
1

UML based performance modeling of
object-oriented distributed systems

Pekka Kähkipuro

Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, FINLAND

Pekka.Kahkipuro@cs.Helsinki.FI

This position paper briefly presents a performance modeling framework that is being devel-
oped at the University of Helsinki. We first give an overview of the framework, enumerate its
main elements, and describe relationships between them. The technical structure of the frame-
work is further analyzed by examining the four representations for performance models that
are used within the framework. Finally, the use of the framework is illustrated with a simple
example, and a number of possible extensions are discussed.

1. Elements of the framework
The architecture of the framework consists of four main elements:

� The method of decomposition,
� UML based performance modeling techniques,
� Performance modeling methodology,
� Object-oriented performance modeling and analysis tool.

The elements and their relationships are illustrated in Figure 1. The method of decomposition
(MOD) provides the foundation for the framework. It defines an algorithm for finding an ap-
proximate solution for performance models. The key features of the MOD algorithm are:

� Support for open, closed, and mixed workloads,
� Support for simultaneous resource possessions that arise, for example, from syn-

chronous operation invocations in CORBA based systems,
� Support for circular calling dependencies, such as those emerging from callback

interfaces,
� Support for recursive accesses that take place when objects call themselves, and
� Presentation of results on an access by access basis in order to allow results to be

presented with UML sequence or collaboration diagrams.

The algorithm has been presented in [1]. The MOD alone, however, cannot be used for mod-
eling large CORBA based distributed systems due to its low-level representation of the mod-
eled system. Even simple application level configuration results into a complex performance
model since all technical resources (e.g. network adapters and network latencies) are mixed
with application resources.

UML based performance modeling techniques provide the means for modeling complex
information systems. The key issue in these techniques is the use of abstractions for separat-
ing application level issues from the use of technical resources. These abstractions can be

2

structured into multiple layers, some of which can be omitted at the early stages of systems
development. This way, performance modeling can be applied to all phases of the develop-
ment process. Moreover, the proposed UML based techniques are close to the normal UML
modeling style as proposed in the UML standard and literature, thereby allowing the use of
existing functional UML models for performance modeling. These techniques are further dis-
cussed in [2].

The performance modeling methodology provides a link to the software engineering proc-
ess. The aim is to indicate how the proposed UML modeling techniques can be used at differ-
ent stages of systems development to produce useful performance models for the system. The
methodology is based upon a layered model for CORBA based distributed systems, thereby
emphasizing the separation of application functionality, the infrastructure, the network, and
the actual configuration. The layers are specified individually but cooperatively to allow a
comprehensive model to be built in a stepwise process that proceeds in parallel with the soft-
ware development process. Initially, some of the layers can be empty and

The purpose of the object-oriented performance modeling and analysis tool (OAT) is to
automate some of the tasks required by the framework. Currently, the prototype implementa-
tion of the tool implements the following tasks:

	 Transformation of UML based performance models into a solvable format required
by the MOD algorithm,

 Implementation of the MOD algorithm to produce an approximate solution for the
performance model, and

� Conversion of the solution into a set of relevant performance metrics to be used in
the performance modeling methodology.

In Figure 1, these tasks correspond to steps 3, 4, and 5.

2. Four performance model representations
The technical aspects of the framework and the operation of the modeling and analysis tool
can be described in terms of four performance model representations that are used in the
framework. Each representation has its own notation, and the framework architecture defines
mappings between them, as shown in Figure 2. The idea is to start from the UML representa-

Performance
modeling

methodology

The method of
decomposition

1. Produce model structure and parameters

Software
engineering

process

3. Produce model in a solvable format

5. Produce relevant
performance

metrics for the
model

Performance
modeling and
analysis tool

UML based
modeling

techniques

2. Produce model in a precise UML format

4. Produce approximate solution

Figure 1. Elements of the performance modeling framework.

3

tion and proceed downwards using the mappings. Once the bottom has been reached, an ap-
proximate solution can be found for the model. The mappings also indicate how the obtained
metrics can be propagated upwards.

The UML representation describes the system with UML diagrams. This representation
may contain purely functional elements that are not needed for performance modeling. To re-
duce the complexity of the diagrams, we assume that the UML representation is divided into
separate layers corresponding to different parts of the system, such as the application, the in-
frastructure, and the network.

The PML representation provides an accurate textual notation for representing perform-
ance related items in the UML diagrams. The PML representation has the same layered
structure as the UML representation, and the mapping from UML to PML is straightforward.
The purpose of this representation is to filter out those features that have no significance for
performance modeling, such as graphical UML variations and purely functional parts of the
UML model. Moreover, the PML representation has an important role in the development of
the framework, as it is currently the input format for the prototype implementation of the
modeling and analysis tool. However, the use of PML is not mandatory, and any other hu-
man-understandable UML representation could be used instead. For example, we might later
opt for the human-usable textual UML notation that is currently being developed by the OMG
[3]. For the purposes of exploring the performance modeling framework, however, the current
PML based approach is sufficient. Later improvements can be implemented as the standards
become integrated into commercially available tools. An abstract syntax for the PML notation
is given in Appendix A.

The AQN representation describes the system in the form of augmented queuing networks
that may contain simultaneous resource possessions. This representation allows the use of the
MOD algorithm for solving the model. The AQN representation is obtained from the PML
representation by expanding object classes into object instances that correspond to individual
resources in the system. Moreover, the UML collaboration and sequence diagrams describing
the behavior of the application and the infrastructure are combined into one or more workload
specifications. Each workload specification can be visualized with a collaboration diagram
that indicates how the system’s resources are used by that particular workload.

The QN representation consists of separable queuing networks with mutual dependencies
that correlate them to the same overall system. The queuing networks are obtained from the
AQN representation during the initial steps of MOD algorithm. Initially, the queuing net-
works contain a number of unknown parameters. To solve the networks, iteration is used for
finding a solution with the specified level of accuracy. The transformation from the AQN rep-

UML representation

PML representation

1. Normalize model into text
form and remove elements

not relevant for performance
modeling

QN results

AQN representation

QN representation

2. Expand classes into
objects and combine

diagrams into one collabora-
tion diagram per workload

3. Transform diagrams into
product-form queuing

networks with approximate
parameters

AQN results

PML results

UML results

8. Propagate
metrics

7. Propagate
metrics

6. Propagate
metrics

4. Solve
with MVA

5. Adjust QN parameters until throughputs are
close enough in all queuing networks

Figure 2. Four representations for performance models.

4

resentation into the QN representation involves a number of approximations that are needed
to make the queuing networks solvable with efficient algorithms.

Similar tiered architectures are common in performance modeling [4, 5], but the top repre-
sentation is often a sophisticated performance modeling notation, such as a variant of Petri
nets, to support advanced modeling techniques. In our case, we use a non-technical top repre-
sentation for hiding most of the underlying performance modeling issues. This approach is
more aligned with the goals of the framework that emphasize the ease of use and the use of
high-level abstractions.

3. Example
We illustrate the framework with a simple example of a network monitoring system. The
system operates as follows. A number of receiver objects accept messages from network ele-
ments and forward them to handler objects that are responsible for executing appropriate ac-
tions. There is also a database for maintaining descriptions for the actions. These entities are
represented by the CReceiver, CHandler, and CDatabase classes. To illustrate the use of in-
terfaces, the operations of the CHandler class are actually defined in the IHandler interface.
Figure 3 illustrates the static structure of the system. Service demand estimates for the opera-
tions are in milliseconds.

The model has two workloads: a background load for the database and the main load. The
workloads are illustrated in Figure 4. The background load has an estimated rate of 1 database
query per second. The main load represents the handling of messages arriving from network

1
1..*

IHandler
CReceiver

{queue}

ReceiveJob() {cpu=10}

class CReceiver {
 property queue;
 ReceiveJob() {cpu=10};
};
class CHandler {
 property queue;
 realizes IHandler;
};
class CDatabase {
 property queue;
 GetActions() {cpu=10,disk=50};
};
interface IHandler {
 AcceptJob() {cpu=5};
 DoActions() {cpu=20};
};

CHandler
{queue}

CDatabase
{queue}

GetActions {cpu=10, disk=50}

«interface»
IHandler

AcceptJob {cpu=5}
DoActions {cpu=20}

Figure 3. The static structure of the example system.

collaboration BgLoad {
 property arrivalrate=0.001;
 1: GetActions();
};

collaboration Jobs {
 property arrivalrate=0.007;
 property adjustopen=1;
 1: ReceiveJob();
 2: AcceptJob();
 2.1: GetActions();
 2.2: DoActions();
};

1: GetActions() CDatabase

1: ReceiveJob() CReceiver

CHandler

CDatabase

2: AcceptJob()

2.1: GetActions()

2.2: DoActions()

{arrivalrate=0.007}

{arrivalrate=0.001}

Figure 4. Workloads for the example system.

5

elements. In steps 1 and 2, the message is received and forwarded to a handler. In steps 2.2
and 2.3, the handler consults the database and executes appropriate actions. We initially esti-
mate an arrival rate of 7 messages per second.

The system uses an object-oriented infrastructure for implementing object communication.
To keep the example short, we model the infrastructure with simple communication delays.
We assume that there is an average 3 ms delay when the sender and receiver are in different
nodes, and a 2 ms context switch delay when they are in the same node. We also model hard-
ware resource contention by presenting explicit CPU and disk resources for all nodes. The
service demands for application level operation requests are bound to these resources. The
definitions for the network infrastructure and the nodes are illustrated in Figure 5.

We consider two different configurations for the system. The basic configuration has a
single server node containing a receiver, a handler, and a database. The advanced configura-
tion has a receiver in one server node and three handlers together with a database in another
server node. These configurations are illustrated in Figure 6.

When the basic configuration is transformed into the AQN representation, the result con-
tains six resources and two job classes as illustrated in Figure 7. A few issues are worth not-
ing. First, the actual execution takes place exclusively in hardware resources as a result of
service demand binding. Software resources are only controlling the order of accessing the
hardware. This is illustrated by the gray color in the figure.

«connection»
LAN

{msgpeer=LANMsgpeer}

Latency : Delay

connection LAN {
 property msgpeer=LANMsgpeer;
 Latency : Delay;
};
collaboration LANMsgpeer {
 1: Latency() {d=3};
};

node CNode {
 property msgpeer=CNodeMsgpeer;
 Ctxswitch : Delay;
 Cpu : Queue {d=cpu};
 Disk : Queue {d=disk};
};
collaboration CNodeMsgpeer {
 1: Ctxswitch() {d=2};
};

«node»
CNode

{msgpeer=CNodeMsgpeer}

Ctxswitch : Delay
Cpu : Queue {d=cpu}
Disk : Queue {d=disk}

CNodeMsgpeer

Ctxswitch :
Delay

1: {d=2}

LANMsgpeer

Latency :
Delay

1: {d=3}

Figure 5. Node and network specifications for the example system.

MyLAN : LAN {
 Server1 : CNode {
 : CReceiver;
 : CDatabase;
 : CHandler;
 };
};

MyLAN : LAN {
 Server1 : CNode {
 : CReceiver;
 };
 Server2 : CNode {
 : CDatabase;
 [3] : CHandler;
 };
};

Server1 : CNode

:CHandler :CDatabase:CReceiver

«LAN»
Server1 : CNode

:CReceiver

Server2 : CNode

:CHandler

:CDatabase

3

Basic configuration

Advanced configuration

Figure 6. Two configurations for the example system.

6

Second, the Ctxswitch resource illustrates the effect of triggering properties. It is accessed
three times, once for the AcceptJob message and twice for the synchronous call GetActions.
However, there is no context switch for the recursive call DoActions.

Finally, the complexity of the diagram is worth noting. The AQN in Figure 7 was gener-
ated from a simple model with only three application-level messages in a single node. This
way, number of automatically generated messages is small and the sequence diagram in

: CReceiver : CHandler : CDatabase Cpu :
Queue

Ctxswitch :
Delay

Disk :
Queue

GetActions()

10

50

λ = 0.001

ReceiveJob()

λ = 0.007 10

2

AcceptJob() 5

2

10

50

2

DoActions()

20

GetActions()

Figure 7. The AQN representation for the basic configuration.

MyLAN.Latency : Delay;
MyLAN.Server1.$CReceiver : Queue;
MyLAN.Server1.Cpu : Queue;
MyLAN.Server1.Ctxswitch : Delay;
MyLAN.Server1.Disk : Queue;
MyLAN.Server2.Cpu : Queue;
MyLAN.Server2.Ctxswitch : Delay;
MyLAN.Server2.Database : Queue;
MyLAN.Server2.Disk : Queue;
MyLAN.Server2.Handler[1] : Queue;
MyLAN.Server2.Handler[2] : Queue;
MyLAN.Server2.Handler[3] : Queue;

collaboration BgLoad {
 property arrivalrate = 0.001;
 1: GetActions() {d=0};
 1.1: Cpu() {d=10};
 1.2: Disk() {d=50};
};
collaboration Jobs {
 property arrivalrate = 0.007;
 1: ReceiveJob() {d=0};
 1.1: Cpu() {d=10};
 2: Latency() {d=1};
 3: Latency() {d=1};
 4: Latency() {d=1};
 5: AcceptJob() {d=0};

 5.1: Cpu() {d=1.66667};
 5.2: Ctxswitch() {d=0.666667};
 5.3: GetActions() {d=0};
 5.3.1: Cpu() {d=3.33333};
 5.3.2: Disk() {d=16.6667};
 5.4: Ctxswitch() {d=0.666667};
 5.5: DoActions() {d=0};
 5.5.1: Cpu() {d=6.66667};
 6: AcceptJob() {d=0};
 6.1: Cpu() {d=1.66667};
 6.2: Ctxswitch() {d=0.666667};
 6.3: GetActions() {d=0};
 6.3.1: Cpu() {d=3.33333};
 6.3.2: Disk() {d=16.6667};
 6.4: Ctxswitch() {d=0.666667};
 6.5: DoActions() {d=0};
 6.5.1: Cpu() {d=6.66667};
 7: AcceptJob() {d=0};
 7.1: Cpu() {d=1.66667};
 7.2: Ctxswitch() {d=0.666667};
 7.3: GetActions() {d=0};
 7.3.1: Cpu() {d=3.33333};
 7.3.2: Disk() {d=16.6667};
 7.4: Ctxswitch() {d=0.666667};
 7.5: DoActions() {d=0};
 7.5.1: Cpu() {d=6.66667};
};

Figure 8. The AQN representation for the advanced configuration.

7

Figure 7 is still readable. However, more complex models would clearly produce large and
inconvenient diagrams. This observation provides an additional justification for the proposed
modeling techniques.

When the advanced configuration in Figure 6 is transformed into the AQN representation,
the result contains twelve resources and 35 messages between them. We use the PML nota-
tion to illustrate the results of the transformation in Figure 8. The list of instantiated resources
is given before the actual workload messages.

A point worth noting in the advanced configuration is the expansion of the AcceptJob mes-
sage into several resource accesses. There are three Handler resource instances in the AQN
and the service demand of the AcceptJob message is divided evenly between them. In addi-
tion, all nested accesses that are made during the activation of AcceptJob are divided in three
equal shares. Notice that the recursive call DoActions is routed to a single handler unlike the
AcceptJob message. This is because the current job is already accessing one of the three han-
dlers and it does not make sense to route a recursive access to any other handler. This feature

Utilization Type Device
----------- ---- ------
0 % Delay MyLAN.Latency
53.3116 % Queue MyLAN.Server1.$CDatabase
67.7291 % Queue MyLAN.Server1.$CHandler
8.37806 % Queue MyLAN.Server1.$CReceiver
32.5002 % Queue MyLAN.Server1.Cpu
4.20001 % Delay MyLAN.Server1.Ctxswitch
40.0002 % Queue MyLAN.Server1.Disk

BgLoad

Resp.time: 132.338 Throughput: 0.001 Nbr.in system: 0.132338
Time share: 38.4263 % MyLAN.Server1.$CDatabase
 10.3279 % MyLAN.Server1.Cpu
 51.2458 % MyLAN.Server1.Disk

Jobs

Resp.time: 314.887 Throughput: 0.007 Nbr.in system: 2.20421
Time share: 1.81783 % MyLAN.Server1.$CDatabase
 62.4507 % MyLAN.Server1.$CHandler
 0.347649 % MyLAN.Server1.$CReceiver
 16.7913 % MyLAN.Server1.Cpu
 1.90545 % MyLAN.Server1.Ctxswitch
 16.6871 % MyLAN.Server1.Disk

collaboration BgLoad { // Throughput: 0.001
 property arrivalrate = 0.001; // Residence times
 1: GetActions() {d=0}; // 50.8526
 1.1: Cpu() {d=10}; // 13.6677
 1.2: Disk() {d=50}; // 67.8176
}; //*132.338

collaboration Jobs { // Throughput: 0.007
 property arrivalrate = 0.007; // Residence times
 1: ReceiveJob() {d=0}; // 1.0947
 1.1: Cpu() {d=10}; // 11.9684
 2: Ctxswitch() {d=2}; // 2
 3: LAN.AcceptJob() {d=0}; // 196.649
 3.1: Cpu() {d=5}; // 6.96839
 3.2: Ctxswitch() {d=2}; // 2
 3.3: GetActions() {d=0}; // 5.72412
 3.3.1: Cpu() {d=10}; // 11.9684
 3.3.2: Disk() {d=50}; // 52.5454
 3.4: Ctxswitch() {d=2}; // 2
 3.5: DoActions() {d=0}; // 1.34865e-005
 3.5.1: Cpu() {d=20}; // 21.9684
}; //*314.887

Figure 9. Example report from the OAT tool.

8

of the transformation can be overridden by giving explicitly the scope of the invocation in the
original collaboration diagram.

Figure 9 illustrates the output from our experimental OAT tool. It corresponds to the basic
configuration in Figure 6.

4. Conclusions and future work
We have briefly presented a framework for creating, using, and maintaining performance
models of object-oriented distributed systems. The framework consists of four main elements.
The method of decomposition provides an algorithm for solving performance models effi-
ciently for complex systems. A set of UML based performance modeling techniques help to
raise the abstraction level of the model to suit the needs of software engineering. A perform-
ance modeling methodology provides guidelines for using the framework, and an experiment
modeling and analysis tool has been created to illustrate the concepts.

The framework is currently at an experimental stage, and the need for various extensions
has already been detected. We briefly mention four obvious directions to go. First, the OAT
tool only supports the textual PML notation and a natural step is to provide support for
graphical modeling. This can be implemented either with self-made graphical extensions or
with an existing graphical modeling tool. The use of the XMI format for model exchange is
an attractive alternative. Second, the framework does not currently support all commonly used
features of UML collaboration and sequence diagrams. In particular, there is no way of start-
ing, killing, and synchronizing threads. A better support for threads would require new UML
based modeling techniques and corresponding additions to the MOD algorithm. Third, UML
state and activity diagrams are currently not used by the framework but they can express per-
formance related information in a convenient manner. For example, activity diagrams could
be used to combine multiple collaboration diagrams together in a complex interaction. This
way, workload diagrams would not grow excessively. Finally, the current approach limits the
available scheduling disciplines, service time distributions, and arrival rate distributions.
These limitations are mostly inherited from the MVA algorithm that we use during the
method of decomposition. However, approximate techniques exist for extending these limita-
tions (e.g. [4]) and they could be integrated into the MOD algorithm.

References
[1] Kähkipuro, P., The Method of Decomposition for Analyzing Queuing Networks with

Simultaneous Resource Possessions, In Proceedings of the Communications Networks
and Distributed Systems Modeling and Simulation Conference (CNDS’99), The Society
for Computer Simulations International, San Diego, California, 1999.

[2] Kähkipuro, P., UML Based Performance Modeling Framework for Object-Oriented
Distributed Systems, In France, R., Rumpe, B. (eds.), «UML»’99 – The Unified Model-
ing Language : Beyond the Standard, LNCS 1723, Springer-Verlag, Berlin Heidelberg,
Germany, 1999.

[3] Object Management Group, A Human-Usable Textual Notation for the UML Profile for
EDOC, Request for Proposal, OMG Document ad/99-03-12, Framingham, Massachu-
setts, 1999.

[4] Agrawal, S.C., Metamodeling: A Study of Approximations in Queuing Models, MIT
Press, Cambridge, Massachusetts, USA, 1985.

[5] Haverkort, B.R.: Performance of computer communication systems: a model-based ap-
proach. John Wiley & Sons, New York, New York, USA, 1998.

