(k) whi
h 
omputethe same fun
tion and be
ause O is an indistinguishability obfus
ator. Thus,��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A(O(Padq(k)(C2))) = 1���� ��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A0(O0(C1)) = 1���+ ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ ��Pr �A0(O0(C2)) = 1�� Pr �A(O(Padq(k)(C2))) = 1���� neg(k) + ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ neg(k):Even with the 
ompetitiveness property, it still seems important to have expli
it guarantees on thebehavior of an obfus
ator on 
ir
uits that 
ompute di�erent fun
tions. We now give a de�nitionthat provides su
h a guarantee, while still avoiding the \virtual bla
k box" paradigm. Roughlyspeaking, it says that if it is possible to distinguish the obfus
ations of a pair of 
ir
uits, then one
an �nd inputs on whi
h they di�er given any pair of 
ir
uits whi
h 
ompute the same fun
tions.31



De�nition 7.4 (di�ering-inputs obfus
ator) An di�ering-inputs obfus
ator is de�ned in thesame way as an indistinguishability obfus
ator, ex
ept that the \indistinguishability" property isrepla
ed with the following:� (di�ering-inputs property) For any PPT A, there is a probabilisti
 algorithm A0 and a negli-gible fun
tion � su
h that the following holds. Suppose C1 and C2 are 
ir
uits of size k su
hthat " def= jPr [A(O(C1)) = 1℄� Pr [A(O(C2)) = 1℄j > �(k):Then, for any C 01; C 02 of size k su
h that C 0i 
omputes the same fun
tion as Ci for i = 1; 2,A0(C 01; C 02) outputs an input on whi
h C1 and C2 di�er in time poly(k; 1=(" � �(k))).This de�nition is indeed stronger than that of indistinguishability obfus
ators, be
ause if C1and C2 
ompute the same fun
tion, then A0 
an never �nd an input on whi
h they di�er and hen
e" must be negligible.8 Watermarking and Obfus
ationGenerally speaking, (fragile) watermarking is the problem of embedding a message in an obje
tsu
h that the message is diÆ
ult to remove without \ruining" the obje
t. Most of the work onwatermarking has fo
used on watermarking per
eptual obje
ts, e.g., images or audio �les. (See thesurveys [MMS+98, PAK99℄.) Here we 
on
entrate on watermarking programs, as in [CT00, NSS99℄.A watermarking s
heme should 
onsist of a marking algorithm whi
h embeds a message m into agiven program, and an extra
tion algorithm whi
h extra
ts the message from a marked program.Intuitively, the following properties should be satis�ed:� (fun
tionality) The marked program 
omputes the same fun
tion as the original program.� (meaningfulness) Most programs are unmarked.� (fragility) It is infeasible to remove the mark from the program without (substantially) 
hang-ing its behavior.There are a various heuristi
 methods for software watermarking in the literature (
f., [CT00℄),but as with obfus
ation, there has been little rigorous work on this problem. Here we do not attemptto provide a thorough de�nitional treatment of software watermarking, but rather 
onsider a 
oupleof weak formalizations whi
h we relate to our results on obfus
ation. The diÆ
ulty in formalizingwatermarking 
omes, of 
ourse, in 
apturing the fragility property. Note that it is easy to removea watermark from programs for fun
tions that are (exa
tly) learnable with membership queries(by using the learning algorithm to generate a new program (for the fun
tion) that is independentof the marking). A natural question is whether learnable fun
tions are the only ones that 
auseproblems. That is, 
an the following de�nition be satis�ed?De�nition 8.1 (software watermarking) A (software) watermarking s
heme is a pair of (keyed)probabilisti
 algorithms (Mark;Extra
t) satisfying the following properties:� (fun
tionality) For every 
ir
uit C, key K, and message m, the string MarkK(C;m) des
ribesa 
ir
uit that 
omputes the same fun
tion as C.� (polynomial slowdown) There is a polynomial p su
h that for every 
ir
uit C, jMarkK(C;m)j �p(jCj+ jmj+ jKj). 32



� (extra
tion) For every 
ir
uit C, key K, and message m, Extra
tK(MarkK(C;m)) = m.� (meaningfulness) For every 
ir
uit C, PrK [Extra
tK(C) 6= ?℄ = neg(jCj).� (fragility) For every PPT A, there is a PPT S su
h that for every C and mPrK �A(MarkK(C;m)) = C 0 s.t. C 0 � C and Extra
tK(C 0) 6= m�� Pr hSC(1jCj) = C 0 s.t. C 0 � Ci+ neg(jCj);where K is uniformly sele
ted in f0; 1gmax(jCj;jmj), and C 0 � C means that C 0 and C 
omputethe same fun
tion.We say that the s
heme is eÆ
ient if Mark and Extra
t run in polynomial time.A
tually, a stronger fragility property than the one above is probably desirable; the abovede�nition does not ex
lude the possibility that the adversary 
an remove the watermark by 
hangingthe value the fun
tion at a single lo
ation. Nevertheless, by using our 
onstru
tion of totallyunobfus
atable fun
tions, we 
an prove that this de�nition is impossible to meet.Theorem 8.2 If one-way fun
tions exist, then no watermarking s
heme in the sense of De�ni-tion 8.1 exists.Proof Sket
h: Consider the totally unobfus
atable fun
tion ensemble guaranteed by Theo-rem 4.2. No matter how we try to produ
e a marked 
ir
uit from f R H, the algorithm A given bythe unobfus
atability 
ondition in De�nition 4.2 
an re
onstru
t the 
anoni
al 
ir
uit f , whi
h bythe meaningfulness property is unmarked with high probability. On the other hand, the simulator,given just ora
le a

ess to f , will be unable produ
e any 
ir
uit 
omputing the same fun
tion (sin
eif it 
ould, then it 
ould 
ompute �(f), whi
h is pseudorandom). 2Corollary 8.3 EÆ
ient watermarking s
hemes in the sense of De�nition 8.1 do not exist (un
on-ditionally).Given these impossibility results, we are led to seek the weakest possible formulation of thefragility 
ondition | that the any adversary o

asionally fails to remove the mark.De�nition 8.4 (o

asional watermarking) An o

asional software watermarking s
heme is de-�ned in the same way as De�nition 8.1, ex
ept that the fragility 
ondition is repla
ed with thefollowing:� For every PPT A, there exists a 
ir
uit C and a message m su
h thatPrK �A(MarkK(C;m)) = C 0 s.t. C 0 � C and Extra
tK(C 0) 6= m� � 1� 1=poly(jCj);where K is uniformly sele
ted in f0; 1gmax(jCj;jmj).Interestingly, in 
ontrast to the usual intuition, this weak notion of watermarking is in
onsistentwith obfus
ation (even the weakest notion we proposed in Se
tion 7).33



Proposition 8.5 O

asional software watermarking s
hemes and eÆ
ient indistinguishability ob-fus
ators (as in De�nition 7.1) 
annot both exist. (A
tually, we require the watermarking s
hemeto satisfy the additional natural 
ondition that jMarkK(C;m)j = q(jCj) for some �xed polynomialq and all jCj = jmj = jKj.)Proof: We view the obfus
ator O as a \watermark remover." By fun
tionality of water-marking and obfus
ation, for every 
ir
uit C and key K, O(MarkK(C; 1jCj)) is a 
ir
uit 
om-puting the same fun
tion as C. Let C 0 be a padding of C to the same length as MarkK(C; 1jCj).By fragility, Extra
tK(O(MarkK(C; 1))) = 1 with nonnegligible probability. By meaningfulness,Extra
tK(O(C 0)) = 1 with negligible probability. Thus, Extra
tK distinguishesO(C 0) andO(MarkK(C; 1jCj)),
ontradi
ting the indistinguishability property of O.Note that this proposition fails if we allow MarkK(C;m) to instead be an approximate imple-mentation of C in the sense of De�nition 4.3. Indeed, in su
h a 
ase it seems that obfus
ators wouldbe useful in 
onstru
ting watermarking s
hemes, for the watermark 
ould be embedded by 
hangingthe value of the fun
tion at a random input, after whi
h an obfus
ator is used to \hide" this 
hange.Note that approximation may also be relevant in the fragility 
ondition, for it would be ni
e toprevent adversaries from produ
ing unmarked approximate implementations of the fun
tion.As with obfus
ation, positive theoreti
al results about watermarking would be very wel
ome.One approa
h, taken by Na

a
he, Shamir, and Stern [NSS99℄, is to �nd watermarking s
hemes forspe
i�
 useful families of fun
tions.9 Dire
tions for Further WorkWe have shown that obfus
ation, as it is typi
ally understood (i.e., satisfying a virtual bla
k-boxproperty), is impossible. However, we view it as an important resear
h dire
tion to explore whetherthere are alternative senses in whi
h programs 
an be made \unintelligible." These in
lude (butare not limited to) the following notions of obfus
ation whi
h are not ruled out by our impossibilityresults:� Indistinguishability (or di�ering-input) obfus
ators, as in De�nition 7.1 (or De�nition 7.4,respe
tively).� Sampling obfus
ators, as in De�nition 6.1.� Obfus
ators that only have to approximately preserve fun
tionality with respe
t to a spe
i�eddistribution on inputs, su
h as the uniform distribution. (In Se
tion 4.2, we have ruled out aobfus
ators with approximately preserve fun
tionality in a stronger sense; see dis
ussion afterTheorem 4.5.)� Obfus
ators for a restri
ted, yet still nontrivial, 
lass of fun
tions. By Theorem 4.13, any su
h
lass of fun
tions should not 
ontain TC0. That leaves only very weak 
omplexity 
lasses(e.g., AC0, read-on
e bran
hing programs), but the 
lass of fun
tions need not be restri
tedonly by \
omputational" power: synta
ti
 or fun
tional restri
tions may o�er a more fruitfulavenue. We note that the 
onstru
tions of [CMR98℄ 
an be viewed as some form of obfus
atorsfor \delta fun
tions" (i.e., fun
tions f : f0; 1gn ! f0; 1g whi
h take on the value 1 at exa
tlyone point in f0; 1gn.) 34



In addition to obfus
ation, related problems su
h as homomorphi
 en
ryption and softwarewatermarking are also little understood. For software watermarking, even �nding a reasonable for-malization of the problem (whi
h is not ruled out by our 
onstru
tions, unlike De�nition 8.1) seemsto be 
hallenging, whereas for homomorphi
 en
ryption, the de�nitions are (more) straightforward,but existen
e is still open.Finally, our investigation of 
omplexity-theoreti
 analogues of Ri
e's theorem has left openquestions, su
h as whether Conje
ture 5.1 holds.A
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.org/.A Generalizing Ri
e's Theorem to Promise Problems.We say that a Turing ma
hine M de
ides the promise problem � = (�Y ;�N ) ifx 2 �Y )M(x) = 1x 2 �N )M(x) = 0In su
h a 
ase, we say that � is is de
idable. We say that � is 
losed under [�℄ if for all M;M 0, if[M ℄ � [M 0℄ then both M 2 �Y () M 0 2 �Y and M 2 �N () M 0 2 �N hold.The straightforward way to generalize Ri
e's Theorem to promise problems is the following:37



Conje
ture A.1 (Ri
e's Theorem | naive generalization) Let � = (�Y ;�N ) be a promiseproblem 
losed under [�℄. If � is de
idable, then � is trivial in the sense that either �Y = ; or�N = ;.This generalization is really too naive. Consider the following promise problem (�Y ;�N )�Y = fM jM always halts, M(0) = 1g�N = fM jM always halts, M(0) = 0gIt is obviously de
idable, non-trivial, and 
losed under [�℄.Our next attempt at generalizing Ri
e's Theorem to promise problems is based on the idea of asimulator, whi
h we use to formalize the interpretation of Ri
e's Theorem as \the only useful thingyou 
an do with a ma
hine is run it." Re
all that for a Turing ma
hine M , the fun
tion hMi(1t; x)is de�ned to be y if M(x) halts within t steps with output y, and ? otherwise.Theorem A.2 (Ri
e's Theorem | se
ond generalization) Let � = (�Y ;�N ) be a promiseproblem 
losed under [�℄. Suppose that � is de
idable, then � is trivial in the sense that there existsa Turing ma
hine S su
h that M 2 �Y ) ShMi(1jM j) = 1M 2 �N ) ShMi(1jM j) = 0Proof: Suppose that � = (�Y ;�N ) is de
ided by the Turing ma
hine T . We will build a ma
hineS whi
h will satisfy the 
on
lusion of the theorem.We say that a ma
hine N is n-
ompatible with a ma
hine M if hNi(1t; x) = hMi(1t; x) for alljxj; t � n. Note that:1. n-
ompatibility with M 
an be de
ided using ora
le a

ess to hMi.2. M is n-
ompatible with itself for all n.3. If [M ℄ 6� [N ℄ then there exists a number n0 su
h that N is not n-
ompatible with M for alln > n0.4. It may be the 
ase than [M ℄ � [N ℄ but N is not n-
ompatible with M for some n.With ora
le hMi and input 1jM j, S does the following for n = 0; 1; 2; : : ::1. Compute the set Sn whi
h 
onsists of all the ma
hines of size jM j that are n-
ompatible withM (this 
an be done in �nite time as there are only �nitely many ma
hines of size jM j).2. Run T on all the ma
hines in Sn for n steps. If T halts on all these ma
hines and returns thesame answer �, then halt and return �. Otherwise, 
ontinue.It is 
lear that if S halts then it returns the same answer as T (M). This is be
ause M isn-
ompatible with itself for all n and so M 2 Sn for all n.We 
laim that S always halts. For any ma
hine N of size jM j su
h that [N ℄ 6� [M ℄ , there's anumber n0 su
h that n is not in Sn for all n > n0. Sin
e there are only �nitely many su
h ma
hines,there's a number n00 su
h that all the ma
hines N 2 Sn for n > n00 satisfy [N ℄ � [M ℄. For any su
hma
hine N with [N ℄ � [M ℄ , T halts after a �nite number of steps and outputs the same answeras T (M). Again, sin
e there are only �nitely many of them , there's a number n > n00 su
h that Thalts on all the ma
hines of Sn in n steps and returns the same answer as T (M).38



Our previous proof relied heavily on the fa
t that the simulator was given an upper bound onthe size of the ma
hine M . While in the 
ontext of 
omplexity we gave this length to the simulatorto allow it enough running time, one may wonder whether it is justi�able to give this bound to thesimulator in the 
omputability 
ontext. That is:Conje
ture A.3 (Ri
e's Theorem | third generalization) Let � = (�Y ;�N ) be a promiseproblem 
losed under [�℄. Suppose that � is de
idable. Then � = is trivial in the sense that thereexists a Turing ma
hine S su
h that M 2 �Y ) ShMi() = 1M 2 �N ) ShMi() = 0It turns out that this small 
hange makes a di�eren
e.Theorem A.4 Conje
ture A.3 is false.Proof: Consider the following promise problem � = (�Y ;�N ):�Y = fM jM always halts, 9x < KC([M ℄) s.t. [M ℄(x) = 1g�N = fM jM always halts, 8x M(x) = 0gwhere for a partial re
ursive fun
tion f , KC(f) is the des
ription length of the smallest Turingma
hine that 
omputes f . It is obvious that � is 
losed under [�℄.We 
laim that � is de
idable. Indeed, 
onsider the following Turing ma
hine T : On input M ,T invokes M(x) for all x < jM j and returns 1 i� it gets a non-zero answer. Sin
e any ma
hine in�Y [ �N always halts, T halts in �nite time. If T returns 1 then 
ertainly M is not in �N . IfM 2 �Y then M(x) = 1 for some x < KC([M ℄) � jM j and so T returns 1.We 
laim that � is not trivial in the sense of Conje
ture A.3. Indeed, suppose for 
ontradi
tionthat there exists a simulator S su
h thatM 2 �Y ) ShMi() = 1M 2 �N ) ShMi() = 0Consider the ma
hine Z whi
h reads its input and then returns 0. We have thathZi(1t; x) = n? t < jxj0 otherwiseAs Z 2 �N , we know that ShZi() will halt after a �nite time and return 0. Let n be an upperbound on jxj and t over all ora
le queries (1t; x) of ShZi().Let r be a string of Kolmogorov 
omplexity 2n. Consider the ma
hine Nn;r whi
h 
omputesthe following fun
tion, Nn;r(x) = ( 0 x � n1 x = n+ 1r x � n+ 2and runs in time jxj on inputs x su
h that jxj � n.For any t; jxj � n, hZi(1t; x) = hNn;ri(1t; x). Therefore ShNn;ri() = ShZi() = 0. But Nn;r 2 �Ysin
e Nn;r(n + 1) = 1 and KC([Nn;r℄) > n + 1. This 
ontradi
ts the assumption that S de
ides�. 39



B Pseudorandom Ora
lesIn this se
tion, we sket
h a proof of the following lemma, whi
h states that a random fun
tion is apseudorandom generator relative to itself with high probability.Lemma 4.17 There is a 
onstant Æ > 0 su
h that the following holds for all suÆ
iently large Kand any L � K2. Let D be an algorithm that makes at most KÆ ora
le queries and let G be arandom inje
tive fun
tion G : [K℄! [L℄. Then with probability at least 1� 2�KÆ over G,���� Prx2[K℄ �DG(G(x)) = 1�� Pry2[L℄ �DG(y) = 1����� � 1KÆ : (4)We prove the lemma via a 
ounting argument in the style of Gennaro and Trevisan's proofthat a random permutation is one-way against nonuniform adversaries [GT00℄. Spe
i�
ally, we willshow that \most" G for whi
h Inequality (4) fails have a \short" des
ription given D, and hen
ethere 
annot be too many of them.Let G be the 
olle
tion of G's for whi
h Inequality (4) fails (for a suÆ
iently small Æ, whosevalue is impli
it in the proof below). We begin by arguing that, for every G 2 G, there is a large setSG � [K℄ of inputs on whi
h D's behavior is \independent," in the sense that for x 2 S, none of theora
le queries made in the exe
ution of DG(G(x)) are at points in S, yet D still has nonnegligibleadvantage in distinguishing G(x) from random. A
tually, we will not be able to a�ord spe
ifyingSG when we \des
ribe" G, so we a
tually show that there is a �xed set S (independent of G)su
h that for most G, the desired set SG 
an be obtained by just throwing out a small number ofelements from S.Claim B.1 There is a set S � [K℄ with jSj = K1�5Æ, and G0 � G with jG0j = jGj=2 su
h that forall G 2 G0, there is a set SG � S with the following properties:1. jSGj = (1� 
)jSj, where 
 = K�3Æ.2. If x 2 SG, then DG(G(x)) never queries its ora
le at an element of SG.3. ���� Prx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1����� > 12KÆ ;where LG def= [L℄ nG([K℄ n SG). (Note that LG 
ontains more than a 1�K=L fra
tion of L.)Proof: First 
onsider 
hoosing both a random G R G and a random S (among subsets of [K℄of size K1�5Æ). We will show that with probability at least 1=2, there is a good subset SG � Ssatisfying Properties 1{3. By averaging, this implies that there is a �xed set S for whi
h a goodsubset exists for at least half the G 2 G, as desired. Let's begin with Property 2. For a randomG, S, and a random x 2 S, note that DG(G(x)) initially has no information about S, whi
h is arandom set of density K�5Æ. Sin
e D makes at most KÆ queries, the probability that it queriesits ora
le at some element of S is at most KÆ �K�5Æ = K�4Æ. Thus, with probability at least 3=4over G and S, DG(G(x)) queries its ora
le at an element of S for at most a 4=K�4Æ < 
 fra
tion ofx 2 S. Throwing out this 
 fra
tion of elements of S gives a set SG satisfying Properties 1 and 2.Now let's turn to Property 3. By a Cherno�-like bound, with probability at least 1�exp(
(K1�5Æ �(K�Æ)2)) > 3=4 over the 
hoi
e of S,���� Prx2S �DG(G(x)) = 1�� Prx2[K℄ �DG(G(x)) = 1����� � 14KÆ :40



Then we have: ���� Prx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1������ ���� Prx2[K℄ �DG(G(x)) = 1�� Pry2[L℄ �DG(y) = 1������ ���� Prx2SG �DG(G(x)) = 1�� Prx2[S℄ �DG(G(x)) = 1������ ����Prx2S �DG(G(x)) = 1�� Prx2[K℄ �DG(G(x)) = 1������ ���� Pry2[L℄ �DG(y) = 1�� Pry2LG �DG(y) = 1�����> 1=KÆ � 
 � 1=4KÆ �K=L> 1=2KÆNow we show how the above 
laim implies that every G 2 G0 has a \small" des
ription.Claim B.2 Every G 2 G0 
an be uniquely des
ribed by (logB)� 
(K1�7Æ) bits given D, where Bis the number of inje
tive fun
tions from [K℄ to [L℄.Proof: For starters, the des
ription of G will 
ontains the set SG and the values of G(x) for allx =2 SG. Now we'd like to argue that this information is enough to determine DG(y) for all y. Thiswon't exa
tly be the 
ase, but rather we'll show how to 
ompute MG(y) for some M that is \asgood" as D. From Property 3 in Claim B.1, we havePrx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1� > 12KÆ :(We've dropped the absolute values. The other 
ase is handled analogously, and the only 
ost is onebit to des
ribe whi
h 
ase holds.) We will des
ribe an algorithm M for whi
h the same inequalityholds, yet M will only use the information in our des
ription of G instead of making ora
le queriesto G. Spe
i�
ally, on input y, M simulates D(y), ex
ept that it handles ea
h ora
le query z asfollows:1. If z =2 SG, then M responds with G(z) (This information is in
luded in our des
ription of G).2. If z 2 SG, then M halts and outputs 0. (By Property 2 of Claim B.1, this 
annot happen ify 2 G(SG), hen
e outputting 0 only improves M 's distinguishing gap.)Thus, given SG and Gj[K℄nSG , we have a fun
tion M satisfyingPrx2SG [M(G(x)) = 1℄� Pry2LG [M(y) = 1℄ > 12KÆ (5)To 
omplete the des
ription of G, we must spe
ify GjSG , whi
h we 
an think of as �rst spe
ifyingthe image T = G(SG) � LG and then the bije
tion G : SG ! T . However, we 
an save in ourdes
ription be
ause T is 
onstrained by Inequality (5), whi
h 
an be rewritten as:Pry2T [M(y) = 1℄� Pry2LG [M(y) = 1℄ > 12KÆ (6)41



Cherno� Bounds say that most large subsets are good approximators of the average of a booleanfun
tion. Spe
i�
ally, at most a exp(�
((1 � 
)K1�5Æ � (K�Æ)2)) = exp(�
(K1�7Æ)) fra
tion ofsets T � LG of size (1� 
)K1�5Æ satisfy Equation 6.Thus, usingM , we have \saved" 
(K1�7Æ) bits in des
ribing G(SG) (over the standard \truth-table" representation of a fun
tion G). However, we had to des
ribe the set SG itself, whi
h wouldhave been unne
essary in the truth-table representation. Fortunately, we only need to des
ribeSG as a subset of S, and this only 
osts log � K1�5Æ(1�
)K1�5Æ� = O(H2(
)K1�5Æ) < O(K1�8Æ logK) bits(where H2(
) = O(
 log(1=
)) denotes the binary entropy fun
tion). So we have a net savings of
(K1�7Æ)�O(K1�8Æ logK) = 
(K1�7Æ) bits.From Claim B.2, G0 
an 
onsist of at most an exp(�
(K1�7Æ)) < K�Æ=2 fra
tion of inje
tivefun
tions [K℄! [L℄, and thus G has density smaller than K�Æ, as desired.
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