
 AN INTRODUCTION TO OBJECT-ORIENTED SIMULATION IN C++

Jeffrey A. Joines
Stephen D. Roberts

Department of Industrial Engineering
Campus Box 7906

North Carolina State University
Raleigh, NC  27695-7906, U.S.A.
ABSTRACT

An object-oriented simulation (OOS) consists of a set of
objects that interact with each other over time.  This pa-
per provides a thorough introduction to OOS, addresses
the important issue of composition versus inheritance,
describes frames and frameworks for OOS, and presents
an example of a network simulation language as an il-
lustration of OOS.

1  INTRODUCTION TO OBJECTS

Object-oriented simulation has great intuitive appeal in
applications because it is very easy to view the real
world as being composed of objects.  In a manufacturing
cell, objects that should immediately come to mind in-
clude the machines, the workers, the parts, the tools, and
the conveyors.  Also, the part routings, the schedule, as
well as the work plan could be viewed as objects

Previous WSC tutorial papers (see Joines and Roberts
1995) presented an object-oriented simulation through a
network queuing simulation language while Joines and
Roberts (1996) provided fundamental structures for the
design of a complete simulation system. This paper will
be more of tutorial and introduction to OOS.  Everything
within this paper is illustrated and implemented in C++
which is an object-oriented extension to the C program-
ming language (Ellis and Stroustrup 1990). Our OOS is
strongly influenced by the design of C++.

2  WHAT IS AN OBJECT?

It is very easy to describe existing simulation languages
using object terminology.  A simulation language pro-
vides a user with a set of pre-defined object classes (i.e.,
resources, activities, etc.) from which the simulation
modeler can create needed objects. The modeler declares
objects and specifies their behavior through the parame-
ters available.  The integration of all the objects into a
single bundle provides the simulation model.

Therefore, an object can be described by an entity that
holds both the descriptive attributes of the object as well
as defines its behavior.  For example, suppose you are
modeling an exponential random variable in a simula-
tion.  The random variable may be described by a stan-
dard exponential statistical distribution which has a set
of parameters (e.g., a mean in this case). This mean
would be considered an attribute of the exponential ran-
dom variable object.  It maybe important to obtain ob-
servations from this random variable via sampling. One
may want to obtain antithetic samples or to set the ran-
dom seed. Sampling from the exponential random vari-
able defines a particular behavior.

2.1  Encapsulation

The entity “encapsulates” the properties of the object
because all of its properties are set within the definition
of the object. In our example, the exponential random
variable’s properties are contained within the definition
of the random variable so that any needs to understand or
revise these properties are located in a single “place.”
Any users of this object need not be concerned with the
internal “makeup” of the object. This also facilitates the
ability to easily create multiple instances of the same
object since each object contains all of its properties.

In C++, the keyword “class” is used to begin the defi-
nition of an object followed by the name of the object
class and then the properties of the entity are defined
within enclosing {}. For example, the following object
defines the Exponential class.

class Exponential{
…// Properties of the Exponential
};

Without encapsulation, properties could be spread all
over, making changes to the object very difficult.



An Introduction to Object-Oriented Simulation in C++ 79
2.1.1  Class Properties

The class definition specifies the object’s properties, the
attributes and behaviors. The attributes define all the
singular properties of the object while the behaviors de-
fine how the object interacts within the environment with
other objects.

Attributes are considered the data members of an ob-
ject.  In the case of our Exponential random vari-
able, its mean (given by the identifier mu) would be a
real number attribute.

double    mu;

Other attributes would be similarly defined.
The behaviors (sometimes referred to as methods) of

an object represent actions the object can perform or
take.  For example, if the exponential random variable
needed to obtain a sample, the following member func-
tion can be used:

double   sample(){
     return –mu * log( 1.0 – randomNumber() );}

where the randomNumber() function yields a uniform
random variable between 0 and 1. By representing be-
havior with functions, the object can react to parameters
passed in the function argument as well as change vari-
able values within the function.

2.1.2  Classes and Instances

Notice, the word “class” not “object” is used in defining
the object which can be confusing since it would seem
that we are defining objects.  Lets consider the more
complete definition based on our prior discussion of en-
capsulation and properties (ignore the “public” for now),
the Exponential class is defined as follows.

class Exponential{
   public:
      double mu;
      double sample(){ return –mu * log( 1.0 –
                       randomNumber() );}
};

Rather than defining an object directly, a class is defined
where the class provides a “pattern” for creating objects
and defines the “type.” By defining a class (of objects),
rather than a single object, the opportunity exists to use
the class to create many objects (i.e., re-use existing
code). Furthermore, as seen later, the class is a descrip-
tion of a pattern for constructing objects which can be
easily extended.

Now that the class is defined, objects can be created
directly from this class. These created objects are called
“instances” of a class.  For example, serviceTime is
an instance of the Exponential class.

Exponential   interarrivalTime, serviceTime;
2.2  How Do Objects Communicate?

An OOS models the behavior of interacting objects over
time. However before we can consider a simulation, we
needs to understand how objects interact or communi-
cate with each other.  The interaction among objects is
performed by communication called “message passing.”
One object sends a message to another and the receiving
object then responds.  An object may simply publish a
message which may be responded to by one of several
objects.  For example in a bank simulation, a customer
arrives at a bank and may be served by any of several
tellers.  In a O-O context, the customer publishes their
arrival and waits for service by a teller.  There are sev-
eral ways in transmitting messages in an object-oriented
program and it depends on the programming language.

2.2.1  Direct Reference

Perhaps the simplest form of message passing is direct
reference to the object’s attributes or data members. For
example, if the interarrivalTime object needed to
have a mean of 5.5, then the simplest means to commu-
nicate this message is through direct assignment.

interarrivalTime.mu = 5.5;

This message causes the object to receive the value and
set its variable mu.  This is a forced message because the
object has no choice but to perform the action.

2.2.2  Data Methods or Functions

Rather than forcing a value upon an object, a value could
be communicated to the object and then let it determine
how to deal with the value.  For example, if a new
“member function” or data method to the Exponential
class called setMu() was added as follows.

void setMu( double initMu ){
            mu = initMu;   }

Now the object is sent the setMu message with a
message value of 5.5 which “communicates” our interest
in changing the mean. The interarrivalTime ob-
ject receives the message and changes its internal value
of mu.

interarrivalTime.setMu(5.5);

Although this example really does the same thing as the
direct reference, there are important distinctions.  First,
in our function call we simply “passed” the value of 5.5
to the object.  Second, we didn’t tell the object how to
change the attribute mu.  The object has a function writ-
ten by the designer of the Exponential class that
causes the mean parameter to change.  Notice, the user
of the function does not need to know how the function



80 Joines and Roberts
inside the class works.  In fact, the class designer could
change the internal name of mu to expMean within the
class, and all exiting user code would remain the same.
This encapsulation of the data is extremely important in
OOS.  Also, the same message can be made to respond
to several different message value types often referred to
as “polymorphism.”

2.2.3  Pointers

Another way to communicate is indirectly through
pointers which are simply addresses of the location of an
object.  For example, a pointer to the interarrival-
Time object can be created as follows and the setMu
message can be sent via the pointer.

Exponential * rnPtr = &interarrivalTime;
rnPtr->setMu(5.5);

Pointers have the advantage of not needing to know the
particular object ahead of time, but only the address of
the object.  Thus, if we change the pointer to point to the
serviceTime object, the format of the message re-
mains the same. With a more complex message, use of
pointers becomes very convenient.

RNPtr->setMu(3.5);

2.3  How Are Objects Formed?

In our example, the exponential object has no ability to
be created with different means. Instead, the object’s
mean was changed to a specific value. Although an ob-
ject can be instantiated from a class without special in-
structions, often we want the creation to accomplish
certain objectives. Likewise, we also might want to do
something special when an object is destroyed.

2.3.1  Constructors and Destructors

Special member functions can be defined that act when
an object is created and destroyed which are called con-
structors and destructors, respectively.  The constructor
is recognized by having no return type and having the
same name as the class.  For example, the following
could be a constructor for the exponential object.

Exponential( double initialMu ) {
             mu = initialMu; }

This function accepts the invocation argument and sets
the internal mean to it. An object whose initial mean is
4.3 can be specified upon creation as follows.

Exponential   serviceTime(4.3);

In C++, functions can be “overloaded” so that they differ
only in their formal arguments (i.e., “polymorphism”).
Therefore, a class can have multiple constructors.  For
example, if we wanted the exponential to accept an inte-
ger specification of its mean.

Exponential( int startMu ){
             mu = startMu;}

Now, exponential objects with either a double or an int
as arguments can be specified (actually C++ will make
appropriate conversions among its built-in types, but this
example illustrates the way a user could provide conver-
sions among user-defined classes). The following creates
two objects using different argument types.

Exponential   arrival(9.3), inspect(6);

Users can also define a special member function
called a destructor that acts when the object is destroyed.
For example, a destructor for the exponential class has
the following form.

~Exponential(){
        // print out how often used? }

Only one destructor can be defined since a destructor has
no arguments.

2.3.2  Visibility of Properties

It should be clear that a user of a class does not really
need to know the internal workings of the class. For ex-
ample, they do not need to know what algorithm is used
to obtain the sample (they may want to know for their
own assurance). Furthermore, the designer of the class
may not want the user of the class to know everything
about the class. Thus, the class designer has the option of
causing properties of the class to become invisible to
users of the class and to provide a public interface to
those hidden properties. The two most frequently used
labels are “public” and “private.”  Properties within a
class that are public can be accessed directly by a user
while those that are private are available only to the de-
signer. For example, the variable containing the mean is
made private within the class to prevent improper use
(i.e., direct manipulation). Our class would then look like
the following.

class Exponential{
 private:
  double mu;
 public:
  Exponential(double initialMu ){mu=initialMu;}
  double sample();
  void setMu( double changeMu ){mu = changeMu;}
  double getMu( ) { return mu; }
};

Now mu cannot be changed directly by a user.  Thus the
direct reference to mu, as done earlier, will fail. Now
communication to the exponential objects must be per-
formed through member functions.  The designer of the
class can now protect the class data members from un-
wanted changes while the user of the class is unaffected.



An Introduction to Object-Oriented Simulation in C++ 81
2.4  How Are Objects Formed From Others?

One of the fundamental benefits of an O-O design is the
ability to make other objects out of existing ones.  We
have already seen how to design a class of objects using
the built-in types from C++. Suppose the following ran-
dom number class has been defined which generates
uniformly distributed numbers between 0 and 1.

class RandomNumber{
          long   seed;

   public
      RandomNumber( long seed = -1);
      void setSeed(long sd){seed=sd;}
      virtual double sample();
};

In this definition, the constructor argument can be speci-
fied or left blank to default to their initial values (i.e., -1
means use the next seed).  The public member function
sample() is used to obtain a sample and we will assume
that the seed will be updated appropriately with each call
to sample().  The “virtual” keyword will be discussed
later.

There are two ways this random number generator
could be used with our Exponential class.  The first
method is called composition, in which a random num-
ber object is included within the exponential class.  The
second method of using the random number generator is
through inheritance which makes the exponential class
a kind of random number.  Inheritance is one of the ma-
jor features that distinguish a “object-based” language
from a true “object-oriented” one.

2.4.1  Composition

First, consider the case of composition where we simply
compose the new class from the existing class:

class Exponential{
   private:
      double mu;
      RandomNumber rn;
   public:
      void setSeed(long sd){RN.setSeed(sd);}
… //Public Properties
};

Notice that the Exponential is defined simply to
“have” a RandomNumber.  In O-O parlance, the rela-
tionship between the Exponential and the Random-
Number rn is called a “has-a” relationship.  The data
member rn is used in the sample() function of the ex-
ponential. Notice, a setSeed() needs to be defined in
order to access the one in the random variable.

2.4.2  Inheritance

The second kind of relationship among classes is called
an “is-a” relationship and is based on inheritance or a
parent-child relationship. In our example, the exponen-
tial can be considered a kind of random variable.  It
would be useful for the Exponential to be a child of
RandomNumber and thus inherit all the random vari-
able properties.  Hence, what could be done to the ran-
dom variable could also be done with the exponential.
No additional setSeed() is required since the one in
the random class can be used.

For example, sometimes a sample from an exponen-
tial is needed while other times a basic uniform genera-
tor is required.  Suppose the following two objects and
pointer are defined:

RandomNumber   uni;
Exponential   exp(5.5);
RandomNumber * pRN = &uni;

If at an activity in our simulation, a sample from a ran-
dom variable is needed, the following message is sent to
obtain an activity time.

pRN -> sample();

However, because Exponential is also a RandomNum-
ber, the pointer pRN could be assigned to either an Ex-
ponential or a RandomNumber and the same mes-
sage applies. In the composition example, two separate
activities would be required (i.e., one which used an ex-
ponential and another one which used a uniform).

pRN = &exp;

In an true O-O language with inheritance, the message
would be sent to the proper object and the sampling
would be from the correct sampling function. In O-O
terms, determining which variate to sample at run-time is
called “run-time” binding and is performed by specify-
ing the sample() to be “virtual” in the parent class.

To specify that Exponential inherits from Ran-
domNumber, the header for the class definition would
be modified as:

class Exponential: public RandomNumber{...

showing that RandomNumber is the parent and its visi-
bility is “public”.

Under inheritance, the child class inherits the public
(and protected) properties of the parent.  Now these
properties are directly available to the child class and the
class type resolves any conflicts.  C++ also permits mul-
tiple inheritance, meaning a child can inherit from sev-
eral parents.

3 OBJECT-ORIENTED VS. OBJECT-BASED

Because many simulation languages offer pre-specified
functionality produced in another language, the user
cannot access the internal function of the language.  In-
stead, only the vendor can modify the internal function-



82 Joines and Roberts
ality. Also, users have only limited opportunity to extend
an existing language feature. Some simulation languages
allow for certain programming-like expressions or
statements, which are inherently limited.  Most lan-
guages allow the insertion of procedural routines written
in other general-purpose programming languages.  None
of this is fully satisfactory because, at best, any proce-
dure written cannot use and change the behavior of a
pre-existing object class.  Also, any new object classes
defined by a user in general programming language do
not co-exist directly with vendor code.

3.1  Object-Based Extension

The object-based approach only allows extensibility in
the form of composition (i.e., new objects can only be
created out of existing objects). The simple Event ob-
ject will demonstrate the limitations of extensibility only
through composition. The Event object is used to move
the simulation from one time to the next.  Events are
placed on the calendar and when an event is removed
from the calendar the processEvent() function is
called to handle the event. The following gives a portion
of the Event class that can be used to process arrival of
entities into the network and end of service events.  No-
tice that depending on the type of event, the appropriate
event handling function is called. This is an example use
of composition.

class Event{
   private:
     double eventTime, eventType;
     Source *source;
     Activity *activity; //… More properties
public:
void processEvent(){
   select EventType{
      case ArrivalEvent:

 source->newArrival(Entity);  break;
       case EndofService:

 activity->endofService(Entity) break;}}
//… Additional Properties
};

If the user wants to add additional events (e.g., a monitor
event), it would require the designer to add an appropri-
ate data member, data methods, and then provide an ad-
ditional case statement. Therefore, the designer has the
impossible problem in anticipating every kind of event.

3.2  Object-Oriented Extension

An object-oriented simulation deals directly with the
limitation of extensibility by permitting full data ab-
straction. Data abstraction means that new data types
with their own behavior can be added arbitrarily to the
programming language. When a new data type is added,
it can assume just as important a role as any implicit data
types and can extend existing types.  For example, a new
user-defined robot class can be added to a language that
contains standard resources without compromising any
aspect of the existing simulation language, and the robot
may be used as a more complex resource. There are two
basic mechanisms in C++ that allow OOS to provide for
extensibility: inheritance and genericity.

3.2.1  Inheritance

Inheritance allows classes to exploit similarity through
specialization of parent classes (i.e., child classes inherit
the properties of the parent and extend them).  All event
types have an associated eventTime and eventType
and the appropriate data methods to specify these prop-
erties. Therefore, specific event types would inherit these
properties and provide additional ones (see Figure 1).

Figure 1:  Inheritance Hierarchy

For example, NodeEvent, which provides events that
occur at nodes (e.g., end of service at an activity), pro-
vides a pointer to the Node of interest and the Entity
which caused the event. The processEvent() is
declared virtual so that the appropriate processEvent
is fired when the event is pulled off the calendar. The
Event’s processEvent() is a pure virtual function
meaning any child classes must re-define it. The No-
deEvent’s invokes the nodes executeLeaving()
(another virtual function in the node hierarchy).

//Event’s processEvent
void virtual processEvent() = 0

// ProcessEvent’s processEvent
void virtual processEvent(){
  processPtr->executeProcess(entityPtr);}

//NodeEvent’s processEvent
void virtual processEvent(){
      nodePtr->executeLeaving(entityPtr);}
//ExecuteLeaving -virtual function in Node

Now the designer does not have to anticipate every type
of event. Users have the ability to define their own
events provided they inherit from an existing event class
and provide an appropriate processEvent() function.

3.2.2  Parameterized Types

Even with inheritance, many O-O languages can still be
limiting in terms of extensibility. C++ provides an addi-

Entity
Node

NodeEvent
getNode

setNode
 processEvent

Monitor-
Function

MonitorEvent
getMonitorFun

setMonitorFun  processEvent

Entity
Process

ProcessEvent
getEntity

setEntity  processEvent

Event Time
Event Type

Event
getEventTime

setEventTime  processEvent



An Introduction to Object-Oriented Simulation in C++ 83
tional method of extensibility called genericity or pa-
rameterized types (i.e. templates). Parameterized types
are special forms of composition that exploit commonal-
ity of function. For example, most simulations would
declare a source object which is used to place entities
into the network. In an OOS environment, the user may
want TVs or Orders to arrive rather than generic entities.
The user can create several different source nodes by
inheriting from the base Source class as seen in Figure 2.
Each of the new classes defines a new type of object to
be created (i.e., TV, Order) and the “virtual function”
executeLeaving.

Figure 2:  Inheritance Hierarchy versus Commonality

Notice, only the Interarrival object and meth-
ods are re-used in the child class.  Each of the child
classes must define its own executeLeaving() when
the only difference is the type of object released into the
network. When objects provide the same functionality,
parameterized types are used (see Figure 3.). Now, the
user specifies the type of entity to be released into the
network and all remaining code is used. This ability is
further demonstrated when a user wants to add statistics
to the source node. The user only has to inherit from one
class rather than create a TVSourceStat, OrderSourceS-
tat, etc.

Figure 3:  Parameterized Type

The following would declare two different source nodes.

Source<TV> tvSource(…);
Source<Order> orderSource(…);

4  CREATING A SPECIFIC OOS

A key to the creation of a fully integrated simulation
package is the use of a class inheritance hierarchy. To
collect classes into levels of abstraction, we introduce
object-based “frames.”  A frame is a set of classes that
provide a level of abstraction in the simulation and mod-
eling platform.  A frame is a convenient means for de-
scribing various “levels” within the simulation class hi-
erarchy and is a conceptual term.

While frames provide a convenient means to describe
the levels of abstraction within the entire object-oriented

getTV

setTV
TV

TVSource

executeLeaving

Resource

ResourceSource
getResource

setResource

Order

OrderSource
getOrder

setOrder executeLeaving

Entity
InterArrival

Source
getInterArrivalTime

setInterArrivalTime executeLeaving

executeLeaving

Type
InterArrival

Source< Type >
getInterArrivalTime

setInterArrivalTime executeLeaving
simulation platform, another means of encapsulation is
to place higher level complex interactions into “frame-
works.” For our purposes, frameworks are used to de-
scribe those collections of classes that provide a set of
specific modeling facilities. The frameworks may consist
of one or more class hierarchies. These collections make
the use and reuse of simulation modeling features more
intuitive and provide for greater extensibility.

Special simulation languages and packages may be
created from these object classes.  For more information,
see Joines and Roberts (1996). YANSL is an acronym
for “Yet Another Network Simulation Language” and is
just one instance of the kind of simulation capability that
can be developed within an OOS environment.

4.1  Basic Concepts and Objects in YANSL

YANSL was developed to illustrate the importance of
object-oriented simulation. YANSL is a network queu-
ing simulation package of roughly the power of similar
languages, but without the “bells and whistles.”

4.1.1  Classes Specific to YANSL

Several classes are chosen from the modeling frame-
works (Joines and Roberts, 1996) to create the YANSL
modeling package.  These classes are collected together
to form a “simple” modeling/simulation language which
can be extended to create more complicated features.
The general simulation support classes, such as variate
generation, statistics collection, and time management,
are used indirectly throughout the modeling frameworks.
The network concepts are somewhat enhanced, but are
taken from the modeling framework. The node hierarchy
for YANSL is shown in Figure 4. The higher level nodes
(Assign, Activity, Queue, Source, and Sink)
are used directly by the YANSL modeler. Lower level
nodes provide abstractions which are less specific, thus
allowing specialization for other simulation constructs
(e.g., the QueueNodeBase class excludes ranking and
statistics).  Sink and queue nodes can have transactions
branched to them and are therefore destination nodes,
while the source node is a departure node.

Figure 4:  YANSL Node Hierarchy

Queue<RankC>Activity<Req, BC> Sink

Source<Tran, BC>

DelayNode<BC>

ActivityNode-

QueueNodeBase

QueueNode<RankC>

SourceNodeBase<BC> SinkNodeBase

BranchingDepartureNode<BranchChoice>

DestinationNodeDepartureNode

Node

Assign<BC,Tran>



84 Joines and Roberts
The delay and assign nodes are both departure and
destination nodes, so they inherit from both the departure
and destination node classes.  Departure nodes may need
a branching choice and called BranchingDepar-
tureNodes.  An activity is a “kind of” delay but in-
cludes resource requirements. The properties of the
YANSL nodes allow transactions to be created at source
nodes, wait at queue nodes, receive attribute assignment
at assign nodes, be delayed at activity nodes, and exit the
network at sink nodes.

Resources may service transactions at activity nodes.
The resource framework for YANSL, shown in Figure 5
allows resources to be identified as individuals, as mem-
ber of alternative groupings, or as members of teams.

Figure 5:  Resource Framework

When there is a choice of resource service at an activ-
ity, then a resource selection method is used.  The ability
to request a resource service at run-time without speci-
fying it explicitly is another example of polymorphism.
Choices available in YANSL, shown in Figure 6,

extend those in the modeling frameworks.

Figure 6:  YANSL Choice Hierarchy

The choices available add broad flexibility to the deci-
sion-making functions in the simulation, without needing
different classes for each different function.  Instead,
classes are parameterized with these choice classes and
the choices consist of several methods. Specifically in
YANSL, they allow for the selection of alternative
branches from a departure node, selection among alter-
native resources in requirements at an Activity, as
well as provide the decision making ability for resources
to choose what to do next, and ranking choices among
transactions at an Queue.  The choices are used to rep-
resent the time-dependent and changing decisions that
need to be modeled

QueueRankingChoice

LIFOFIFO

BranchingChoice

Probabilistic Deterministic

ResoureSelectionChoice

ORDER LONGIDLE

ResourceDecisionChoice

PRIORITY LONGESTWAIT
E

Choices

ResourceBase

SimulationElement

RequirementsAlternative

Resource<ResDC> ResourceTeam ResourceGroup<ResSelC>

ResourceSelelectionCResourceDecisionC

Choices
4.1.2  Modeling with YANSL

When modeling with YANSL, the modeler views the
model as a network of elemental queuing processes
(graphical symbols could be used).  Building the simula-
tion model requires the modeler to select from the pre-
defined set of node types and integrate these into a net-
work. Transactions flow through the network and have
the same interpretation they have in the other simulation
languages.  Transactions may require resources to serve
them at activities and thus may need to queue to await
resource availability.  Resources may be fixed or mobile
in YANSL, and one or more resources may be required
at an activity.  Unlike some network languages, re-
sources in YANSL are active entities, like transactions,
and may be used to model a wide variety of real-world
items.

4.2  The TV Inspection and Repair Problem

As a portion of their production process, TV sets are sent
to a final inspection station.  Some TVs fail inspection
and are sent for repair.  After repair, the TVs are re-
turned for re-inspection.  Transactions are used to repre-
sent the TVs.  The resources needed are the inspector
and the repairman.  The network is composed of a source
node which describes how the TVs arrive, a queue for
possible wait at the inspect activity, the inspect activity
and its requirement for the inspector, a sink where good
TVs leave, a queue for possible wait at the repair activ-
ity, and the repair activity.  Transactions branch from the
source to the inspect queue, are served at the inspect
activity, branch to either the sink or to the repair queue,
are served at the repair activity and return to the inspect
queue.  The data used in the simulation is that the inter-
arrival time of TVs, the inspect service time, and repair
service time are exponentially distributed with a mean of
5, 3.5, and 8 minutes respectively, and the probability
that a TV is good after being inspected is .85.

4.3  A YANSL Model

The YANSL network has all the graphical and intuitive
appeal of any network based simulation language.  A
graphical user interface could be built to provide “con-
venient” modeling features.  Whatever the modeling
system used, the ultimate computer readable representa-
tion of the model would appear as follows:

#include "simulation.h"

main(){

// SIMULATION INFORMATION
Simulation tvSimulation(1); //1 replication



An Introduction to Object-Oriented Simulation in C++ 85
// DISTRIBUTIONS
Exponential   interarrival( 5 ),

inspectTime( 3.5 ),
repairTime( 8.0 );

// RESOURCES
Resource< PRIORITY >  inspector, repairman;

// NETWORK NODES

   /** Transactions Arrive **/
Source< Transaction, DETERMINISTIC >

tvSource( interarrival, 0.0, 480 );
     // Begin at 0.0 and quit at 480.0

   /** Inspection **/
Queue< FIFO > inspectQueue(“Inspect Queue”);
     inspector.addQueue( inspectQueue );
Activity<RequirementSet,PROBABILITY>

inspect( inspectTime );
     inspect.addRequirement( inspector );
     inspectQueue.addActivity( inspection );

   /** Repair **/
Queue< FIFO > repairQueue(“Repair Queue”);
     repairman.addQueue( repairQueue );
Activity<RequirementSet,DETERMINISTIC>

repair( repairTime );
     repair.addRequirement( repair );
     repairQueue.addActivity( repair );

   /** Transactions Leave **/
Sink finish;

//NETWORK BRANCHES
tvSource.addBranch( inspectQueue );
inspect.addBranch( finish, .85 );

// 85% are good and leave
inspect.addBranch( repairQueue, .15 );

// 15% need repair
repair.addBranch( inspectQueue );

//RUN the Simulation
tvSimulation.run();
}

The previous model has an almost one-to-one corre-
spondence to the problem entities. The statements are
highly readable and follow a simple format.  The pre-
defined object classes give the user wide flexibility.

While the “statements” in YANSL are very similar to
those in SIMAN, SLAM, or INSIGHT, it is all legitimate
C++ code.  Also this model runs in less than half the
time a SIMAN model runs on the same machine!  But
the real advantage of YANSL is its extensibility.

The lack of distinction between the base features of
YANSL and any extensions illustrate the "seamless"
nature of user additions. Many embellishments are pos-
sible (e.g., see Joines and Roberts 1996) could be ap-
plied.  Such embellishments can be added for a single
use or they can be made a permanent part of YANSL,
say YANSL II. In fact, a different kind of simulation
language, say for modeling and simulating logistics sys-
tems, might be created and called LOG-YANSL for
those special users. For those familiar with some existing
simulation languages, consider the difficulty of doing the
same.

5  CONCLUSIONS

Modeling and simulation in an O-O language possesses
many advantages.  As shown, internal functionality of a
language now becomes available to a user (at the discre-
tion of the class designer).  Such access means that ex-
isting behavior can be altered and new objects with new
behavior introduced.  The O-O approach provides a con-
sistent means of handling these problems.

The user of a simulation in C++ is granted lots of
speed in compilation and execution.  The C++ language
has become a language of choice by many computer
users.  With the new ANSI standard, all C++ compilers
are expected to accept the same C++ language. To take
full advantage of object-oriented simulation will require
more skill from the user.  However, that same skill
would be required of any powerful simulation modeling
package, but with greater limitations.

REFERENCES

Ellis, M., and B. Stroustrup. 1990.  The annotated C++
reference manual.  Reading, MA: Addison-Wesley.

Joines, J.A. and S. D. Roberts.  1995.  Design of object-
oriented simulations in C++.  In Proceedings of the
1995 Winter Simulation Conference, ed. Christos
Alexopoulos, Keebom Kang, William Lilegdon, and
David Goldsman, 82-92,Washington, D.C.

Joines, J.A. and S. D. Roberts. 1996.  Design of object-
oriented simulations in C++.  In Proceedings of the
1996 Winter Simulation Conference, ed., John Char-
nes, Douglas Morrice, Dan Brunner, and James
Swain, 65-72. Institute of Electrical and Electronics
Engineers, San Diego, CA.

AUTHOR BIOGRAPHIES

JEFFERY A. JOINES is a Research Associate in the
Furniture Manufacturing and Management Center at
NCSU.  He received his B.S.I.E, B.S.E.E, M.S.I.E and
Ph.D. I.E. from NCSU.  He is a member of INFORMS,
IIE, and IEEE.  His interests include O-O simulation,
cellular manufacturing, and genetic algorithms.

STEPHEN D. ROBERTS is Professor and Head of the
Department of Industrial Engineering at NCSU.  He re-
ceived his B.S.I.E., M.S.I.E., and Ph.D. from Purdue
University. He was the recipient of the 1994 Distin-
guished Service Award.  He has served as Proceedings
Editor and Program Chair for WSC.


	AN INTRODUCTION TO OBJECT-ORIENTED SIMULATION IN C++
	ABSTRACT
	1 INTRODUCTION TO OBJECTS
	2 WHAT IS AN OBJECT?
	2.1 Encapsulation
	2.2 How Do Objects Communicate?
	2.3 How Are Objects Formed?
	2.4 How Are Objects Formed From Others?

	3 OBJECT-ORIENTED VS. OBJECT-BASED
	3.1 Object-Based Extension
	3.2 Object-Oriented Extension

	4 CREATING A SPECIFIC OOS
	4.1 Basic Concepts and Objects in YANSL
	4.2 The TV Inspection and Repair Problem
	4.3 A YANSL Model

	5 CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 78
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


