
VIRUS BULLETIN www.virusbtn.com

44444 OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004

TO CATO CATO CATO CATO CATCH EFISHTCH EFISHTCH EFISHTCH EFISHTCH EFISH
Peter Ferrie and Frédéric Perriot
Symantec Security Response, USA

W32/Efish, a member of the W32/Chiton family, contains in
its source code (released as part of 29A magazine) a
reference to the television program The Six Million Dollar
Man. The virus author wanted to call the virus EfishNC
(“efficiency”), and referred to it as “Better, Stronger, Faster”
(this virus author is not known for humility – in 1994 (s)he
named a virus Hianmyt [“high and mighty”]). While the
code is indeed better, stronger and faster than comparable
viruses, it does have weaknesses. Symantec has not received
any wild samples of Efish, although the .A variant was
published as early as 2002. This suggests that these viruses
have not left zoo collections, despite their aggressive
infection strategy.

STINGRASTINGRASTINGRASTINGRASTINGRAYYYYY
The infection cycle of Efish starts with an infected program
dropping a standalone, unencrypted virus sample to the
Windows directory, and directing registry hooks to this file.
This standalone file, which exists independently of any host
program, then infects hosts in a parasitic way. There is no
‘direct’ infection from one host file to another.

It is worth mentioning that the standalone virus sample is an
extremely tortuous, albeit valid, PE file. The PE structure of
the file is an abomination of overlapping headers and tables,
crafted for the sake of size optimization, which –
surprisingly – loads without problem on 32-bit Windows
platforms, from Windows 95 to Windows 2003. Needless to
say, most tools of the trade from PEDUMP to Soft-ICE have
trouble mapping the file properly, and we expect that some
anti-virus products would be confused as well.

UNICORN FISHUNICORN FISHUNICORN FISHUNICORN FISHUNICORN FISH
As with all other known members of the W32/Chiton
family, Efish is fully Unicode-aware, and selects
dynamically between ANSI and Unicode routines, as
appropriate. These routines include command-line parsing,
local network and IP share enumeration, and file
enumeration. In some cases, a single routine is capable of
processing either type of character sets, by simply changing
an AND mask and using the CharNext() API. This is one of
the many code optimizations that result in such a small
amount of code (around 4kB) that is capable of so much.

There are a number of interesting optimizations in the code.
The one that appears most often (and which is the hardest to
follow) is the long series of PUSH instructions prior to a

series of API calls. The purpose of this seems to be to avoid
the reinitialization between API calls of the volatile
registers, such as ECX and EDX. One particular example is
the code for dropping the standalone virus file, which
contains 23 PUSH instructions followed by seven API calls:

PUSH EAX ;GlobalFree
PUSH EBP ;WriteFile
PUSH ESP ;WriteFile
PUSH EDI ;WriteFile
PUSH EBP ;CreateFileA
PUSH +02 ;CreateFileA
PUSH +02 ;CreateFileA
PUSH EBP ;CreateFileA
PUSH EBP ;CreateFileA
PUSH 40000000 ;CreateFileA
PUSH EAX ;CreateFileA
LEA ECX, DWORD PTR [EAX + 7F]
PUSH ECX ;MoveFileA
PUSH EAX ;MoveFileA
PUSH EAX ;GetFileAttributesA
PUSH EBP ;SetFileAttributesA
PUSH EAX ;SetFileAttributesA
PUSH ECX ;DeleteFileA
PUSH ECX ;GetTempFileNameA
PUSH EBP ;GetTempFileNameA
PUSH ESP ;GetTempFileNameA
PUSH EAX ;GetTempFileNameA
PUSH EDI ;GetWindowsDirectoryA
PUSH EAX ;GetWindowsDirectoryA
XCHG EBP, EAX
CALL GetWindowsDirectoryA
LEA EDI, DWORD PTR [EAX + EBP - 01]
CALL GetTempFileNameA
CALL DeleteFileA
...
CALL SetFileAttributesA
CALL GetFileAttributesA
...
CALL MoveFileA
CALL CreateFileA

Figure 1. The code for dropping the standalone virus file.

FISH TFISH TFISH TFISH TFISH TANKSANKSANKSANKSANKS

Efish is very aggressive when it comes to finding targets.
The target selection is contained in three threads.

The first thread periodically enumerates all drive letters,
from A: to Z:, looking for fixed and network drives. The
second thread periodically enumerates all network shares on
the local network, looking for drive resources. The third
thread periodically enumerates all network shares on
random IP addresses. In each case the virus examines all
files in all subdirectories.

BALEENSBALEENSBALEENSBALEENSBALEENS
Efish examines all files for their potential to be infected,
regardless of their extension. First the virus checks if the
file is protected by the System File Checker. While the main

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

55555OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004

file responsible for the protection (sfc.dll) exists in all
Windows versions that support SFC, the required function is
forwarded in Windows XP/2003 to a file called sfc_os.dll.
The method that Efish uses to retrieve the address of
exported APIs does not support export forwarding, so the
virus resolves the APIs directly from sfc_os.dll on platforms
where this .dll exists.

Unprotected files are then checked against a very strict set
of filters, which includes the condition that the file being
examined must be a character mode or GUI application for
the Intel 386+ CPU, that the file must have no digital
certificates, and that it must have no bytes outside of the
image. The latter condition is the virus’s infection marker.

Additionally, the file must satisfy the needs of the
EntryPoint-Obscuring technique (see below).

PILOTFISHPILOTFISHPILOTFISHPILOTFISHPILOTFISH

The EPO method that Efish uses is to replace a function
prologue with its own code. This method has previously
been used by such viruses as Zhengxi (on the DOS
platform) and W95/SK (on Windows). The virus searches
the first section of the file for function prologue code that
creates a stack frame, and epilogue code that destroys it.
The virus requires that the prologue and epilogue be at least
32 bytes apart, in order for the decryptor to fit.

While it might appear that only the first such sequence is
used, this is not always the case. Sometimes a later
sequence may be used, or the EPO routine may fail to find a
proper sequence even though one exists in the file. This is
most likely a coding bug, but it could have been intentional.

FEABUL ENDJINNFEABUL ENDJINNFEABUL ENDJINNFEABUL ENDJINNFEABUL ENDJINN

Once such a sequence has been found, Efish saves the first
32 bytes of that code, and replaces them with an
oligomorphic decryptor. The useful code of the decryptor is
27 to 32 bytes in length, and it is padded up to 32 bytes with
ff bytes (an artifact from the memory reuse). The Efish.A
engine comprises only about one eighth of the virus body,
yet it combines line-swapping, variable load and store
instructions and decryption in either a forwards or
backwards direction. According to our calculations, there
are 23,616 possible valid decryptors and a few invalid ones!

The engine shared by the .B and .C variants adds register
replacement, the optional use of ‘do-nothing’ instructions in
the form of INC and DEC of unused registers, and one-byte
instructions CMC, STC, and CLD.

The decryptor decrypts the virus body onto the stack and
runs it from there. This requires no changes to the attributes

of the section in which the virus body is placed within the
file, an effective anti-heuristic attack.

DfishNCDfishNCDfishNCDfishNCDfishNC

A thorough analysis of the engine reveals a lack of
optimization in several code sequences and at least two
bugs. The result of the first bug is that the PUSH EDI
instruction cannot be produced to transfer control to the
virus code. However, the code was optimized and that bug
was fixed in the .B variant.

The second bug, present in all three variants, causes Efish to
produce non-working decryptors in a few rare cases, leading
to corrupted replicants. Detection methods based on
emulation of the decryptor to recover the virus body are
bound to miss such corrupted samples.

BLOWFISHBLOWFISHBLOWFISHBLOWFISHBLOWFISH
The decryption is performed using a translate (XLAT) table,
in which each unique byte of the virus code is replaced by a
unique random value.

The virus author claimed that it is unbreakable, which is
clearly untrue, since it is simply a substitution cipher. As we
show in our VB2004 conference paper ‘Principles and
practise of x-raying’, several methods exist to break the
Efish encryption, and they work quite quickly in practice.

In the .C variant, the author of Efish refined the encryption
method a little by taking into account unused byte values
from the virus body and reusing slots in the translate table
(switching to what is known as a ‘homophonic substitution
cipher’). Fortunately, efficient attacks still exist against this
cipher and, in particular, against the somewhat simplistic
implementation in Efish.C. Once again, we refer readers to
our paper on x-raying for a thorough explanation.

Efish places its body into the last section of the file, along
with the XLAT key table, however it prepends and appends
garbage bytes randomly to both the body and the key table,
to disguise its true location, and it randomly alters the order
in which they are added to the file. If relocation data exist
at the end of the file, then the virus moves the data to a
larger offset in the file, and places its body and table in the
gap that has been created. If there are no relocation data at
the end of the file, the virus body and table are placed here
(see Figure 2).

STONEFISHSTONEFISHSTONEFISHSTONEFISHSTONEFISH
The convoluted code of the virus makes it easy for analysts
to overlook one fundamental feature of Efish: the .A and .B
variants are ‘slow polymorphic’ viruses. This term means

VIRUS BULLETIN www.virusbtn.com

66666 OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004

that the polymorphic decryptor is generated only once in a
while, and the same copy is used in the infection of several
host programs. In the case of Efish, the decryptor is
generated when the standalone sample first runs, before it
starts looking for hosts to infect. Additionally, the
decryption key, encrypted virus body and layout of the
virus segment containing the key, body and random
padding, are also generated anew only when the standalone
sample starts.

Therefore, all detection methods, whether based on
decryptor parsing, emulation, or x-raying of the virus body,
must be tested carefully against a range of samples
generated from several runs of the virus.

So long, and thanks for all the …

W32/Chiton variant

Type: Memory-resident parasitic
appender/inserter, share crawler,
slow polymorph.

Infects: Windows Portable Executable files.

Payload: None.

Removal: Delete infected files and restore
them from backup. Restore registry.

Figure 2.

