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Abstract 
 
We consider integration between computer aided design (CAD) and computer aided engineering 
(CAE). We define and implement an application protocol interface (API) using XML schema and 
standard XML services embedded in our Microsoft development platforms. In order to perform 
strength assessment the design model must be simplified. This is a difficult process which we handle 
by means of a semi-automated system that we call “the idealization toolbox” (IDTB). The IDTB 
consists of an API derived from the schema, transformations that define idealizations, and a part 
library that consists of a set of parameterized structural objects that can be defaults for structural 
details in the vessel. In the current paper we concentrate on the application protocol, and on the 
idealization strategy we employ. 

 
1. Introduction 
 
In this paper we consider CAD-CAE integration and describe how we currently export from an early 
design system – NED – to a CAE system based on engineering concepts– SESAM Genie – for 
strength assessment. NED is short for Nauticus Early Design and is a CAD tool tailor-made for early 
design. SESAM Genie, a general design application for plates, curved shells and 3d frame structures, 
has become a leading design tool in several fields of modelling, including 3D frame structures and 
stiffened plate/shell structures. 
 
2. CAD-CAE integration 
 
2.1. CAD-CAE integration – the problem 
 
It is assumed that the user creates a model in a CAD tool and then exports the model and the 
associated properties to a CAE system. There are two main problems in this approach: i) to represent 
the geometry in a practical way and ii) the required simplification of the model when it is transferred 
to strength assessment. 
 
In addition, there are several data consistency issues and problems, and exceptions due to system 
failures, which we do not consider in this paper. Robust and efficient solutions to these are, however, 
essential for a successful system. 
 
2.2. Application protocols and a CAD-CAE integrator concept 
 
In order to obtain a robust and efficient export of structural data we define and implement an API. The 
API concept is shown in Fig.1. We use XML schema to define the API.  
 
An important issue in the development of an integrator is the transformation from the internal object 
model to a model that is convenient for exchange of data between applications and thus may serve as 
an integrator (i.e. API). We call this new integrator model the exchange model. Notice that the 
exchange model does not contain the complete internal object model, but does only contain data of 
global interest. That is, we assume that the exchange model describes the structure and the format of 
the data to be exchanged. This means that we so far have an insufficient model if we aim at a common 
understanding of data that is exchanged between some collaborating applications. Thus, we need 
another model that, in addition to what does the exchange model, describes how to interpret the data. 
We call this model the reference model, and by means of this model data is converted to information. 
Thus, the reference model can be viewed as a specialization of the exchange model. In other words, 
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the reference model inherits the exchange model and adds semantics to enable interpretation of the 
data that is exchanged between collaborating applications. 
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Fig.1: The CAD-CAE integrator concept. 
 
We assume further that all entities in the reference model are specializations of at least one entity in 
the exchange model, and that all attributes present in the reference model are present in the exchange 
model. That all attributes must be present in the exchange model is obvious since any data item must 
be represented in the instance. The reference model in turn inherits all entities and attributes from the 
exchange model and provides a restricted interpretation compared to the exchange model by enforcing 
constraints on the behaviour. 
 
The main objective of the API development can now be summarised as: For two applications that 
support the same reference model we expect that the same semantical understanding is present and 
that they can collaborate in the same manner as old fashioned point-to-point integration according to 
the rules described in the reference model. This usage of the two models is shown in Fig.1. 
 
2.3. Geometry representation 
 
After some internal DNV Software studies we have, for the time being, concluded that no general 
standard for exchange of geometry and topology does satisfy our needs. Therefore, we have decided 
to embed geometrical data into the XML data sets as CDATA sections that contain ACIS1 sat 
representations of the geometry. The embedded geometry data can be referenced, i.e. geometrical 
entities included in the embedded data may be referenced directly in the application that receives the 
data. 
 
2.4. Idealization (simplification) 
 
One of the key steps in an engineering analysis is the idealization process. The aim of this process is 
to transform the intentions, under constraints and rules, to engineering models describing them in the 
language of structural engineering. The models we use are a structural model and a general 
constraints, boundary condition and load model which we call a constraints model. The idea is that 
any business intention, constraint or rule that is known and defined in the design model should be 
built into the engineering model in terms of structural constraints and requirements. And likewise, that 
                                                 
1 Copyright 2003-2007 Spatial Corp, see http://www.spatial.com/. 
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any non structural intention, constraint or rule (means that it is not a part of the structure itself but 
affects and disturbs the structure) is built into the constraints model. These constraints are typically 
environmental loads, equipment loads, etc. that define and provide disturbances and constraints to the 
behaviour of the structure. It is assumed that rule loads, gravitational loads and any other physical 
constraint that may be derived from the product model by default, is transferred to the constraints 
model. We note that structural boundary conditions often need to be applied to regularize the problem 
if the analysis method is not able to handle singular problems. 
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Fig.2: The Idealization ToolBox concept. 

 
What we do is thus an idealization from a design model to an engineering model that has been 
embedded with engineering knowledge in order to comply with all the intentions, constraints and 
rules that have been set forth. The design model is assumed to contain the complete domain. We note 
that we do not foresee that this process will ever be fully automated, but rather be semi-automated 
with adequate support to ease the logistics for the engineer. The idealization may be viewed as a 
sequence of transformations where we record each step in order to provide a cycle-back from the 
engineering model to the design model. Such transformation mechanisms enable us to transfer 
changes in the design back to the design model in a language understood by the designers. 
 
The Idealization ToolBox is responsible for all adaptations, translations and idealizations that are 
needed to exchange information between two applications that implement a common API. It is, 
however, not responsible for the internal interpretation of information as performed in a receiving 
application. Figure 2 shows a conceptual view of an Idealization ToolBox. The responsibility of the 
tool box is shaded, while the validation of information and data with respect to a reference model is 
the responsibility of the applications themselves, i.e. follows the concept shown in Fig.1. 
 
In addition to the Idealization ToolBox, we develop an analysis and modelling framework in order to 
support the ideas briefly introduced above. In such a framework we need pre-processors, post-
processors and general analysis components to do the strength assessment. This leads to the next step 
in our analysis and modelling framework, the creation of analysis models. In this context an analysis 
model is a numerical discretization of the engineering problem, for instance by means of finite 
elements. The creation of numerical models is similar to the process we use to create the engineering 
model and is done by a sequence of transformations. The main difference is that while the first 
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sequence is semi-automated, this process is automated and we facilitate means for the engineer to 
tailor-make the discretization to serve specific purposes. Like the former idealization process we 
ensure a ‘way back’ from the numerical model to the engineering model. We use the standard 
SESAM suite of analysis software to perform the basic tasks required in the analysis process, SESAM 
(1996). Since we have two engineering models we need to do a merge when we create the numerical 
model. This process is non-trivial but enables us to tailor the discretization to serve specific purposes, 
see also the short discussion on adaptive finite-element analyses in the next paragraph. 
 
Important methods and concepts in the analysis and modelling framework are model adaptivity and 
adaptive finite-element analyses. Model adaptivity, Stein and Ohnimus (1995), is a technique we use 
to ensure that the numerical models are capable of representing complex physical behaviour in an 
adequate way in order to provide good predictions of the response. We may start in a reduced space, 
say 2D, and enforce kinematical constraints, for instance from Kirchhoff hypothesis. If this reduced 
space cannot represent what we want to analyse, we transform the model to full 3D theory in the 
critical areas. Adaptive finite-element analysis is another technique we use to reduce the actual 
numerical errors in the computations, Ladevèze and Oden (1998). The main concern here is to tailor 
the discretization to the constraint situation and enable an adaptive refinement of the discretization 
until it provides a response prediction with an error estimate that meets the requirements. The 
procedure is then a standard implementation of adaptive FE analysis. One problem with this strategy 
is that it works well only with simple elements. There are considerable problems to develop good 
error estimators for more complex finite-element formulations. 
 
3. Implementations and examples 
 
The integrator system and the idealization process discussed in Sec. 2 have been implemented as part 
of DNV Software’s general CAD-CAE solutions. In particular, we have implemented a two way data 
exchange between Nauticus Early Design (NED) and Genie. The NED software suite is developed as 
an extension to Intergraph’s IntelliShip™ software and is tailor-made for early design. 
 
3.1. API model interface 
 
The model is specified in XML schema and is implemented as a Document Object Model (DOM2).  
 
This sub-section gives an overview of the top level entities in the model.  
 
3.1.1. entity Ship 
 

 
 
The “Ship” entity is the root of the DOM. It has a “Name” attribute and aggregates three entities. 
 
                                                 
2 The Document Object Model is a platform- and language-neutral interface that will allow programs and scripts 
to dynamically access and update the content, structure and style of documents. The document can be further 
processed and the results of that processing can be incorporated back into the presented page, for further 
information ref “http://www.w3.org/”. 
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3.1.2. entity Administrative 
 

 
 
“Program” gives information about the program that created the data set (NED), and “Session” 
provides information about date and time. 
 
3.1.3. entity BoundingBox 
 

 
 
The bounding box defines the selected set of the CAD model in terms of two points. The bounding 
box may extend to the whole ship. 
 
3.1.4. entity Plates 
 

 
 
The “Plates” entity represents a plate group, has a “Name” attribute and aggregates a “Plate” and a 
“Stiffeners” entity. Each plate can be considered as part of the plate group. The “Stiffeners” entity so 
collects the set of stiffeners that are contained in the plate group. Note that we do not represent beams 
that are not functioning as stiffeners on the plate structure in the current version of the model. 
 
3.1.5. entity Plate 
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The “Plate” entity has a “Name” attribute and aggregates a set of entities of which “Geometry” 
impose restrictions to the use of a data set generated according to this model. 
 
Notice that “Plate” does not nest plates. I.e. no recursion is yet implemented. This is defined in the 
base model we aim at – but currently the matters are as described here. 
 
3.1.6. entity Stiffeners 
 

 
 
The “Stiffeners” entity has a structure similar to “Plates” and has the same role for “Stiffener” entities. 
Thus it has a “Name” attribute and aggregates a “Stiffener” entity. 
 
3.1.7. entity Stiffener 
 

 
 
The “Stiffener” entity has a “Name” attribute and aggregates a set of entities of which “Geometry” 
impose restrictions to the use of a data set generated according to this model. 
 
3.1.8. entity Geometry 
 

 
 
The “Geometry” entity aggregates two entities a “sat_embedded” and a “line” entity. 
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The “sat_embedded” entity contains a base64 decoded CDATA section that represents the geometry. 
This implies that the receiving application must be equipped with an ACIS sat file interpreter. A 
“Geometry” entity evaluates to something like the following in a data set: 
 

<Geometry> 
   <sat_embedded encoding="base64"> 
      <![CDATA[MTUwMCAwIDEgMCAgIC ……….]]> 
   </sat_embedded > 
</Geometry> 

 

 
 
The “line” entity is an explicit geometry for a straight segment. 
 
3.2. Idealization ToolBox 
 
This section sketches the process flow of the Idealization ToolBox for inner structural parts, Fig.4, 
and shows some examples that have been processed by the Idealization ToolBox as a step under 
export from NED to Genie. 
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Fig.4: Overview of the part idealization process 

 
Figs.5 and 6 show examples of idealizations to demonstrate the feasibility of the suggested approach. 
The idealizations include stiffener snapping, hole simplification, offset of structure to eliminate 
eccentricities, and extrusion line simplification (for corrugated bulkheads). 
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Fig.5: Mesh quality for production model, detail model and cargo hold model. 
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Fig.6: Idealization of web frame. To the left the design model, and to the right the idealized model. 

 
Fig.6 shows what we call “aggressive” idealization of a typical web frame in order to reduce the size 
of the resulting analysis model as much as possible. Such simplifications are used for global analyses 
and cargo hold analyses. 
 
3.3. Application of rule loads and code check 
 
For completeness we include a brief section on rule loads and code checks as implemented in Genie. 
As mentioned in Sec. 2.4., loads are applied to a constraints model which is merged with the structural 
geometry in order to build a complete analysis model. Genie is based on engineering concepts and 
thus enables loads to be applied directly on the concepts. In a rule based context this means that loads 
and boundary conditions are applied to the concepts according to the governing rule sets. 
 
After the finite element solution is available post-processing of the results are performed. In a ship 
classification session this often means code check, for instance fatigue and plate buckling checks. 
Since the engineering modeller works on engineering concepts it is possible to implement automatic 
generation of models for code checks. We call these models capacity models. This is implemented in 
Genie where the capacity models are derived from the engineering concepts, again according to the 
rules that govern. 
 
4. Conclusions and further work 
 
We have implemented a CAD-CAE system which is promising. There are issues to be solved, such as 
rule based idealizations where the user will be provided means to decide how specific details shall be 
idealized. Another issue is scalability of the solution when the model size increases. Yet, we have not 
met models that are large enough to challenge the system but we foresee larger and more complex 
models in the future and careful analysis of the scalability is needed. 
 
An issue we omitted in this study is mesh generation. Mesh generation is hard because classification 
rule systems pose requirements to the mesh structure. Such requirements must sometimes be solved 
by inspection and we are in process of improving our mesh generation modules in order to handle the 
requirements. 
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