

 A methodology for secure software design

 Eduardo B. Fernandez
 Dept. of Computer Science and Eng.
 Florida Atlantic University
 Boca Raton, FL 33431
 ed@cse.fau.edu

1. Introduction
A good percentage of the software deployed in industrial/commercial applications is of poor
quality and contains numerous flaws that can be exploited by attackers. There are many reasons
for this and there is no doubt that we have a serious problem, every day the press reports of
attacks to web sites or databases around the world, resulting in millions of dollars in direct or
indirect losses. The products of some companies are famous for their lack of security. Until
recently the only vendors' response was to provide patches to fix the latest vulnerability found or
to blame the users for their lack of caution. However, patches are clearly not a solution: it is hard
for system administrators to keep up with the latest patches and the patch itself may open new
possibilities for attack. There are two basic approaches to improve this situation: 1) Examine final
production code and look for possible problems, e.g., buffer overflow conditions [13]. 2) Plan for
security from the beginning. We believe that the solution lies in developing secure software from
the beginning, applying security principles along the whole life cycle. Part of the problem is that
developers are not, in general, acquainted with security methods. We see the use of patterns as a
fundamental way to implicitly apply security principles even by people who have little
experience.

We present here a methodology to build secure software. This approach makes use of basic
principles of security and object-oriented development. We consider object-oriented design, the
Unified Modeling Language (UML), and patterns [1,12] as essential in the creation of well-
designed software. The UML is a notation for visually modeling object-oriented systems and is
now one of the most the accepted standards for software development. Another important
development in software is the concept of pattern. A pattern embodies the knowledge and
experience of software developers and can be reused in new applications. A pattern solves a
specific problem in a given context and can be tailored to fit different situations. Analysis patterns
can be used to build conceptual models [5] and security patterns can be used to build secure
systems [8]. Patterns can embody the classical good security principles [18].

The next section discusses our approach to build secure systems, while Section 3 considers each
aspect in some detail. The last section shows some conclusions.

2. The development of secure software
As indicated earlier, the way software is developed (software process) and the specific
methodology used are very important to produce secure systems. First of all, the development
methodology is important. Both [16] and [17], emphasize the value of information hiding and
encapsulation. This indicates that the object-oriented approach is to be preferred over a
procedural approach. As we shall see, there are other advantages of the object-oriented
methodology that are important for security.

The main idea in the proposed methodology is that security principles should be applied at every
development stage and that each stage can be tested for compliance with those principles. We
sketch first a secure software development cycle that we consider necessary to build secure
systems and then we discuss each stage in detail. Figure 1 shows a secure software lifecycle ,
indicating where security can be applied and where we can audit for compliance with security
policies:

Requirements stage: Use cases define the required interactions with the system. From the use
cases we can determine the needed rights for each actor and thus apply a need-to-know policy [3].
Since actors may correspond to roles, this can be interpreted as a Role -Based Access Control
(RBAC) model. Note that the set of all use cases defines all the uses of the system and from all
the use cases we can determine all the rights for each role. We can then consider possible attacks
in the context of these use cases.

Analysis stage: Analysis patterns can be used to build the conceptual model in a more reliable and
efficient way [5]. We can build a conceptual model where repeated applications of the
Authorization pattern (see below) realize the rights determined from use cases. In fact, analysis
patterns can be built with predefined authorizations according to the roles in their use cases. This
makes the job of defining rights even easier.

Design stage: User interfaces should correspond to use cases. Interfaces can be secured applying
again the Authorization pattern. Secure interfaces enforce authorizations when users interact with
the system. Finally, components can be secured by using JAAS rules defined according to the
authorization rules for Java components or using .NET authorizations for .NET components.
Deployment diagrams can define secure configurations to be used by security administrators. A
multilayer architecture is needed now to enforce the security constraints defined at the application
level [4]. In each level we use patterns to represent appropriate security mechanisms.

Implementation stage: This stage requires reflecting in the code the security rules defined for the
application. Because these rules are expressed as classes, associations, and constraints, they can
be implemented as additional classes. We also need to select specific security packages, e.g., a
firewall product, a cryptographic package.

At the end of each stage we can perform audits to verify that the institution policies are being
followed. If necessary, the security constraints can be made more precise by using (Object
Constraint Language (OCL) instead of textual constraints. Patterns for security models define the
highest level. At each lower level we apply the model patterns to specific mechanisms that
enforce these models. In this way we can define patterns for file systems, for web documents, for
J2EE components, etc. We can also evaluate of a new or existing system using patterns. Patterns
help understand the security structure of each component to allow their composition and define
secure interfaces. If a system doesn't contain an appropriate pattern then it cannot support the
corresponding secure model or mechanism.

We can combine different types of patterns to get different functionality and quality. For
example, [14] combines RBAC, filter, and connection patterns (The last two are patterns for
distributed systems). We analyze these stages in detail in the next section.

 Figure 1. Secure software lifecycle

3. Details of some stages
3.1 Architectural levels
Experience has shown that a good way to build dependable systems is to structure them into a set
of hierarchical layers. Layers of abstraction enforce downward-only functional dependencies.
Unit A is said to depend on B whenever an action of B, or a change to B, or total unavailability of
B, can affect A [15].

Some important issues for hierarchies are: what functions to include in each layer and how much
security we need in each layer to accomplish an intended level of security for the whole system.
Not all layers need be equally secure, the lower levels are more critical and need stronger
protection. Security and other non-functional requirements affect all the architectural levels of a
system. The Layers architectural pattern [1] is therefore a good starting point to apply these
requirements. Using layers we can define patterns at all levels that together implement a secure or
reliable system. The main idea of the Layers pattern is the decomposition of a system into
hierarchical layers of abstraction, where the higher levels use the services of the lower levels. We
have discussed earlier, why all these levels must be coordinated to assure security [4] and how the
definition of non-functional specifications should be done at a specific level [2].

The conceptual enterprise models, both static and dynamic, are defined at the application level. It
is here where the security (and other type) policies of the institution should be applied. At this
level the semantics of the application are well understood and roles can be used to apply the need-
to-know policy; i.e., we can define the needed rights according to the functions of each role [3].
Other non-functional aspects are also specified here, e.g., the required degree of reliability. The
lower levels enforce the restrictions defined at the higher levels. Each level has its own security
mechanism and should participate in enforcing the security constraints. For example, a DBMS

Security verification and testing

Requirements Analysis Design Implementation

Secure UCs Authorization rules in
conceptual model

Rule enforcement
through architecture

Language enforcement

Security test cases

enforces the authorizations in the application by restricting access to database items; this
restriction is propagated down to control access to the files where this data resides.

3.2 Use cases and possible attacks
As we indicated earlier since use cases define all the interactions with the system we can find
from them the rights needed by these roles to perform their work (need to know). Figure 2 shows
the use cases for a voting system that allows voting in the precinct, in a precinct that is not your
own precinct, and through the Internet. A voter has the right to register and to vote, the precinct
officer keeps list of registered voters and tallies the votes.

We can then relate possible attacks to use cases.. For example, a possible attack against voter
registration corresponds to an impostor trying to get registered with false identity or attributes. An
attack against remote voting would be an attempt to send an invalid vote or to intercept a vote
with the purpose of changing it.

Relating attacks to use cases provides a systematic and relatively complete list of possible attacks.
Each attack can be analyzed to see how it can be accomplished in the specific environment. The
list can then be used to guide the design and to select security products. It can also be used to
evaluate the final design by analyzing if the system defenses can stop all these attacks.

3.3 Authorized applications
We use the access matrix and RBAC as reference models. Multilevel models are also possible but
when used at the application level they are too rigid; however, they are useful at lower levels.
When we apply the access matrix model, the next step is to define patterns that represent
authorization rules or policies, as shown in Figure 3 [6]. This model describes an entry of the
access matrix, (s, o, t, p, f), where s is a subject, o is a protection object, t an access type, p a
predicate constraining the application of the rule , and f a copy flag, indicating if the right can be
transferred [17]. The classes of Figure 3 are abstract classes and specific authorization models are
defined by concrete classes. Conceptual or domain models of systems can be built using analysis
patterns [5] and we have developed a collection of these patterns for aspects such as inventories,
order processing, and others. These security patterns can be applied to analysis patterns to define
semantic subsystems that combine the advantages of patterns with the advantages of high-level
authorization definition. In this case, the user of the pattern would have a structure to define the
specific rights his application requires. For example, in [8] we showed an analysis pattern for a
secure inventory system. In that model, the auditor is authorized to check for discrepancies in
stock, while the stock keeper is authorized to correct or adjust these discrepancies. Similarly, the
stock manager can add new stockrooms, etc. The specific rights for each role come from use
cases and are derived as in [3]. Each use case has a set of actors who interact with the system. If
actors are given rights according to their functions in the use cases of the system, we are
implementing a need-to-know policy. Starting from patterns at the application level we need to
define patterns for the lower levels. For example, we have developed patterns for operating
systems [7, 9], firewalls [10], and other security mechanisms. For systems that use web services
we have developed security patterns for application firewalls and assertion coordination [11].

3.4 Secure system architecture
Figure 4 shows some of the secure mechanisms that can help stop the attacks defined through the
use cases. For example, remote users would require certificates for authentication, the voting
machine hardware and software needs to be certified for security, the precints are connected
through a VPN, etc.

 Figure 2. Use cases for a voting system.

 4. Conclusions
The combination of multilayer architectures with patterns provides a framework to develop a
systematic and reusable approach to building systems that satisfy specific non-functional
requirements. Security patterns embody good design principles and by using them, the designer is
implicitly applying these principles. Work is needed to add more patterns in each level and to
collect and unify these patterns. We are working now in a catalog of security patterns [19]. We
also need to define guidelines to apply the methodology more precisely at each level. Finally, we
need to evaluate this methodology in a real environment; for now we are applying it to specific
examples, such as distributed medical records, Internet voting, and distributed financial
institutions.

5. References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal., Pattern-
oriented software architecture, Wiley 1996.

Voter
registration

Voting

Keep voters
list

County
voting

Local voting Remote
voting

Tally result

Voter

Precinct officer

 Figure 3. A pattern for authorization rules.

 Figure 4. A secure system architecture

[2] E. B. Fernandez and R. B. France, ``Formal specification of real-time dependable systems
", Proc. of First IEEE Int. Conf. on Eng. of Complex Comp. Systems, Fort Lauderdale, FL,
November 6-10, 1995, 342-348.

[3] E.B.Fernandez and J.C.Hawkins, “Determining role rights from use cases”, Procs. 2nd
ACM Workshop on Role-Based Access Control, November 1997, 121-125.

S u b j e c t

i d

P r o t e c t i o n O b j e c t

i d
* *A u t h o r i z a t i o n _ r u l e

R i g h t

a c c e s s _ t y p e
p r e d i c a t e
c o p y _ f l a g

c h e c k R i g h t s

W e b /
a p p l i c .
s e r v e r

B r o w s e r

B r o w s e r

m e s s a g e
e n c r y p t i o n

I n t e r n e t
c e r t i f i c a t e

f i r e w a l l

c e r t i f i e d
a p p l i c / O S / h a r d w a r e
l o g g i n g / p a p e r c o p i e s

P r e c i n c t

l o c a l v o t i n g m a c h i n e

a u t h o r i z e

v o t e s
d a t a b a s e

V P N

a u t h e n t i c a t e

V P N
V P N
o r S S L

R e m o t e
V o t i n g
M a c h i n e

t o c e n t r a l
a u t h o r i t y

m s g . p r o t e c t i o n
t o o t h e r
P r e c i n c t s
(L A N)

http://www.cse.fau.edu/~ed/RBAC.pdf

[4] E.B.Fernandez, "Coordination of security levels for Internet architectures",
Procs. 10th Intl. Workshop on Database and Expert Systems Applications, 1999, 837-841.
http://www.cse.fau.edu/~ed/Coordinationsecurity4.pdf

[5] E.B. Fernandez and X. Yuan, “Semantic analysis patterns”, Procs. of 19 th Int.
Conf. on Conceptual Modeling, ER2000, 183-195. Also available from:
 http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[6] E B. Fernandez and R.Y. Pan, “A pattern language for security models”, Procs. of PLoP
2001, http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/accepted-papers.html

[7] E.B.Fernandez, "Patterns for operating systems access control", Procs. of PLoP 2002,
http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[8] E.B.Fernandez, “Layers and non-functional patterns”, Procs of ChiliPLoP, 2003. Phoenix,
March 10-15, 2003. http://hillside.net/chiliplop/2003/

[9] E.B.Fernandez and J.C.Sinibaldi, "More patterns for operating systems access control",
 Procs. EuroPLoP 2003, http://hillside.net/europlop

[10] E. B. Fernandez, M. M. Larrondo-Petrie, N. Seliya, N. Delessy, and A. Herzberg, "A Pattern
Language for Firewalls", Procs. of PLoP 2003.

[11] E.B. Fernandez, "Two patterns for web services security", to appear in Procs. of the
International Symposium on Web Services and Applications, Las Vegas, NV, June 2004.

[12] E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns –Elements of reusable
object-oriented software, Addison-Wesley 1995.

[13] M. Howard and D. LeBlanc, Writing secure code, (2nd Ed.), Microsoft Press, 2003.

[14] V. Hays, M. Loutrel, and E.B.Fernandez, “The Object Filter and Access Control
framework”, Procs. Pattern Languages of Programs (PLoP2000) Conference,
http://jerry.cs.uiuc.edu/~plop/plop2k

[15] P.G.Neumann, “On hierarchical design of computer systems for critical applications”, IEEE
Trans. on Software Eng., vol. SE-12, No 9, September 1986, 905-920.

[16] P.G.Neumann, “The role of software engineering”, Comm. of the ACM, Vol. 36, No 5, May
1993, 114.

[17] C.P.Pfleeger, Security in computing, 3rd. Ed., Prentice-Hall, 2003.

[18] J.H.Saltzer and M.D.Schroeder, “The protection of information in computer systems”,
Procs. of the IEEE, Vol. 63, No 9, 1975, 1278-1308. A web version is in:
http://web.mit.edu/Saltzer/www/publications/protection/index.html

[19] M. Schumacher, E.B.Fernandez, D. Hybertson, and F. Buschmann, Security Patterns, to be
published by J. Wiley & Sons, 2004.

