
A MULTI-LAYER ARCHITECTURE FOR SEMI-SYNCHRONOUS

EVENT-DRIVEN DIALOGUE MANAGEMENT

Antoine Raux and Maxine Eskenazi

Language Technologies Institute

School of Computer Science

Carnegie Mellon University

ABSTRACT

We present a new architecture for spoken dialogue systems

that explicitly separates the discrete, abstract representation

used in the high-level dialogue manager and the continuous,

real-time nature of real world events. We propose to use the

concept of conversational floor as a means to synchronize

the internal state of the dialogue manager with the real world.

To act as the interface between these two layers, we intro-

duce a new component, called the Interaction Manager. The

proposed architecture was implemented as a new version of

the Olympus framework, which can be used across different

domains and modalities. We confirmed the practicality of

the approach by porting Let’s Go, an existing deployed dia-

logue system to the new architecture.

Index Terms— spoken dialogue systems, multi-layer

architectures, conversational interfaces

1. INTRODUCTION

After several decades of research and development effort in

the realm of practical spoken dialogue systems, the tech-

nologies have matured enough to allow widespread use of

such systems. Still, the approaches that have permitted the

creation of working systems have left many issues unsolved.

As a result, spoken conversation with artificial agents often

remains unsatisfactory, seldom natural. Perhaps the most

prominent issue is the quality of automatic speech recogni-

tion (ASR), which often results in misunderstandings that, in

turn, lead to dialogue breakdowns. There are several ap-

proaches to overcome this problem: improving recognition

technology [1], limiting the interaction in some way [2], or

endowing systems with error handling capabilities to

smoothly recover from misrecognitions [3, 4]. While the

first approach, improving ASR, seems the most obvious di-

rection, actual improvements have been incremental. In ad-

dition, even as recognition accuracy reaches acceptable lev-

els on simple tasks, applications target more and more com-

plex domains, requiring ever higher performance from ASR

engines. Robustness in a wide variety of conditions (e.g.

with noisy or highly conversational speech) remains a sig-

nificant challenge [5]. Short of perfect speech recognition,

the other two approaches provide ways to cope with recogni-

tion errors, but they both come at a cost: they make dia-

logues longer either by only letting the user provide small

amounts of information at a time (as in strongly system-

directed dialogues), or by generating confirmation prompts

(as in systems with error handling strategies). This would not

be an issue if, in addition to issues in spoken language un-

derstanding, current spoken dialogue systems did not also

have poor turn-taking capabilities. The cost of an additional

turn for artificial conversational agents, in time spent and

disruption of the conversation flow, is much higher than for

human-human conversation. As pointed out in recent publi-

cations [6, 7], this weakness comes from the fact that re-

search in spoken dialogue systems, while focusing on high-

level concerns such as natural language understanding and

dialogue planning, has to a large extent neglected low-level

interaction.

Even as more and more complex tasks have been addressed,

low-level interaction processes, such as turn-taking, have

stayed by and large unchanged. Most systems use a pipeline

architecture where the user’s speech gets sequentially split

into utterances, recognized, parsed, fed to a dialogue man-

ager which produces a response that gets verbalized into

natural language and synthesized. In this framework, each

component either waits for the previous one to finish before

starting its own processing or, as is often the case for the

dialogue manager, works asynchronously from the real

world, without feedback from it. This approach has some

software engineering advantages: it is simple to build and

existing components (speech recognizer, parser, etc) can be

used as-is and chained together. On the other hand, systems

built on a pipeline architecture lend themselves to various

interactional problems, such as inappropriate delays [7],

spurious interruptions, and turn over-taking (when the user

and the system get ”out of sync” [6]). A dialogue system

architecture that allows real-time processing and reaction is

thus essential for better interaction. To this end, multi-layers

architectures have been recently proposed for conversational

agents [8, 9, 10]. These architectures, inspired by work on

autonomous robots, separate long-term deliberative behavior,

including dialogue planning, task modeling and grounding,

from immediate reactive behavior such as turn taking. In this

paper, we present a new architecture that adopts this layered

approach, while making use of the concept of conversational

floor to synchronize the layers, thus allowing the representa-

tion of the dialogue state maintained by the high-level dia-

logue manager to constantly match the actual state of the

dialogue. The key aspects of the architecture are given in the

next section, while Section 3 describes its implementation as

Olympus 2, a new version of the Olympus architecture [11]

and Section 4 presents the application of Olympus 2 to the

Let’s Go system, a deployed, telephone-based, bus schedule

information system. Section 5 discusses other multi-layer

spoken dialogue system architectures, while Section 5 con-

cludes the paper.

2. PROPOSED ARCHITECTURE

2.1. Overview

Conceptually, our architecture distinguishes three layers. At

each layer, we define events, i.e. observations about the real

world, and actions, i.e. requests to act upon the real world.

The lowest layer represents the real world (e.g. the user

speaking to interrupt the system). The intermediate layer is a

first level of abstraction, which consists of real-time events

and actions with continuous properties (e.g. the exact timing

and duration of a user utterance, as perceived by the Voice

Activity Detector and speech recognizer). Finally, the top

layer is the domain of purely symbolic events and actions

with typically discrete properties (e.g. a representation of the

fact that the user barged in after hearing a specific phrase

uttered by the system). The core components of the architec-

ture perform two types of tasks: 1) they accept events and

actions at one level and produce events and actions at the

next level (event composition/action decomposition), and 2)

they produce actions at a certain level in response to events

at the same level (control). The interface between the real

world and the intermediate layer is achieved by a set of sen-

sors and actuators. No control happens at this level. The

interface between the intermediate and top layers is per-

formed by a new module called the Interaction Manager

(IM). In addition to event composition and action decompo-

sition, the IM controls reactive behavior that does not in-

volve high-level cognition (e.g. stopping speaking when the

user interrupts). Finally, within the top layer, the Dialogue

Manager (DM) plans high-level actions based on high-level

events. Being at the top of the architecture, the DM does not

perform any composition/decomposition.

2.2. Conversational Floor and Dialogue Management

The role of the dialogue manager (DM) in a dialogue system

is two-fold. First it monitors the intentions and beliefs of the

participants, as well as the current focus of the conversation.

In other words, it keeps track of the (high-level) dialogue

state. Second, the DM plans the system’s contributions to

the conversation
1
. We assume that this latter role is per-

formed by a planning module, which captures the (pro-

jected) high-level structure of the dialogue, and an execution

module, which sends actions to be executed to lower layers,

and monitors events. We do not make any further assump-

tions on the internals of the planning module. In particular, it

could follow any of the common dialogue management for-

malisms, from finite-state networks, to form filling, to plan-

based dialogue management. Many dialogue managers as-

sume that both planning and execution can be performed

asynchronously from the real-world. For example, consider

the dialogue extract from Figure 3 and the corresponding

1
 Here and thereafter, we use the word “plan” and “plan-

ning” in a very broad sense, including for systems that do

not use traditional AI planning formalisms (e.g. finite-state

or form-based dialogue managers).

Discrete/symbolic

layer

Continuous/real time

layer

Real world

Events Actions

Dialogue Manager

Interaction Manager

Sensors/Actuators

(ASR, Parser, NLG module, TTS engine, …)

User

Figure 1. Overview of the proposed architecture

timeline from Figure 2. A typical asynchronous DM, as

shown in Figure 2 (c), assumes that actions are completed as

soon as they have been sent to the lower levels, updates its

state accordingly and starts the execution of the next action

immediately (e.g. action 3’s execution is launched immedi-

ately after 2). In such systems, it is up to the actuators to

guarantee that utterances are spoken sequentially (i.e. to start

utterance 3 after utterance 2 has been spoken). In theory,

without execution monitoring, the DM could continue exe-

cuting future actions until it reaches the (projected) end of

the dialogue, without ever waiting for the user to respond.

To avoid this, practical DMs resort to synchronization

mechanisms extraneous to the planning and execution model

(e.g. the Input Pass in RavenClaw [12], or “a separate layer

of discourse” in COLLAGEN [13]), which freeze DM exe-

cution when user input is expected (e.g. after the DM exe-

cutes a “question” action).

While asynchronous DMs present the advantage of allowing

the system to start synthesizing the next utterance while

speaking it, such approaches have two serious limitations.

First, the internal state of the DM does not always match that

of the actual dialogue (and presumably of the user). This is

an issue when conversational (e.g. interruptions and back-

channels) and non-conversational (e.g. notifications of

change in the environment of a mobile robot) events occur

during a system utterance. For instance, in the example of

Figure 2, imagine that utterance 4 was spoken by the user

not after utterance 3, but after utterance 2 (utterance 4b in

Figure 3). An asynchronous DM would still, erroneously,

interpret it in state 3, as an answer to the yes/no question.

However, given its timing, utterance 4b would better be in-

terpreted as a backchannel response to the implicit confirma-

tion 2. The second issue with asynchronous DMs is that be-

cause the DM is on hold while waiting for user responses, no

execution can occur until either the user responds or a time-

out is triggered. During those waiting phases, the DM cannot

handle non-conversational events, which could have conver-

sational consequences (e.g. the system might need to inform

the user of a change in the real world).

To address these issues, we introduce the concept of conver-

sational floor into the execution module of the DM. The

floor is an additional dialogue state variable that can take

three values: user, system, and free. The value of the

floor is not decided by the DM but acquired from lower-

level modules. Each action that the DM can plan has two

markers: one indicates the value(s) in which the floor can be

for this action to be executed; the other indicates the value of

the floor after the execution of the action is completed.

Typically, conversational acts require the floor to be free,

with the exception of backchannel conversational acts and

interruptions. Non-conversational actions (e.g. interacting

with a backend database) also do not have floor require-

ments. In terms of floor transitions, the general behavior is

for the floor to become user after questions and free af-

ter statements. The DM only executes actions whose floor

requirements are satisfied. When the floor is either user or

system, the DM is still able to accept events, update the

dialogue state, perform planning, and execute non-floor re-

quiring actions.

Both floor transitions and dialogue state updates are trig-

gered by events from the Intermediate Layer, i.e. they reflect

changes in the real world precisely when they occur. This

allows the DM to interpret events, including interruptions

and backchannels, in the right context. Through floor and

… (0)

User: I want to go to Boston. (1)

System: Going to Boston. (2)

System: Do you need a return trip? (3)

User: Yes. (4)

Figure 3. Extract from a dialogue in the flight reserva-

tion domain.

Semi-

synchronous

DM

Real World

Asynchronous

DM

State

Actions

Floor

User

Actions

State

0 1 2 3

2 3

System

U S S U F F F

2 3

1 4b 4

0 1 2 3

2 3

Figure 2. Real-world DM timelines of the dialogue extract from Figure 3. State numbers refer to the dialogue state

after the corresponding utterances has been spoken/understood.

(b)

(c)

(a)

state update events, the execution module of the DM is thus

synchronized with the real-world dialogue. The combination

of an asynchronous planning module with a synchronous

execution module is the essence of a semi-synchronous dia-

logue manager, whose behavior is illustrated in Figure 2 (a).

2.3. Interaction Management

The Interaction Manager (IM) acts both as the interface be-

tween the Intermediate and Top layers, and as the controller

of the system’s reactive behavior. In particular, it sends ap-

propriate dialogue state and floor update events to the DM.

In order to achieve these goals, the IM should be able to:

1. react to Top level actions, Intermediate level events,

and timing phenomena

2. integrate a variety of modalities and sensor/actuator

types

3. operate in real time

We designed an IM that fulfills these requirements using the

architecture illustrated in Figure 4. Two interfaces handle

communication of actions and events with the DM (top

communication interface), and the sensors and actuators

(bottom communication interface). Between these two lies a

set of agents, each of which handles unimodal or multimodal

perception or production.

All agents can read and modify a common blackboard object

that describes the dynamic interaction state. When the IM

receives an intermediate-level event from the sensors, the

bottom communication interface sends it to the appropriate

agent. Based on this event, perception agents update the

interaction state. Multimodal integration agents combine

information from several unimodal perception agents to up-

date multimodal state variables. Both perception and inte-

gration agents can also send high-level events to the DM.

Similarly, when the IM receives an action from the DM, the

top communication interface sends it to the appropriate uni-

modal or multimodal production agent. Production agents

update the state and can send intermediate-level actions to

the actuators. In addition to the events it receives from the

sensors, the bottom communication interface is also in

charge of generating a “pulse” event, which reaches all

agents and allows to react not only to specific events when

they occur but also to delays between events (e.g. to wait for

a given amount of time after the user finished speaking be-

fore taking the turn).

Agents that handle different modalities can be developed

independently and later combined, as long as they share the

same definition of the interaction state. While the use of the

blackboard guarantees that any agent has access to informa-

tion from all the other agents, it is easy to allow agents to

use state information when it is available but still function

when it is not (e.g. information from a gaze tracker could be

optionally used in an embodied agent).

Overall, the architecture fulfills the above-mentioned re-

quirements through 1) the top and bottom communication

interfaces, 2) its multi-agent, distributed nature, and 3) both

its simplicity (which allows efficiency) and the use of pulse

events to allow reaction at any time, based on the current

interaction state.

3. IMPLEMENTATION: OLYMPUS 2

We implemented the proposed architecture as a new version

of the Olympus [11] spoken dialogue framework. By doing

so we were able to reuse a number of modules and ensure

the task-independence of our implementation.

The DM is based on the RavenClaw 2 dialogue management

framework, which extends RavenClaw [12] to handle ge-

Interaction

State

Top Communication Interface

Bottom Communication Interface

Interaction

Agent

Perception

Agent

Perception

Agent

Multimodal

Production

Agent

Unimodal

Production

Agent

Unimodal

Production

Agent

Figure 4. Internal organization of the Apollo Interaction Manager (solid arrows give the flow of events and

actions, dotted arrows represent access to the interaction state)

neric actions and events and incorporate the notion of floor

as described in section 2.2. For Interaction Management, we

created a new module, named Apollo, based on the princi-

ples given in section 2.3. Olympus 2 has similar features to

its predecessor. It is still highly modular, flexible, transpar-

ent, and open-source. These features make the Olympus 2

architecture a suitable platform for research on high-level

dialogue management (as was already Olympus), low-level

interaction management, as well as on the interaction be-

tween these two levels.

4. APPLICATION TO THE LET’S GO SYSTEM

In order to test our approach on an actual system, we ported

the Let’s Go bus information system to Olympus 2. Let’s Go

is a publicly available telephone-based system that provides

bus schedule information for the Pittsburgh metropolitan

area. It was originally built on the Olympus 1 architecture

and deployed in 2005 to receive calls from the general pub-

lic at times when the transit operator’s customer service

phone line are not manned. In its first two years of operation,

Let’s Go handled more than 34000 calls and was progres-

sively improved to reach a dialogue completion rate of

76.7%
2
.

In April 2007, we ported the system to the new Olympus 2

architecture. This required only minor modifications to the

domain-dependent parts of the system. Since Let’s Go is a

unimodal system, Apollo has only one perception and one

production agents: the Listener Agent, which handles the

ASR/NLU sensor and the Speaker Agent, which handles the

NLG/TTS actuator. The turn-taking rules within the agents

were hand-written so as to follow a standard behavior, simi-

lar to that of Olympus-I. Thus, for example, the system con-

siders that the user yields the floor based on pauses of more

than 800ms. Barge-in is only allowed during certain system

prompts. These rules, while simple and leaving many turn-

taking issues unsolved were adopted as a baseline, and a

proof of concept. As of July 1
st
, 2007, after three months of

operation, the new version of Let’s Go has handled 5000

dialogues, 3738 of which have 4 user turns or more. The

completion rate among these longer dialogues is 76%, al-

most identical to the rate in the three months preceding the

switch to the new version (the difference is not statistically

significant). Similarly, the average duration and number of

turns per dialogue have remained stable (resp. from 137.3 s

to 138.8 s, and from 15.9 turns to 16.2 turns).

5. DISCUSSION

Other multi-layer approaches to dialogue management have

been proposed. An early and important work is that of

2
 Dialogue completion rate, defined as the proportion of

dialogues in which the system provides a result to the user,

is an automatic estimate of success rate.

Thorisson [8, 9]. His model is divided in three layers: the

Content Layer, which deals with topics and tasks, the Proc-

ess Control Layer, which deals with typical dialogue phe-

nomena (e.g. taking a turn), and the Reactive Layer, which

deals with highly reactive behaviors (e.g. gazing at objects

mentioned by the other speaker). Each layer has a specific

target perception/production loop time (from less than 500

milliseconds for the Reactive Layer to more than 2 seconds

for the Content Layer). Processes on different layers com-

municate through two blackboards (one shared by the Con-

tent and Process Control Layers, and the other shared by the

Process Control and Reactive Layers). This allows all proc-

esses to have access to any bottom-up or top-down signal,

while keeping while limiting inter-layer communication to a

small set of predefined messages. Unfortunately, Thorisson

provides little detail on the inner workings of the Content

Layer. While this is a seminal work and an influential effort

towards realistic turn-taking behavior in conversational

agents, it was developed largely independently of past and

concurrent work on high-level dialogue management. There-

fore, it remains unclear how this model would work in the

context of complex, task-oriented dialogues. More recently,

in [10], Lemon et al propose an architecture for task-

oriented dialogue systems that distinguishes a Content Layer

and an Interaction Layer. The Content Layer has at its core a

Dialogue Manager that operates on logical forms. The Inter-

action Layer involves lower level modules such as speech

understanding and generation, as well as a Turn Manager.

As in Thorisson’s architecture, the two layers work asyn-

chronously and communicate through a set of specialized

data structures (e.g. a prioritized output agenda which con-

tains the planned system utterances). This architecture cap-

tures a number of interaction phenomena, including turn

taking. However, the turn-taking model reported in [10]

seems to be exclusively contained in the Interaction Layer

and it is not clear how the Dialogue Manager handles floor

issues.

The Olympus 2 architecture combines elements from both

Thorisson’s (the focus on turn-taking) and Lemon’s (the

connection to a traditional dialogue management frame-

work) work. Focus on a clear distinction between asynchro-

nous planning and synchronous execution is a key compo-

nent of this work. In particular, our dialogue management

model makes explicit how the theoretical concept of conver-

sational floor influences the execution of the dialogue plan.

This particularity constitutes a departure from the pure asyn-

chronous models previously proposed. We believe that our

model better accounts for the influence of asynchronous

events on the plan, as well as for interactions between the

lower and higher levels of communication.

Another difference is that we define our layers in terms of

level of abstraction, rather than in terms of processing. In

this view, software components (except the DM which is at

the top), lie at the interface of two layers rather than within

one layer. The role of the sensors, actuators and of the IM is

therefore to “translate” events and actions between different

levels of abstraction
3
.

However, beyond these conceptual differences, we believe

our main contribution is to provide the community with an

open framework based on the multi-layer approach and to

show the applicability of this approach to deployed systems.

The fact that Let’s Go was ported to Olympus 2 with only

minimal modifications to the domain-specific parts of the

system confirms that systems can be built on top of reactive

architectures without significant overhead in terms of system

design. In the near future, we plan to port other existing

Olympus-based systems to Olympus 2, as well as to develop

new systems. This will shed light on the benefits that multi-

layer architectures can bring to a wide range of applications,

from simple information access systems to multi-participant

interaction with embodied agents. In the process, theoretical

as well as practical challenges will undoubtedly surface,

which will extend our understanding of low- and high-level

conversational phenomena. In the meantime, we will im-

prove the internal model of the IM to better handle turn-

taking phenomena such as smooth transitions and interrup-

tions.

6. CONCLUSION

We introduced a new, multi-layer architecture to build task-

oriented spoken dialogue systems. Implemented as a new

version of the Olympus architecture, it features a new ver-

sion of the RavenClaw dialogue management framework,

which explicitly takes into account the conversational floor,

as well a new component, the Interaction Manager, which

handles low-level reactive behavior and acts as an interface

between the real world and the abstract representation used

in the Dialogue Manager. The feasibility and practicality of

the approach was confirmed by porting the Let’s Go bus

information system, a deployed information access system,

to the new architecture.

7. ACKNOWLEDGMENTS

This work is supported by the US National Science Founda-

tion under grant number 0208835, "LET'S GO: improved

speech interfaces for the general public". Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation. We

would like to thank Dan Bohus, Alex Rudnicky, and many

others for their contribution to the original Olympus archi-

tecture, as well as Alan W Black for his continuous support

and advice. Finally, we would like to acknowledge the Port

Authority of Allegheny County for providing access to their

3
 This does not mean that there is a one-to-one mapping be-

tween events and actions in different layers, just as there is

no one-to-one mapping in natural language translation.

database and for their help in making the Let's Go system

accessible to Pittsburghers.

8. REFERENCES

[1] O. Lemon, “Context-sensitive speech recognition in isu dia-

logue systems: results for the grammar switching approach,”

CATALOG, 8th Workshop on the Semantics and Pragmatics of

Dialogue, Barcelona, Spain, 2004.

[2] F. Farfán, H. Cuayáhuitl, and A. Portilla, “Evaluating dialogue

strategies in a spoken dialogue system for email,” IASTED Artifi-

cial Intelligence and Applications, Manalmádena, Spain, 2003.

[3] J. Edlund, G. Skantze, and R. Carlson, “Higgins - a spoken

dialogue system for investigating error handling techniques,”

ICSLP 2004, Jeju, Korea, 2004.

[4] D. Bohus and A. Rudnicky, “Error handling in the RavenClaw

dialog management architecture,” HLT/EMNLP 2005, Vancouver,

BC, 2005.

[5] L. Deng and A. Acero, “Challenges in adopting speech recog-

nition”, Communications of the ACM, 47:1, pp. 69-75, 2004.

[6] R. Porzel and M. Baudis, “The Tao of CHI: Towards effective

human-computer interaction,” HLT/NAACL 2004, Boston, MA,

2004.

[7] N. Ward, A. Rivera, K. Ward, and D. Novick, “Root causes of

lost time and user stress in a simple dialog system,” Interspeech

2005, Lisbon, Portugal, 2005.

[8] K. R. Thorisson, Communicative Humanoids: A Computa-

tional Model of PsychosocialDialogue Skills, PhD thesis, Massa-

chusetts Institute of Technology, 1996.

[9] K. R. Thorisson, “Natural Turn-Taking Needs No Manual:

Computational Theory and Model, From Perception to Action,”

Multimodality in Language and Speech Systems, pp 173–207.

Kluwer Academic Publishers, 2002.

[10] O. Lemon, L. Cavedon, and B. Kelly, “Managing dialogue

interaction: A multi-layered approach,” SIGdial Workshop 2003,

Sapporo, Japan, 2003.

[11] D. Bohus, A. Raux, T. Harris, M. Eskenazi, and A. Rudnicky,

“Olympus: an open-source framework for conversational spoken

language interface research,” HLT-NAACL 2007 workshop on

Bridging the Gap: Academic and Industrial Research in Dialog

Technology, Rochester, NY, 2007.

[12] D. Bohus, and A. Rudnicky, “RavenClaw: Dialog Manage-

ment Using Hierarchical Task Decomposition and an Expectation

Agenda,” Eurospeech 2003, Geneva, Switzerland, 2003.

[13] C. Rich, N.B. Lesh, J. Rickel, and A. Garland, “A Plug-in

Architecture for Generating Collaborative Agent Responses”, In-

ternational Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS), pp. 782-789, 2002

