
Visual Logic Programming by means of DiagramTransformationsJordi Puigsegur1;2 Jaume Agust��1fjpf,agustig@iiia.csic.es1 Institut d'Investigaci�o en Intel�lig�encia Arti�cial { CSICCampus UAB, 08193 Bellaterra, Catalonia (Spain), EU2 Visual Inference Laboratory { Indiana UniversityLindley Hall #215, Bloomington, IN 47405, USA

To appear in the Proceedings of the APPIA-GULP-PRODE'98, JointConference on Declarative Programming, La Coru~na, Spain, July 1998.

AbstractWe believe that the pragmatics and understanding of formal logic and alsodeclarative programming languages are sensible to the type of syntax used. Ourgoal is to study how to apply the new developments in the �eld of diagrammaticreasoning to declarative programming languages. In this paper we summarize thework done up to now in a visual logic language developped at the IIIA. We alsoattempt a complete formalization of its syntax, semantics and inference system.We claim that our visual syntax and operational semantics have a higher degree ofhomomorphism with respect to the mathematical semantics of the language thanin conventional textual languages. Finally, we study two interesting new features:the ability of intuitively keeping track of the proof and the possibility to representseveral solutions to the query, both using a single diagram.1 IntroductionRecent advances emphasize the importance of the syntax in logical systems and pro-gramming languages. Barwise and Etchemendy [5] emphasize the importance of usinghomomorphic notations, i.e. notations (often diagrammatic) that are closer to what theyrepresent than the usual predicate-based logic languages. They show how using homo-morphic (and heterogeneous) syntax can improve the understanding of the system andease the reasoning process. Our goal is to apply these ideas to the �eld of declarative pro-gramming and automated reasoning. We believe that the pragmatics and understandingof formal logic and declarative programming languages are sensible to the syntax used.In [16, 1] we presented a visual logic programming language based on Venn/Eulerdiagrams, directed acyclic graphs (DAGs) and graphical containment (inspired by DavidHarel Higraphs [10]), and we formalized it as a front-end to conventional logic program-ming languages like Prolog. This visual language is based on a set theoretical approachto predicate logic and its scope is similar to Horn Logic. Predicates are represented bysets of elements: their abstractions or sets of elements that satisfy them. Basic facts arerepresented as the membership of an element into a set corresponding to a predicate,and predicate implication is represented as the inclusion of one set into another set, bothrepresenting predicates. The following two diagrams represent respectively the basic fact1

2 APPIA-GULP-PRODE'98\Peter is a man" (in FOPC: man(Peter)) and the implication \all men are mortal" (inFOPC: 8x man(x)! mortal(x)):
Peter

man mortal
manIn [17, 3] we showed the possibility of a fully visual operational semantics for this visuallanguage, showing that our visual syntax not only can be an alternative formal notationwhich emphasizes some semantic and pragmatic features of logical statements, but itcould be useful to conduct visual inferences. We claim that this operational semanticsis also closer to the intuitive meaning of the diagrams than traditional resolution is toconventional textual logic languages. The inference system of our visual language isbased in diagram transformations involving graphical containments, thus being closer toits mathematical semantics which is based mainly in set inclusion.In this paper we summarize the work done up to now in this visual logical formalism,and we attempt a complete formalization of its syntax (Section 2), semantics (Section 3)and inference system (Section 4). Finally, we study two interesting features provided byits visual nature: �rst the ability of intuitively keeping track, within a diagram, of theproof that is built while solving a query, and, second, the possibility to represent withina unique diagram several solutions to the query.2 SyntaxAs we pointed out in the Introduction, the visual syntax of our language is based on atopological diagrammatic notation which combines Venn/Euler-like diagrams and DAGs.The basic syntactic elements (or visual primitives) of our visual language are squareboxes, rounded boxes, circles, arrows, lines, function symbols (function symbols of arity0 are also called constant symbols) and predicate symbols. Circles and rounded boxesare of �xed size. Square boxes are of di�erent sizes, always bigger than circles androunded boxes. These basic syntactic elements are then combined to form visual terms(Section 2.1) and visual predicates (Section 2.2) which correspond to elements and setsrespectively in the semantic interpretation. Visual terms and visual predicates are com-bined using the graphical containment relation obtaining visual literals (Section 2.3), orbasic constituents of diagrams. Finally we obtain diagrams (Section 2.4) |which arethe equivalent to formulas in conventional textual logic languages| by enclosing with asquare box a collection of visual literals.2.1 Visual TermsVisual terms are DAGs built up using circles and rounded boxes with enclosed functionsymbols. Variables do not need to be assigned a name and are represented as circles.Variable co-reference is performed using sequences of circles or visual term sharing.De�nition 1 (Visual Term) A well formed visual term is:1. a circle or a sequence of circles joined by lines.2. a rounded box with a constant symbol inside it.3. a compound diagrammatic term (a DAG) constructed with:

Visual Logic Programming by means of Diagram Transformations 3� a rounded box� a function symbol of arity m placed inside the rounded box� n visual terms ti (n � 1)� m arrows (m � n), with an optional label, each one going from one ti to therounded box, in such a way that there are no cycles and each ti has at leastone arrow.4. nothing else is a well formed visual term.
f

b g

a

Figure 1: Examples of w.f. Visual TermsIn Fig. 1 we �nd examples of the four di�erent types of visual terms of our language.2.2 Visual Predicates
parent

john

grandparentq

a
1 2Figure 2: Examples of w.f. VisualPredicates

Predicates are represented as labeled squareboxes, which are graphical representations ofthe set of elements that satisfy these predi-cates. I.e. what in mathematics is usuallyknown as predicate abstractions. When thepredicate has more than one argument, one ofthem is selected (by convention the last one) asthe range of the set while the rest are explicitlyshown by means of arrows. Since in the visualrepresentation there is no evident ordering of arguments, arrows are optionally labeled toidentify the arguments. In Section 3 there is a more precise de�nition of the semanticsof a visual predicate. Let us now de�ne the syntax of a visual predicate:De�nition 2 (Visual Predicate) A well formed visual predicate, is composed of:� a square box (drawn using either thick or thin lines)� a predicate symbol of arity m (m � 1) placed in one of the corners of the squarebox� n visual terms ti (n � 0)� m � 1 arrows (m � 1 � n), with an optional label, each one going from one ti tothe square box, in a way that from all ti departs at least one arrowIn Fig. 2 we �nd examples of visual predicates. For instance, the �rst visual literalrepresents the 3-ary predicate q, and its square box stands for the set fwjq(x; a; w)g.The other two visual literals intuitively represent the set of parents of john and the setof grandparents of someone.

4 APPIA-GULP-PRODE'982.3 Visual LiteralsFirst we de�ne the containment relation between visual terms and visual predicates, andbetween visual predicates that we use later to de�ne visual literals.De�nition 3 (Containment Relation) Let V P be the set of visual predicates and V Tthe set of visual terms. The containment relation (v) is de�ned as v = v1 [v2 wherev1 and v2 are:1. v1 � V P � V Pv1 2 V P is contained in v2 2 V P (v1 v1 v2) i� the square box of v1 is containedin the square box of v2.2. v2 � V T � V Pt 2 V T is contained in v 2 V P (t v2 v) i�� when t is a circle, the circle is contained in the square box of v.� when t is a sequence of circles, one of the circles is contained in the squarebox of v.� when t is a compound term or a constant, its root rounded box is contained inthe square box of v.Visual literals are the basic syntactic construction used to build diagrams. Theyrepresent a basic fact of our visual language: an inclusion of an element or a set intoanother set, expressed as a graphical containment. There are two types of visual literals:condition visual literals and conclusion visual literals, to distinguish the role they play ina predicate de�nition.De�nition 4 (Condition Visual Literal) A well formed condition visual literal l iscomposed of� a visual predicate v with its square box drawn using thin lines.� One visual terms t contained in v (t v v).
a

p

ann

john

person parent

Figure 3: Examples of w.f. Condition Vi-sual Lit.
Condition visual literals consist alwayson a containment of one and only one vi-sual term into a visual predicate drawn us-ing thin lines. In Fig. 3 we �nd examplesof condition visual literals. The �rst visualliteral represents the fact that the term asatis�es predicate p, the second that johnis a person, and the third visual literal rep-resents that someone is parent of ann.De�nition 5 (Conclusion Visual Literal)A well formed conclusion visual literal l is composed of� a visual predicate g with its square box drawn using thick lines, called the goal visualpredicate.� n visual terms ti contained in g (ti v g).� m visual predicates vi contained in g (vi v g).such that n +m � 1 and there are no other containments other than the ones indicatedabove.

Visual Logic Programming by means of Diagram Transformations 5
parentbob ann

charly
bobcharly

parent grandparent

Figure 4: Examples of w.f. Conclusion Vi-sual Lit.
Conclusion visual literals express thecontainment of one or more visual terms orvisual predicates into another visual pred-icate (drawn with thick lines). In Fig. 4we �nd examples of conclusion visual lit-erals. The �rst visual literal expressesthe fact that bob and ann are parents ofcharly, while the second represents the factthat the parents of bob are grandparents ofcharly.2.4 DiagramsDiagrams are the basic elements of our visual programs: they correspond to a formulain logic or a clause in textual logic programming. A diagram is de�ned as a collectionof visual literals enclosed in a square box delimiting its syntactic scope. Di�erent literalsof the same diagram may share common visual subterms. In fact this diagrammaticnotation inherits from DAGs the facility of subterm (subDAG) sharing.There are two types of diagrams: de�nition diagrams and query diagrams. A visualprogram is de�ned as a collection of de�nition diagrams. Query diagrams are used topose queries to these visual programs.2.4.1 De�nition DiagramsA de�nition diagram is composed of one conclusion visual literal and (optionally) a set ofcondition visual literals. The conclusion visual literal contains the visual predicate beingde�ned (drawn with thick lines), while the condition visual literals are the conditionsunder which the de�nition is valid. In Section 3 we precisely formalize the semantics ofde�nition diagrams. Let us now formalize the syntax of a de�nition diagram:De�nition 6 (De�nition Diagram) A well formed de�nition diagram (d) is composedof:1. a box that circumscribes the syntactic scope of the diagram. I.e. all visual literalsof the diagram must be inside this box.2. one conclusion visual literal.3. n � 0 condition literals.such that no containments occur between visual predicates of di�erent visual literals.In Fig. 5 we �nd examples of well formed de�nition diagrams. In the �rst of them wede�ne predicate q by means of a subset inclusion. Namely we express that fwjp(a; w)g �fzjq(b; a; z)g, which is equivalent to the implication p(a; y) ! q(b; a; y). The other twodiagrams de�ne parent and grandparent predicates. The parent is de�ned by giving twoelements that belong to the set of parents of charly, bob and ann. The grandparentpredicate is de�ned by giving a subset of it, i.e. by stating that the parents of the parentsof some person are also grandparents of the same person.

6 APPIA-GULP-PRODE'98
bob ann

parent

charly

p
q

b a
21

parent

parent
grandparent

personFigure 5: Examples of w.f. De�nition Diagrams2.4.2 Query DiagramsA query diagram is de�ned like a de�nition diagram except that there is no conclusionvisual literal. Let us now de�ne the syntax of a query diagram.De�nition 7 (Query Diagram) A well formed query diagram (q) is composed of:1. a box that circumscribes the syntactic scope of the diagram. I.e. all visual literalsof the diagram must be inside this box.2. n � 1 visual condition literals.such that no containments occur between visual predicates of di�erent visual literals.
Ann

parent

charly

grandparent

tall

Figure 6: Examples of w.f.Query Diagrams
A query diagram can be seen as an existentialquery, i.e. a conjunction of inclusions where vari-ables are existentially quanti�ed. In Fig. 6 we �ndexamples of well-formed query diagrams. In the �rstquery diagram we want to know the parents of ann,namely the in FOPC: 9x parent(ann; x) ?. The sec-ond query diagram asks for grandparents of charlywho are tall. Textually this is expressed as the FOPCformula: 9x tall(x) ^ grandparent(charly; x).3 Model TheoryLet us de�ne the models of our diagrams:De�nition 8 (First Order Model) A model A is composed of:1. A semantic domain jAj, i.e. the set of elements over which visual terms are mappedto.2. A visual term interpretation function ��A , that maps every visual term to an elementof the semantic domain. � : V ! jAj is a mapping from each variable (circle) toan element of the semantic domain (such that all circles of a sequence are mappedto the same element).3. A predicate symbol interpretation function 'A which given a predicate symbol p ofarity n returns the set of tuples of elements of the semantic domain that satisfy thepredicate ('A(p) � jAjn where n is the arity of p).

Visual Logic Programming by means of Diagram Transformations 7Let us now de�ne an interpretation function for visual predicates based on the predicatesymbol interpretation function ('A):De�nition 9 (Visual Predicate Interpretation) The visual predicate interpretationfunction �A , that maps every visual predicate into a subset of jAj, is de�ned as: �A (v) = fz j h��A(t1); :::; ��A(tn�1); zi 2 'A(p)gwhere visual predicate v corresponds to predicate symbol p of arity n (n � 1), and itsarguments are the visual terms t1; :::; tn�1.Let us now de�ne when A is a model of a visual literal. A will be a model of a visualliteral when after interpreting the visual terms and visual predicates of the visual literal,the inclusions originated by the graphical containment hold:De�nition 10 (Models of a Cond. Visual Lit.) A is a model of a condition visualliteral l (A j=� l) i� ��A(t) 2 �A (v)where v is the visual predicate and t is the visual term contained in v (t v v).De�nition 11 (Models of a Concl. Visual Lit.) A is a model of a conclusion visualliteral l (A j=� l) i� 8ti ��A(ti) 2 �A (g)8vj �A (vj) � �A (g)where g is the visual predicate being de�ned (drawn with thick lines), ti are the visualterms contained in g (ti v g) and vj are the visual predicates contained in g (vj v g).Now we de�ne when a �rst order model A is a model of a de�nition diagram. Theintuition is that a model A is a model of a de�nition diagram if, for all possible variablesubstitutions, when it is a model of all its condition visual literals then it is also a modelof its conclusion visual literal.De�nition 12 (Models of a De�nition Diag.) A is a model of a de�nition diagramd (i.e. we say A j= d) i�8� (A j=� h _ A 6j=� l1 _ ::: _ A 6j=� ln)where h is the conclusion visual literal and l1:::ln (n � 0) are the condition visual literalsand � is a variable substitution function.Finally we de�ne when A is a model of a query diagram, the intuition being that Amodels of a query diagram when there exists some variable substitution such that it is amodel of all its condition visual literals.De�nition 13 (Models of a Query Diagram) A is a model of a query diagram q(i.e. we say A j= q) i� 9� (A j=� l1 ^ ::: ^ A j=� ln)where h is the conclusion visual literal and l1:::ln (n � 0) are the condition visual literalsand � is a variable substitution function.

8 APPIA-GULP-PRODE'984 Proof TheoryWe are now going to show how to perform visual inferences directly with the diagrams,de�ning an inference system close to SLD-resolution. Actually we have de�ned the visuallanguage so that it has an expressive power equivalent to that of Horn clauses, and ourinference system will inherit many of the good properties of SLD-resolution.We want to have an operational semantics easy to understand and close to the intuitivesemantics of the diagrams. Therefore the visual inference system we introduce is basedon diagram transformations involving containments in a way such that its intrinsic tran-sitivity (the essence of resolution) is obtained by free. We think that our visual languageallows a visual operational semantics (or proof theory) that is closer to the language se-mantics than in the conventional (textual SLD-resolution) case. Other improvements ofour diagrammatic approach are that we are able to keep track of the proof and representvarious solutions simultaneously in a single diagram.In Section 4.1 we will de�ne the visual uni�cation procedure. In Section 4.2 we for-malize the visual inference rule and introduce the concept of extended query diagram,necessary to perform visual inferences. In Section 4.3 we study how an inference stepis performed, formalizing the di�erent diagram transformations that are necessary toperform an inference step.4.1 Uni�cationUni�cation is |like in textual resolution| very important since every visual inferencestep involves unifying two visual literals: a visual condition literal with a visual conclusionliteral.De�nition 14 (Visual Term Uni�cation) Two visual terms unify when one of thefollowing cases occurs:� Two circles unify and the result is another circle.� A circle and another visual term unify and the result is the visual term. If the circlebelongs to a sequence of circles then all the circles are also uni�ed with the visualterm.� Two constants unify if their constant symbol is the same.� Two compound visual terms unify i� their root function symbol is the same, andall visual term pairs corresponding to the arguments of both root rounded boxesunify. When there is more than one argument, arrow labels are used to match thearguments. If the arrows are not labeled then an arbitrary order is taken (clock-wisestarting at the upper-right corner of the round box).Note that since visual terms and visual predicates are based on DAGs, it is not neces-sary to apply substitutions since variables are already explicitly shared by di�erent visualliterals.De�nition 15 (Visual Predicate Uni�cation) Two visual predicates unify i� theirpredicate symbol is the same, and all visual term pairs corresponding to the argumentsof both predicates unify. When there is more than one argument, arrow labels are usedto match the arguments. If the arrows are not labeled then an arbitrary order is taken(clock-wise starting at the upper-right corner of the square box).

Visual Logic Programming by means of Diagram Transformations 9De�nition 16 (Visual Literal Uni�cation) Let l1 be a condition visual literal (withcontainment t v v), and l2 a conclusion visual literal (with containments ti v g; vj v gwhere 1 � i � n, 1 � j � m and n+m � 1). l1 and l2 unify when:1. the main visual predicates of both literals, v and g, unify.2. One or both of the following cases holds:� m � 1. Then new condition visual literals are formed (t v vj).� t uni�es with some t1; :::; tm.The visual uni�cation of two visual literals embodies two di�erent types of visualreasoning, depending on the type of containment in the conclusion visual literal. Let usshow this by means of two examples.In the example of Fig. 7 the visual predicate corresponding to parent of charly is de�nedby giving two elements contained in it. In this case the uni�cation of the conclusionvisual literal de�ning this visual predicate and the condition visual literal is done byunifying directly the terms contained in both visual literals. Note that the uni�cation of acondition visual literal and a conclusion visual literal may produce a multiple instantiationof a variable. This occurs when the conclusion visual literal has multiple containmentsand more than one option to instantiate the variable exist. In this situation |as we willshow in detail in Section 4.3.1| all di�erent possible instantiations can be put togetherin the resulting visual literal. In Fig. 7 a multiple instantiation is performed, instantiatinga variable with two constants: bob and ann.
parent

charly

parent
bob ann

charly

+

parent
bob ann

charlyFigure 7: Visual Literal Uni�cation: Visual Term containmentThe other possible case is when the visual predicate of the conclusion visual literal isde�ned by giving a visual predicate contained in it. I.e. the visual predicate is de�ned bygiving a subset of the elements which satisfy the predicate. In Fig. 8 we �nd an example ofthis case where the visual predicate grandparents of charly is de�ned by stating that thevisual predicate parents of bob is contained in it. Thus when we unify both visual literalsof Fig. 8 then we create a new visual literal: we try to prove that john is a grandparentof charly by �rst proving that is a parent of bob. This way of reasoning captures theintrinsic transitivity of set inclusion (and also that of implication).
charly bob

parent

grandparent

charly

john

grandparent

charly bob

john

parent

grandparent

+Figure 8: Visual Literal Uni�cation: Visual Predicate containment

10 APPIA-GULP-PRODE'984.2 Visual InferenceNow we introduce and formalize the core of the inference system. One visual inferencerule is similar to SLD-Resolution: 1) Linear { inferences are always performed betweena query diagram and a de�nition diagram, obtaining a new query diagram. 2) De�nite{ De�nition diagrams are equivalent to Horn clauses. 3) Selection { We do not force anyorder over the next visual literal of the query diagram to be solved. The main di�erenceswith standard SLD-resolution are its diagrammatic nature and the fact that it is possibleto keep track of the proof and present multiple solutions in a single answer diagram.In Section 4.2.1 we formalize the inference rule and show how it works by means ofan example. Although the visual inference rule is de�ned to work with query diagrams,we show how it is possible to extend query diagrams so that 1) we can keep track ofthe proof within the same query diagram and 2) we can perform multiple instantiations.Finally, in Sections 4.2.2 and 4.2.3 we introduce extended query diagrams and answerdiagrams respectively.4.2.1 Visual Inference RuleFirst we de�ne the visual inference rule:De�nition 17 (Visual Inference Rule) Let q be a query diagram with condition vi-sual literals l1; :::; ln (n � 1), and d a de�nition diagram with conclusion visual literal gand condition visual literals l01; :::; l0m (m � 0).If li and g unify then we obtain a new query diagram q0 containing the following literals� l1; :::; li�1; li+1; :::; ln� l01; :::; l0m� Any new literal obtained from the uni�cation of li and g.Let us now see how this rule work by means of an example. In Fig. 9 we developa visual inference solving the query \9x grandparent(charly; x)?". In step 1 we applythe visual inference rule, unifying the grandparent literal of the query diagram with itscounterpart in the de�nition diagram. This step captures visually the transitivity ofthe containment relation, and thus we obtain new information for free (i.e. what A.Shimojima calls `free rides'), i.e. the containment of the variable into the parent visualpredicate which conforms a new visual literal to be solved. Furthermore, in order to keeptrack of the proof we do not erase visual predicates and visual terms corresponding tosolved visual literals. We keep them in the diagram, using dashed lines to distinguishthem from unsolved visual literals. Notice that visual terms shared by two or more visualliterals are only marked as solved (with dashed lines) once all visual literals were theyappear are solved.At this point we have two possibilities, depending of which visual literal of the querydiagram we chose. We select the visual literal corresponding to parents of charly andperform the visual inference step (num. 2). However, since the conclusion visual literal ofthe de�nition diagram contains two visual terms, two di�erent instantiations are possible.Here appears one of the advantages of our notation: we can perform a multiple instan-tiation |as we said before in 4.1| and represent both possible solutions in a uniquediagram. Due to this multiple instantiation some visual literals may have to be dupli-cated in order to properly re
ect the di�erent alternatives. In Section 4.3.1 we formalizethis duplication. And, furthermore, it is also necessary to annotate the diagram using anAND-OR tree to represent the logical structure of the query.

Visual Logic Programming by means of Diagram Transformations 11

highlight
solutions

parent

bob

parent

parent

ann

john

grandparent

mary tom sally

charly

parent

ann

tom sally

parent

bob

john mary

parent

charly

bob ann

grandparent

charly

parent

grandparent

parent

charly
parent

parent

grandparent

parent

grandparent

charly
parent

bob

parent

ann

charly

grandparent
parent

bob

parent

parent

ann

john mary tom sally

parent

bob

parent

john

grandparent

mary

charly

parent

ann

(5)

extended query diagrams

definition diagrams

query diagram

answer diagram

(1)

(2)

(3)

(4)

Figure 9: An example of visual inference: solving \9x grandparent(charly; x) ?"

12 APPIA-GULP-PRODE'98Finally, inference steps 3 and 4, solve the remaining unsolved literals and a solution isproduced. In order to correctly visualize the solution an answer diagram is produced byhighlighting those visual terms and visual literals originally present in the query.4.2.2 Extended Query Diagrams

solved visual predicates

AND-node OR-node AND-OR annotation tree

r

a e

r

r
pp

q
r

q
a

active visual
predicate

Figure 10: An example of Extended QueryDiagram

As we have seen the result of a visualinference step is a query diagram enhancedto keep track of already solved boxes andto represent conjunction and disjunction.We call it an extended query diagram andis de�ned as follows:De�nition 18 (Ext. Query Diag.) Anextended query diagram is a query diagramplus� Already solved visual literals, drawnusing dashed lines to distinguishthem from non-solved literals.� An AND-OR annotation tree whoseleaves are all non-solved visual literals. This tree represents the logical structure ofthe query diagram.Usually we will also refer to non-solved visual literals as active visual literals. Fig. 10shows an example of an extended query diagram, indicating its di�erent parts.4.2.3 Answer DiagramsThe equivalent to the empty clause in standard textual SLD-resolution is an extendedquery diagram with no active literals left1. When such a diagram is obtained the queryhas been solved and the extended query diagram contains the solutions that are presentedusing an answer diagram.De�nition 19 (Answer Diagram) An answer diagram is an extended query diagramwith all literals solved and where visual predicates and visual terms present in the originalquery diagram have been highlighted by drawing them with normal lines instead of dashedlines.In Fig. 9, in the inference step num. 5 we obtain the corresponding answer diagram,by highlighting the grandparent literal, the charly constant, and the four instantiationsof the variable originally present in the grandparent literal. From this point of view theinference process can be seen as a diagram completion process in which the solutions aresuccessively stored in the extended query diagram while the goals are being solved.1Since the query contains di�erent alternatives it is possible to have a solution of the query before allliterals are solved, but we will always consider the case where no more active literals are left, i.e. whenall OR-branches (see Section 4.3) are explored

Visual Logic Programming by means of Diagram Transformations 134.3 A Visual Inference StepA visual inference (solving literal lk of an extended query diagram) is performed in threesteps:1. Apply the rule as de�ned in Section 4.2. A multiple instantiation might occur andnew literals (from the de�nition diagram) are added to the extended query diagram.These new literals are not attached to the current AND-OR tree.2. Reconstruct the AND-OR tree: The new literals introduced are added to the AND-node where the solved literal lk was attached. If lk was directly attached to anOR-node, a new AND-node would be created if necessary.3. If a multiple instantiation has occurred then duplicate visual literals that sharevariables with the solved literal. We will formally de�ne this duplication process innext Section.In the next Sections we address the duplication process, the AND-OR tree modi�ca-tions and also other issues regarding success and failure.4.3.1 DuplicationLet us now formally de�ne which part of the diagram is going to be duplicated whena multiple instantiation occurs. We de�ne a duplication function (�()) which given thevisual literal being solved (i.e. the one where the multiple instantiation has occurred)returns the set of visual literals that are going to be duplicated. This set contains 1) anyvisual literal enclosing the variable multiply instantiated and 2) any other visual literalsharing a variable with a visual literal already selected for duplication.De�nition 20 (Duplication Function) The duplication function is de�ned in two steps.First we calculate the set of visual literals related to the variable multiply instantiated,and second we add recursively the other visual literals to be duplicated. Let lm be theliteral where a multiple instantiation has occurred (corresponding to predicate symbol r)and tm the term containing the variable:Step 1:�(lm) = fljl is related to tmgThere are three possible cases where a visual literal l (corresponding to predicate symbolq) is related to tm:� lm 6= l, lm is active and both literals havethe same variable contained in their visualpredicate r qr
q� lm 6= l and lm has a variable (or a termcontaining a variable) as argument which isincluded in the visual predicate of l qr qr

a� lm = l (therefore r = q) and an includedvariable is at the same time part of anargument rStep 2:Repeat �(lm) = �(lm) [fl1g until no more visual literals are added, where a visual

14 APPIA-GULP-PRODE'98
q

p

r r

r r

a e

p

d

q
a

r
p

r

r
p

r

q
a

q

p

q q
a

q
ea

d

(1)

(2)

Figure 11: Example of Visual Inference (1)literal l1 (corresponding to predicate symbol p) is related to a visual literal l2 2 �(lm)(corresponding to predicate symbol p) and one of the following cases holds:� l1 6= l2, l1 and l2 are active, and both liter-als have the same variable (or term with avariable) contained in their visual predicates p
q

p q� l1 6= l2, l1 and l2 are active, and one ofthe literals has a variable (or term with avariable) as argument of the visual predicatewhich is contained in the visual predicate ofthe other visual literal p q p q� l1 6= l2, l2 is active, l1 is a solved literal and l2 has a variable(or term with a variable) as argument of the visual predicatewhich is contained in the visual predicate of l q
a

p� l1 6= l2, l2 is active and both visual literalsshare the same variable as an argument oftheir visual predicates p q
a

qpBy de�nition of �, the set of visual literals to be duplicated after a multiple instan-tiation occurred in visual literal lm (�(lm)), do not share any variable with any visualliteral which does not belong to �(lm). Therefore, the duplication process is performedby simply duplicating all visual literals in �(lm). In order to illustrate this we use anexample (see Figs. 11, 12 and 13) to help explain how these diagram transformationswork. In Fig. 11 we �nd the initial query diagram, representing the following existentialquery expressed in FOPC: \9x; y; z p(x; y) ^ q(z; x) ^ q(z; a)?"First an AND-OR tree with a single AND-node where all active literals are attached isadded to the diagram showing the logical structure of the query. Then the �rst inferencestep is performed, involving the visual literal corresponding to the p predicate. Noticethat new boxes introduced by the inference step are attached to the AND-node. Inferencestep num. 2 introduces two di�erent alternatives into the query by performing a multipleinstantiation. As a result of this multiple instantiation part of the visual literals of thediagram have to be duplicated and an OR-node is introduced in the diagram representingthis two alternatives to solve the query.

Visual Logic Programming by means of Diagram Transformations 15We now formalize the transformation of the AND-OR tree after the duplication. Firstof all, we need to prove that the set of visual literals to be duplicated always belong tothe same OR-branch, i.e. they are all attached to the same AND-node:Lemma 1 Two literals l1 and l2 such that l1; l2 2 �(lm) (for some lm) are never goingto be under di�erent branches of an OR-node.Proof. The only way OR-nodes are introduced is by duplicating part of the diagramwhen a multiple instantiation occurs in a visual literal lm. When we duplicate part of thediagram we duplicate all visual literals belonging to �(lm), therefore it is not possible fortwo boxes to be related and in two di�erent branches.Let us now see how the new AND-OR tree is obtained. Suppose we have a diagramwith literals l1; :::ln, with a multiple instantiation occurred in l1. Let us also suppose that�(l1) = fl2; :::lig. The transformation of the AND-OR tree is the following:
1 2 .. k..i

k+1 .. n

2 .. i 2’ .. i’

k..i+1

k+1 .. n

Where the tree before duplication contains all literals of �(l1) under the same node,and the resulting tree has been obtained by duplicating literals l2; :::li (obtaining l2; :::li)and marking literal l1 as solved The duplication process must also respect other existingcontainments involving already solved literals (i.e. dashed-lines visual predicates).4.3.2 Success and FailureAn important di�erence between our visual inference process and a standard SLD-resolution inference process is that we may have more than one path to solve the queryexplicitly represented within a single query diagram. Therefore we also need to considerhow the diagram is transformed when a visual literal cannot be solved.Every time a visual literal is solved, its visual predicates (now marked as solved anddrawn using dashed lines) are associated to the node of the AND-OR tree where thevisual literal was attached. When a node succeeds, i.e. all its visual literals are solved,then its associated dashed visual predicates are copied to its ancestor node in the tree.� When a branch of an AND-node fails, the whole AND-node fails, and all the activeliterals attached to it are also deleted. Solved dashed visual predicates associatedto the AND-node are also deleted.� When a branch of an OR-node succeeds, then the OR-node is marked as solved, inorder to `remember' that even in the case that other branches fail, the disjunctionrepresented by the node has already been proved.� When a branch of an OR-node fails, and the OR-node has other active literals orhas already been marked as solved, then only this branch is deleted. If it is thelast branch of the OR-node and the node was not marked as solved then the wholeOR-node fails.� When the root node of the tree (either an AND-node or an OR-node) fails then thewhole query diagram fails.

16 APPIA-GULP-PRODE'98
q

p

r r

r r

a e

p q
a

d

r
b

a

d

q

p

r

e

r
b

p

a

q
arr

r
c

b

q

p

r

e

r r

r
b

c
p

a

q
a

d

(4)

(3)

q

p

r

e

r r

r
b

c
p

a

q
a

d

r
b

a

r
c

p
q

a

q
d

r
b

a

r
c

p
q

a

q
d

q
ea

d

fail

(5)

(a) (b)Figure 12: Example Visual Inference (2)Let us now see the rest of the example introduced in Fig. 11. Next two inference steps(num. 3 and 4 in Fig. 12a) do not introduce further alternatives into the query. Instead,after these two steps a whole branch of the OR-node has been solved and therefore wemark this OR-node as already solved. We do so by leaving an unattached branch.
r

b

a

r
c

p
q

a

q
dFigure 13: Example (3)

In Figure 12b the two last visual inference steps are per-formed. First we realize that one of the literals of theremaining branch of the OR-node cannot be solved, andtherefore all active visual literals and dashed visual pred-icates associated to this node are deleted. Finally in stepnum. 5 we solve the last literal of the query diagram ob-taining a solution.An answer diagram is obtained in Fig. 13 by highlight-ing the visual predicates and visual terms present in theoriginal query, or originated by instantiation of variablespresent in the original query.5 Related WorkThe starting point of the work of our research group in the visual languages area was dia-grammatic reasoning as presented by Jon Barwise's group in Hyperproof [4] and speciallyin [9]. However our goals di�er from those of the diagrammatic reasoning community.

Visual Logic Programming by means of Diagram Transformations 17Our use of Venn/Euler diagrams is centered on its computational aspects. We want tofocus on simple diagrams with a clear computational interpretation, avoiding as manylogical symbols as possible. There exist other visual declarative programming languageslike CUBE [12, 13], VEX [7], SPARCL [21, 22], VPP [14], VLP [11] and GrafOLog [8],but none of them uses sets, Venn/Euler diagrams and graphical containment as its foun-dations. The graphical schemes representing conceptual models in [6], do not attempta formal and systematic visual representation of deductive rules. However they are aninspiration for our future work. The existential graphs of Charles S. Peirce (see [18, 9]),a full First-Order-Predicate-Logic diagrammatic reasoning system, are of great interestand a source of inspiration of our research; together with John Sowa's conceptual graphs(see [19, 20]) modeled after Peirce's diagrammatic approaches to predicate logic. Our ap-proach di�ers from that of conceptual graphs mainly on the type of visual representationsused.6 Conclusions and Future WorkIn this paper we have presented the current state of our research on a visual logic pro-gramming language, focusing on its visual inference system. The operational semanticspresented in [17] was incomplete and did not take into account the di�culties arisingwhen representing several alternatives to solve a query in a unique diagram, and, whenkeeping track of the proof that is built in the inference process. In [3] we improved theoperational semantics presented in [17] to deal with these problems, and presented itin an informal way by means of an example. This paper is our �rst attempt to fullyformalize this visual inference system.Immediate work is going to focus on proving the completeness of the inference systempresented in this paper |soundness is obvious|, and enhancing it in order to copewith other features of the visual language as it was originally introduced in [16], like forinstance predicate composition. We are also interested in studying how the use of a visualsyntax changes the formal properties of the operational semantics. We want to know ifthere are other advantages |apart from the obvious ones| of using visual syntax indeclarative programming languages.Logic-based formalisms are widely used in many areas and we believe that our approachto the visualization of a subset of First Order Logic may be successfully applied to someof them. Two applications of this visual logic programming have been explored until now.In [2] we studied the use of this visual language within formal speci�cation and in [15]we studied its application to the databases �eld, speci�cally to the use of visual schemasin deductive databases. In the future, we plan to study other possible applications of thelanguage.We are currently implementing the language and expect to have a �rst prototype soon,to be able to perform empirical testing of our language. The implementation is donecombining Java and Sicstus Prolog, and comprises an interpreter and a syntax-directeddiagram editor.AcknowledgmentsBoth authors have been partially supported by the MODELOGOS project TIC97-0579-C02-01 funded by the CICYT. Part of the work has been done while the �rst authorwas visiting the Visual Inference Laboratory of the Indiana University supported by adoctoral grant of the Direcci�o General de Recerca (Generalitat de Catalunya).

18 APPIA-GULP-PRODE'98References[1] Jaume Agust��, Jordi Puigsegur, and Dave Robertson. A Visual Syntax for Logic and LogicProgramming. Journal of Visual Languages and Computing, 1998. To appear. Available athttp://www.iiia.csic.es/~jpf/papers.html#JVLC.[2] Jaume Agust��, Jordi Puigsegur, and W. Marco Schorlemmer. Towards Specifying with Inclusions.Mathware and Soft Computing, 4(3):281{297, 1997. Available at http://www.iiia.csic.es/~jpf-/papers.html#mathware.[3] Jaume Agust��, Jordi Puigsegur, andW. Marco Schorlemmer. Query Answering by means of DiagramTransformations. In Proc. Conference on Flexible Query Answering Systems, 1998. Available athttp://www.iiia.csic.es/~jpf/conferences.html#FQAS.[4] Jon Barwise and John Etchemendy. Hyperproo�. CSLI Publications, Stanford, 1993.[5] Jon Barwise and John Etchemendy. Heterogeneous Logic. In Diagrammatic Logics: Cognitive andComputational Perspectives. AAAI Press and MIT Press, 1995.[6] M. Borman, J.A. Bubenko, P. Johannensson, and B. Wangler. Conceptual Modelling. Prentice Hall,1997.[7] Wayne Citrin, Richard Hall, and Benjamin Zorn. Programming with Visual Expressions. In Pro-ceedings of the 11th IEEE Symposium on Visual Languages, Darmstadt, Germany, September 1995.IEEE Computer Society Press.[8] Jean-Luc Gu�erin and Paul Y. Gloess. GrafOLog: A Visual Language for a Logic with Objects.Journal of Visual Languages and Computing, 4:301{324, 1993.[9] Eric Hammer. Logic and Visual Information. Studies in Logic, Language and Computation. CSLIand FoLLI, Stanford, CA, 1995.[10] David Harel. On Visual Formalisms. Communications of the ACM, 31(5):514{530, May 1988.[11] Didier Ladret and Michel Rueher. VLP: a Visual Logic Programming Language. Journal of VisualLanguages and Computing, 2:163{188, 1991.[12] Mark Alexander Najork. Programming in Three Dimensions. PhD thesis, University of Illinois atUrbana-Champaign, Urbana, Illinois, 1994.[13] Mark Alexander Najork. Programming in Three Dimensions. Journal of Visual Languages andComputing, 7:219{242, 1996.[14] L.F. Pau and H. Olason. Visual Logic Programming. Journal of Visual Languages and Computing,2:3{15, 1991.[15] Jordi Puigsegur, Jaume Agust��, and Joan-Antoni Pastor. Towards Visual Schemas in DeductiveDatabases. Research report, Computer Science Department, Technical University of Catalonia,1998.[16] Jordi Puigsegur, Jaume Agust��, and Dave Robertson. A Visual Logic Programming Language.In Proc. of the 12th IEEE Symposium on Visual Languages, Boulder, Colorado, September 1996.Available at http://www.iiia.csic.es/~jpf/conferences.html#VL96.[17] Jordi Puigsegur, W. Marco Schorlemmer, and Jaume Agust��. From Queries to Answers in VisualLogic Programming. In Proc. of the 13th IEEE Symposium on Visual Languages, Capri, Italy,September 1997. Available at http://www.iiia.csic.es/~jpf/conferences.html#VL97.[18] Don D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton and co., The Hague, 1973.[19] John F. Sowa. Conceptual Structures. Information Processing in Mind and Machine. AddisonWesley, 1984.[20] John F. Sowa. Relating Diagrams to Logic. In Guy W. Mineau, Bernard Moulin, and John F.Sowa, editors, Conceptual Graphs for Knowledge Representation, Proc. of the First Int. Conf. onConceptual Structures, ICCS'93, Quebec City, Canada, Lecture Notes in Arti�cial Intelligence (699).Springer Verlag, Berlin, 1993.[21] Lindsey Spratt. Seeing the Logic of Programming with Sets. PhD thesis, University of Kansas, 1997.[22] Lindsey Spratt and Allen Ambler. A Visual Logic Programming languages based on Sets andPartitioning constraints. In Proceedings of the 9th IEEE Symposium on Visual Languages, Bergen,Norway, September 1993. IEEE Computer Society Press.

