
Abstract

This paper presents a new programming language
named SPARCL that has four major elements: it is a vi-
sual language, it is a logic programming language, it re-
lies on sets to organize data, and it supports partitioning
constraints on the contents of sets. It is a visual program-
ming language in that the representation of the language
depends extensively on non-textual graphics and the pro-
gramming process relies on graphical manipulation of
this representation. It is a logic programming language in
that the underlying semantics of the language is the reso-
lution of clauses of a Horn-like subset of first order predi-
cate logic. It uses sets as the only method of combining
terms to build complex terms. Finally, one may constrain
a set's structure by specifying a partitioning into pairwise
disjoint subsets.

Rationale

Visual programming languages (VPLs) can be much
easier to understand than linear text-based programming
languages, since the expression of a programming task vi-
sually can more closely mirror the programmer’s way of
thinking than the textual expression does. This greater fe-
licity of expression is due to the greater variety of expres-
sion available in VPLs and the intrinsically unordered na-
ture of a two-dimensional presentation.

Sets and partitioning constraints.

There are two approaches to ways to collect together
data. One is an n-tuple and the other is a set. The n-tuple
is present in almost all programming languages in a vari-
ety of forms. Common forms are records, lists, arrays, and
structures (a functor plus arguments). An n-tuple is an or-
dered collection of elements. A set is an unordered col-
lection of elements.1 The extensional definition of a set

1. There are two kinds of definitions of sets, extensional and inten-

needs an unordered presentation of that set’s elements,
making the set an interesting candidate as the basic data
organizing tool for a VPL. One can represent n-tuples as
sets (using a particular nesting of sets containing sets), so
a set-based language can express ordering.

A partition in SPARCL contains one or more elements.
Each element is a subset, and all of the elements of a par-
tition are pairwise disjoint. A partition P unifies with a set
S if there exists a partition of S which unifies with P. Par-
titioning a set is a useful and natural way to constrain the
structure of a set. This is a generalization of the ability in
list-based languages to “abstractly” specify the first ele-
ment of a list and the rest of that list (e.g., ‘[H|T]’ in Pro-
log constrains H to be bound to the first element of a list
and T to be bound to the rest of that list).

N-Tuples.

It is often relevant to order data items. In most symbol-
ic languages programs do this by a list or “structure”. For
instance, LISP uses only lists, PROLOG generally imple-
ments lists by structures with structures being the more el-
ementary construct, and many languages provide arrays
and some kind of record structuring. However, it is not
necessary to have any additional mechanism beyond sets
in order to express ordering. Since the representation of
ordering using only sets is extremely cumbersome,
SPARCL provides a special representation for an ordered
collection of elements. This special representation is the
n-tuple, where a sequence of n elements t1 through tn is

written “〈t1, ... , tn〉”. This general construction defines

any order-dependent structure. A 3-tuple can describe a
function of two arguments, with its first element the name
of the function and the second and third elements of the 3-
tuple corresponding to the first and second function
arguments. A program may represent a list by nesting
uses of a ‘cons’ function of two arguments. The second

sional. An extensional definition simply enumerates the elements
of the set. An intensional definition provides a property which is
true of an item if and only if that item is an element of the set.

A Visual Logic Programming Language
Based on Sets and Partitioning Constraints.

Lindsey Spratt and Allen Ambler

Computer Science Department
University of Kansas,
Lawrence, KS, 66045

argument is another use of the ‘cons’ function, or the
symbol ‘nil’ representing the empty list. So, “〈cons, a, b〉”
defines the function “cons(a, b)”, and “〈cons, a, 〈cons, b,
nil 〉〉” defines a list “[a, b]”.

Declarative programming.

The declarative approach to a programming language
is a fundamentally unordered presentation of properties.
The procedural approach is a fundamentally ordered (by
control flow) presentation of computational steps. Thus,
declarative paradigms potentially better suit visual lan-
guages as the underlying semantics than do the procedural
paradigms. SPARCL has a logic programming semantics,
and logic programming is a declarative paradigm.

Related Work

Several research areas are important to the research re-
ported in this paper; visual languages, logic programming,
unification, set unification, sets in programming languag-
es, and visual logic programming. Ambler and Burnett [1]
survey the field of visual languages. Sterling and Sha-
piro’s The Art of Prolog [2] explains the logic program-
ming paradigm in general and PROLOG in specific.
Siekmann [3] summarizes the literature of universal unifi-
cation, including “associative-commutative-idempotent”
unification (set unification). The following subsections
discuss work on sets in programming languages and on
visual logic programming.

Sets in programming languages.

General-purpose programming languages which sup-
port sets include: SETL [4], REFINE [5], GAMMA [6],
{Log} [7], GÖDEL [8], equational logic programming
[9], and Higraphs [10]. In contrast with SPARCL, most of
these systems do not rely on sets as the central method of
organizing data and none of them use partitioning as a
basic programming mechanism. Also, none of these sys-
tems provide a visual language environment.

Visual logic programming.

Visual programming languages that have logic pro-
gramming paradigm semantics include: VLP [11], VPP
[12], Mpl [13], CUBE [14], Pictorial Janus [15], and pic-
ture logic programming [16]. None of these make use of
sets (or partitions of sets). Only CUBE and Pictorial Janus
are completely visual environments, the others rely on lin-
ear textual presentations of code in certain situations.

There has been some work in visualizing logic pro-
grams, which is distinct from a visual programming lan-
guage. The Transparent Logic Machine[17] and the
AND/OR graph-based system of Senay and Lazzeri [18]
are examples of this.

The Language

A SPARCL2 program is a set of clauses. A clause is a
pair where the first element (the head) is a literal and the
second element (the body) is a set of literals. (Only posi-
tive literals are directly represented.) A fact is a clause
with an empty body. A rule is a clause with a non-empty
body. A literal is an n-tuple where the first element (the
predicate name) is an ur element and the rest of the ele-
ments are the arguments of the literal. An ur element is
any constant except the empty set. An argument is any
term. A term is a constant, a variable, a set, a partition, or
an n-tuple. A constant is the empty set, an alphanumeric
string, or a number.

There are three parts of the concrete syntax; the terms,
the programmatic elements, and the tabular extensions.
For most of the non-textual elements, the visual program
editor adjusts the actual size depending on what the dis-
played element contains—it is drawn as large as it needs
to be so that the representation visually contains what it
semantically contains.

The terms are shown in Exhibit 1. The interpretations
of parts (a) through (c), and (f) and (g) are, we hope, self-
evident from the exhibit. The “hollow” partition elements
in parts (d) and (e) complicates their interpretation.

2. Sets and PARtition Constraints in Logic

Exhibit 1 : SPARCL terms.

(a) Variable

(b) Ur Term

(c) Empty Set

(d) Set (Parti-
tion with 1 Ele-
ment)

text

(e) Parti-
tion with 4
Elements

(f) 3-tuple with Variable 1st,
Ur Term 2nd, and Set con-
taining a Variable 3rd.

more text

(g) Set containing
Variable, Ur Term,
and an Empty Set.

(h) Partition of 2 ele-
ments. The top element
contains 2 Ur Terms
and a Variable. The
bottom element has un-
specified contents.

43

stuff

more text

Part (d) represents a partition of a set into one subset.
Since the union of a partition’s elements equals the whole
set, this one subset is identical to the whole set. (The solid
box represents the set in its entirety and the offset gray
box represents the one partition element of that set.) Part
(d) does not specify whether or not there are any members
of this partition element. A partition element that is drawn
without any contents (a “hollow” partition element) is a
partition-element “variable”, which can only unify with a
set-like term. A set-like term is: a partition element, an
entire partition, an empty set, an n-tuple, or a variable. If a
single hollow circle were drawn in the element of (d),
then the partition element would be a subset containing a
single term. The hollow circle identifies this term. Part (e)
is a partition with four elements (subsets). Part (e) does
not specify whether or not any of these partition elements
contains any members, since all of them are hollow.

The programmatic elements are shown in Exhibit 2. All
four items are clauses. Items (a) and (b) are facts. Items
(c) and (d) are rules.

Exhibit 4 illustrates co-reference. Two terms are refer-
ences to the same term if a solid line connects them. Co-
referring terms may look different, but they must unify.
The same (multiple segment) line may connect any num-
ber of terms. All of the representations that a line con-
nects must be within the same clause and they all must si-
multaneously unify (e.g., for three co-referring terms A,
B, and C, it must be true that there exists a Most General

Unifier σ such that Aσ = Bσ = Cσ).

Extended Syntax.

The extended concrete syntax provides tabular repre-
sentations for collections of facts or terms. Exhibit 3
shows a tabular representation for a predicate definition
that consists of only a set of facts (part a), and a tabular
representation for a set of n-tuples (part b). SPARCL also
uses a tabular representation to display both an n-tuple of
n-tuples and also an n-tuple of sets. (These are not
shown.)

Queries and Programs.

The set of clauses in the same window are a program.
(All of the loaded programs (windows) are a project.)

The user can use the head of any clause as a query. The
user places the cursor within the clause, presses the mouse
button, and selects the “Query” item from the popup
menu. Specifying a clause as a query means that a literal
with the same structure as the head of the clause becomes
the query and SPARCL invokes the interpreter with that
query. After “solving” the query, the interpreter may have
bound one or more variables in the query to some values.
SPARCL displays this bound version of the query in the
same window as the clause that was the source of the
query literal.

An Example.

Exhibit 4 shows the union program. The co-reference
lines or “links” attach to the right sides of the partitions.
In the implemented system the links are in different colors
(up to 6).

The union clause is true when the third argument is the
set that is the union of the sets in the first two arguments.
The connections of the partition elements of the three par-
tition terms indicate this. A co-reference link connects the
middle partition element of
the third argument to an ele-
ment in each of the other
two arguments. Another co-
reference link connects the
top partition element of the
first argument to the bottom
partition element of the third
argument. Thus, there are
co-reference links for both
of the partition elements of
the first argument to the
third argument. So, any set
that unifies with the first ar-
gument is a subset of the

Exhibit 2 : SPARCL clauses and literals.

Exhibit 3 : SPARCL extended syntax
Exhibit 4 : Union

Union

(a) Three facts compressed into a single fact table.

B3

A1 B1

A2 B2

A3

Predicate

(b) A set of two 3-tuples compressed into
a single term table.

128

10.5foo

1 2 3

text

more text

(a) Clause

(b) Clause with 2
arguments

(c) Clause
with Literal

(d) Clause
with 2 argu-
ments with
Literal with
2 arguments.

Predicate

Predicate

Predicate

Predicate
Literal

Literal

third argument. Similarly, any set that unifies with the
second argument is a subset of the third argument.

The middle partition element of the third argument is
the intersection of the first two arguments (i.e., the largest
subset consisting of members common to the first two ar-
guments). That this is so relies on both properties of a par-
tition—the elements form a cover of the unifying set, and
the elements are pairwise disjoint subsets. The middle ele-
ment of the third argument consists of members common
to the first two arguments, since it co-refers with partition
elements of the first two arguments.

It is the largest subset of common members due to the
construction of the partition of the third argument. If a
common member is not in the middle element, then it will
be in both the first and third elements (since it is com-
mon). However, the elements of a partition must be pair-
wise disjoint, so this would violate the partition. Thus,
common members can only be in the middle partition.
Since the first and second arguments are subsets of the
third argument (an earlier paragraph discusses this), then
all of the common members must be in the third argu-
ment. Thus, all of the common members are in the middle
element.

Semantics

The semantics of the language is basically that of a res-
olution theorem prover with negation-as-failure, set unifi-
cation, and partition constraint satisfaction. This is analo-
gous to (but not the same as) the semantics of Prolog.[19]

Delays

The programmer can use delay specifications to force a
weak ordering on the execution of the inference proce-
dure. The interpreter delays the attempt to determine if a
literal is true if the literal satisfies the delay specification
of its predicate. For instance, the system will delay the ‘is’
predicate under certain circumstances. A programmer
uses the builtin ‘is’ predicate to evaluate arithmetic ex-
pressions. The interpreter unifies the first argument of the
’is’ predicate with the result of the arithmetic evaluation
of the second argument. The delay specification for this
predicate says to delay a literal that has a nonground sec-
ond argument, i.e., one for which the arithmetic expres-
sion is not completely “filled in”. The interpreter retries
delayed literals whenever there are no more undelayed lit-
erals to prove. A two-argument clause with the predicate
name ‘*DELAY*’ defines a delay specification. The first
argument is the predicate name of the predicate to be de-
layed, and the second argument is an n-tuple of keywords
indicating the conditions under which to delay the predi-
cate. There can be any number of delay specifications for

the same predicate.

Unification

The interpreter determines whether or not a literal in-
stantiation matches a clause head instantiation by trying to
unify them. The process of unification may further instan-
tiate unbound variables in either the literal or the clause
head instantiation.

SPARCL has a more complex definition of unification
than that which is normally used in logic programming.
There are several reasons for this. The unification prob-
lem in this language involves sets, which requires associa-
tive-commutative-idempotent unification (the usual unifi-
cation definition assumes none of these properties). Also
this language uses partitions, which requires constraint
satisfaction, the translation between sets and partition rep-
resentations, and special treatment for variable partition
elements.

Unification in SPARCL is slow. Adapting standard
logic programming compilation techniques to handle
unification should dramatically improve the speed of
SPARCL.

Programming Environment

We implemented SPARCL on a Macintosh using LPA
MacPROLOG version 4.5. Both the Apple Macintosh and
the PROLOG language are natural choices for implement-
ing SPARCL. Since PROLOG is a logic programming
language, many of its facilities are directly useful in im-
plementing the logic programming aspects of SPARCL.
The Macintosh has a rich graphical environment that is
easy to use in LPA MacPROLOG, thus easing the imple-
mentation of the graphical aspects of SPARCL. The envi-
ronment uses the standard elements of a Macintosh inter-
face; pulldown menus, windows, dialogs, and popup
menus.

Conclusion

SPARCL is only a first attempt at exploring the combi-
nation of sets, partition constraints, logic programming,
and a visual programming environment. The set and parti-
tion unification mechanism is very powerful, but it is also
very slow. We have done some work to speed up the uni-
fication algorithm, but this is clearly an area that can use a
great deal more attention.

Visual Programming.

There are some difficulties with the representation of
programs in SPARCL. When the structures being repre-

sented become even mildly complex, the many nested
boxes can be hard to interpret (for example, an argument
box containing a set box, containing a partition element
box, containing an n-tuple box, containing a set box as the
first element of the n-tuple, ...). This should be a problem
that we can mitigate with some careful thought about
other ways to represent these different kinds of terms.
Perhaps simply greater variety in the appearance of the
various kinds of boxes would help. The extended concrete
syntax is a step in producing a more comprehensible ap-
pearance.

The use of lines for co-referencing can be a problem. It
is common in visual languages that use lines to connect
things that there becomes a profusion of lines in imple-
mentations of interesting problems. This profusion is very
hard for the programmer or system to manage so that they
remain understandable. An important mitigating factor for
SPARCL is that lines only connect elements within a
clause, never between clauses. Thus, the “range” of inter-
connections is fairly limited compared to some visual lan-
guages that use lines to connect elements. For instance, a
data flow language that connects operators by lines (out-
put from one operator connected to the input of another
operator) has no language imposed limit on the possible
extent of lines within a complex program. Typically such
a language handles this by allowing the programmer to
use some kind of “functional” abstraction. SPARCL uses
clauses to provide this abstraction.

The Future.

This is a report on work in progress. Further work is
planned for all of the various aspects of SPARCL, includ-
ing the formal semantics, the concrete syntax, and the im-
plementation.

References

[1] “Influence of Visual Technology on the Evolution of Lan-
guage Environments” by Allen L. Ambler and Margaret M.
Burnett. In IEEE Computer, 22(10):9-22, October 1989.

[2] The Art of Prolog by Leon Sterling and Ehud Shapiro. MIT
Press:Cambridge, MA. 1986.

[3] “Universal Unification” by Jörg H. Siekmann in Proceed-
ings of the 7th International Conference on Automated De-
duction, pp. 1-22. 1985.

[4] The SETL2 Programming Language by W. Kirk Snyder.
Sept 9, 1990.

[5] “Research on Knowledge-Based Software Environments at
Kestrel Institute” by Douglas R. Smith, Gordon B. Kotik,
and Stephen J. Westfold. In IEEE Transactions on Software
Engineering, Vol. SE-11, No. 11, November 1985.

[6] “Programming by Multiset Transformation” by Jean-Pierre

Banâtre and Daniel Le Métayer in Communications of the
ACM, January 1993, Vol. 36, No. 1.

[7] “{Log}: a logic programming language with finite sets” by
A. Dovier, E.G. Omodeo, E. Pontelli, and G. Rossi. In Pro-
ceedings of the Eighth International Conference on Logic
Programming, edited by K. Furukawa, pages 111-124,
Paris, 1991.

[8] The Gödel Programming Language by P. M. Hill and J. W.
Lloyd. CSTR-92-27, Dept. of Computer Science, University
of Bristol. 245 pages. 1992.

[9] “Subset-Logic Programming: Application and Implementa-
tion” by Bharat Jayaraman and Anil Nair, pp.843-858 in
Logic Programming: Proceedings of the Fifth International
Conference and Symposium, edited by Robert A. Kowalski
and Kenneth A. Bowen. Cambridge, Massachusetts:MIT
Press. 1988.

[10] “On Visual Formalisms” by David Harel. In Communica-
tions of the ACM, 31(5):514-530, May 1988.

[11] “VLP: A Visual Logic Programming Language” by Dider
Ladret and Michel Rueher in Journal of Visual Languages
and Computing (1991) 2, 163-188.

[12] “Visual Logic Programming” by L. F. Pau and H. Olason in
Journal of Visual Languages and Computing (1991) 2,
3-15.

[13] “Mpl - a graphical programming environment for matrix
processing based on logic and constraints” by Ricky Yeung,
in IEEE Workshop of Visual Languages, pages 137-143.
IEEE Computer Society Press, October 1988.

[14] “The CUBE Language” by Marc A. Najork and Simon M.
Kaplan. Pages 218 to 224 in Proceedings of the 1991 IEEE
Workshop on Visual Languages, October 8-11, 1991, Kobe,
Japan. IEEE Computer Society Press:Los Alamitos, CA.
1991.

[15] “Complete Visualizations of Concurrent Programs and their
Executions” by Kenneth M. Kahn and Vijay A. Saraswat.
Pages 7 to 15 in Proceedings of the 1990 IEEE Workshop
on Visual Languages, October 4-6, 1990, Skokie, Illinois.
IEEE Computer Society Press: Los Alamitos, CA. 1990.

[16] “Pictures Depicting Pictures: On the Specification of Visual
Languages by Visual Grammars” by Bernd Meyer. Pages
41-47 in Proceedings of the 1992 IEEE Workshop on Visual
Languages September 15-18, 1992, Seattle, Washington.
IEEE Computer Society Press:Los Alamitos, CA. 1992.

[17] “The Transparent Prolog Machine (TPM): an execution
model and graphical debugger for logic programming” by
M. Eisenstadt and M. Bradshaw. In Journal of Logic Pro-
gramming, 5 (4), 1988.

[18] “Graphical Representation of Logic Programs and Their
Behavior” by Hikmet Senay and Santos G. Lazzeri. Pages
25 to 31 in Proceedings of the 1991 IEEE Workshop on Vi-
sual Languages, October 8-11, 1991, Kobe, Japan. IEEE
Computer Society Press:Los Alamitos, CA. 1991.

[19]Foundations of Logic Programming by J. W. Lloyd.
Springer-Verlag, 2nd edition, 1987.

	Rationale
	Related Work
	The Language
	Semantics
	Programming Environment
	Conclusion
	References

