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Abstract. Radial basis function (RBF) interpolation can be very effective for scattered data
in any number of dimensions. As one of their many applications, RBFs can provide highly accurate
collocation-type numerical solutions to several classes of PDEs. To better understand the accuracy
that can be obtained, we survey here derivative approximations based on RBFs using a similar Fourier
analysis approach that has become the standard way for assessing the accuracy of finite difference
schemes. We find that the accuracy is directly linked to the decay rate, at large arguments, of the
(generalized) Fourier transform of the radial function. Three different types of convergence rates
can be distinguished as the node density increases - polynomial, spectral, and super-spectral, as
exemplified for example by thin plate splines, multiquadrics, and Gaussians respectively.

1. Introduction. Many applications lead to the problem of interpolating data
yk at scattered locations xk ∈ Rd , k = 1, 2, ...n. In the most straightforward radial
basis function (RBF) approach to this task, we construct an interpolant of the form

s(x) =
n
∑

k=1

λk φ(‖x − xk‖) (1.1)

where ‖·‖ denotes Euclidean distance, and φ(r) is some radial function. The expan-
sion coefficients λk are determined so that s(xk) = yk. The primary choice in the
implementation is what function φ(r) to use. Some of the most common choices are
listed in Table 1.1. They all feature a free parameter. For the piecewise smooth
cases, n is usually selected as n = 1 or n = 2, whereas the best choice for the shape
parameter ε in the smooth cases has been subject to extensive study. (e.g. [4], [6],
[19]).

Once a smooth interpolant s(x) to the scattered data has been found, it becomes
possible to differentiate it and thereby obtain accurate approximations to partial
derivatives. The use of such approximations for the numerical solution of PDEs was
pioneered around 1990 by E. Kansa for elliptic, parabolic, and certain hyperbolic prob-
lems [12], [13]. This approach has similarities to how finite difference (FD) formulas
are obtained, but with some differences:

• FD formulas are typically obtained by differentiating polynomial interpolants
(rather than RBF type interpolants),

• Most FD formulas (stencils) extend only over a small subset of the data
points, local to the position at which the derivative approximation is sought.

If one includes increasingly many data points in 1-D FD formulas, one obtains, in the
limit, a spectral method (as shown in [7]). For example:

• With periodic equi-spaced data, FD stencils with widths tending to infinity
will reproduce the Fourier pseudospectral (Fourier PS) method,

• With data on a finite interval located at Chebyshev / Legendre / Jacobi node
points, global FD approximations will reproduce the corresponding polyno-
mial PS methods.
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Radial function φ(r), r ≥ 0 Name

Piecewise Smooth

r2n−1, n = 1, 2, 3, . . . Powers (linear, cubic, quintic, ...)
r2n ln r, n = 1, 2, 3, . . . Thin Plate Splines (TPS)

Infinitely Smooth
1

1 + (εr)2
Inverse Quadratic (IQ)

√

1 + (εr)2 Multiquadric (MQ)

e −(εr)2 Gaussian (GA)
Table 1.1

Some common types of radial functions φ(r) for RBFs φ(‖x − x
k
‖). The smoothness refers to

the functions when extended to negative arguments as even functions, i.e. φ(−r) = φ(r).

Since PS methods can offer superior accuracy and cost effectiveness in simple
geometries, there has been great interest in generalizing them to irregular geometries
(for example by means of introducing spectral elements). By basing PS methods on
RBF interpolants rather than on polynomial or trigonometric ones, generalizations to
irregular domains and node distributions can be both simple and highly effective, as
demonstrated in the case of Poisson’s equation in 2-D, [14].

The purpose of the present paper is to add to the understanding of the accuracy
and convergence rates that can be expected from RBF type interpolants, by means
of analyzing them in the special case of an equi-spaced periodic 1-D grid. We will use
Fourier analysis to study the accuracy of RBF interpolants to trigonometric functions,
and compare the first derivative approximations against the ones obtained by FD
methods, presenting the results in the manner that has become standard in the FD
literature. Some of the RBF observations in this paper can be extracted from formulas
given, although in different contexts, in papers such as [2] and [3] This study differs
in that it

• Provides a number of novel closed-form expressions for RBF sums, and
• Uses these to compare RBF approximations against FD and spectral methods

for derivative approximations.

2. RBF expansion coefficients when interpolating trigonometric data.

The first step in obtaining the interpolant s(x) to trigonometric data is to find the RBF
expansion coefficients λk. In the next two subsections, we obtain a general formula
for these coefficients in terms of Poisson sums. We then determine the Poisson sums
for the main types of radial functions.

2.1. Formula for the RBF expansion coefficients in terms of the Fourier

transform of the radial functions. The RBF expansion of a function f(x) on an
infinite 1D grid of spacing h becomes

f(nh) =

∞
∑

k=−∞
λkφ(|nh − kh|) , nεZ . (2.1)

In the following, we will asume that the radial functions φ(r) are extended to negative
arguments as even functions of r, and we will omit the magnitude operator in the
arguments of φ. The sum in (2.1) can be viewed as a discrete convolution which, in

2



Fourier space, can be written as

∞
∑

n=−∞
f(nh)e−inhξ =

∞
∑

n=−∞

( ∞
∑

k=−∞
λkφ(nh − kh)

)

e−inhξ (2.2)

=

( ∞
∑

k=−∞
λke−ikhξ

)( ∞
∑

m=−∞
φ(mh)e−imhξ

)

. (2.3)

Thus, we can write down the expansion coefficients explicitly

λk =
h

2π

∫ π
h

−π
h

∑∞
n=−∞ f(nh)e−inhξ

∑∞
m=−∞ φ(mh)e−imhξ

eikhξdξ. (2.4)

For [−π, π]−periodic Fourier data, f(nh) = eiωnh , where −π
h ≤ ω ≤ π

h (represent-
ing the largest range of frequencies that can exist on a grid with spacing h). The
numerator of the integrand of (2.4) then reduces to

∞
∑

n=−∞
f(nh)e−inhξ =

2π

h
δ(ω − ξ), (2.5)

resulting in

λk =
eiωhk

Ξ(ω, h)
(2.6)

where

Ξ(ω, h) =

∞
∑

m=−∞
φ(mh)e−iωmh (2.7)

Thus, the expansion coefficients λk are proportional to eiωhk, and are scaled by
the coefficients of the discrete Fourier transform of the RBF. This transform can
be found by summing the continuous Fourier transform over a 2π

h −periodic grid (a
Poisson sum; [15] ):

Ξ(ω, h) =
1

h

∞
∑

j=−∞
φ̂(ω +

2πj

h
) (2.8)

where

φ̂(ω) =

∫ ∞

−∞
φ(y)e−iωydy. (2.9)

Therefore, we can also express λk in terms of the continuous Fourier transform as

λk =
eiωhk

1
h

∑∞
j=−∞ φ̂(ω + 2πj

h )
. (2.10)
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RBF φ(r) Fourier transform φ̂(ω) Poisson Sum Ξ(ω, h)

r − 2
ω2

−h
2 sin( ωh

2 )2

r3 12
ω4

h3(2+cos ωh)

4(sin ωh
2 )4

r2n−1 2(−1)n(2n−1)!
(ω)2n (−1)n d2n−1

dω2n−1 cot(ωh
2 )

r2 ln r 4π
|ω|3 − h3[Ψ(2)( ωh

2π )+Ψ(2)(1−ωh
2π )]

4π2

r2n ln r (−1)n+1 (2n)!2π
|ω|2n+1 ( ih

2π )2n [Ψ(2n)( ωh
2π )+Ψ(2n)(1−ωh

2π )]
2

1
1+(εr)2

π
ε e

−|ω|
ε

π cosh( ωh−π
εh )

εh sinh( π
εh )

1
1+(εr)2n

computed directly via

(2.7)

π
2nεh

∑2n
j=1

e
−iω

εα(j)

α(j) [cot π
εhα(j) + sign(ω)i],

where α(j) = e(iπ 2j−1
2n )

√

1 + (εr)2
−2K1(

|ω|
ε )

ε|ω| − 2
εh

∑∞
j=−∞

K1(
1
ε |ω+ 2π

h j|)
|ω+ 2π

h j|

e−(εr)2
√

π
ε e−

ω2

4ε2

√
π

εh

∑∞
j=−∞ e−

(ωh+2πj)2

4ε2h2

Table 2.1

The Fourier transform and Poisson sums for different radial functions φ(r)

2.2. Fourier transforms and Poisson sums of different RBFs. In cases
where φ(r) goes to zero sufficiently fast as r → ∞ (e.g. IQ and GA; cf Table 1.1),

the Fourier transform φ̂(ξ) is uniquely determined by (2.9). In other cases (e.g. MQ,
TPS, powers, etc.), it becomes necessary to employ generalized Fourier transforms
([11], [15]) in place of (2.9). In the present context, these can be used in (2.10) just
like regular Fourier transforms similarly to how they have been used previously for
analyzing cardinal RBF interpolants (e.g. [1], [3], [10], [16]). The Fourier transforms
(generalized, if needed), together with the corresponding Poisson sums Ξ(ξ, h), are
given in Table 2.1 for a selection of different radial functions φ(r). Below are some
notes on the table:

• In the formulas for φ(r) = r2 ln r and φ(r) = r2n ln r, the function Ψ(n)(z)

denotes the polygamma function, defined by Ψ(n)(z) = dn+1

dzn+1 ln Γ(z).

• The Poisson sum that is given for φ(r) = e−(εr)2 , obtained from (2.8), con-

verges much more rapidly for small ε than Ξ(ξ, h) =
∑∞

j=−∞ e−(εhj)2e−iξhj

(which follows from (2.7)).
• Although radial functions of the form φ(r) = 1/(1 + (εr)2n), n = 1, 2, 3, . . .

are included for the sake of generality, it should be noted that, as n increases,
these RBFs begin to resemble step functions and thus become very poor
interpolants.
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3. RBF interpolation of Fourier data. In this section, we note that closed-
form expressions can often be found for the RBF interpolants to Fourier data. In
cases where the infinite sums that arise cannot be evaluated in closed form (such
as with MQ and GA), we can nevertheless obtain simple and accurate estimates of
the interpolation error. These will be used to relate the decay rate of the Fourier
transform of φ(r) to the rate of convergence of the RBF interpolants.

3.1. An alternative expression for the RBF interpolant. It follows from
(2.1) and (2.6) that the RBF interpolant to the trigonometric mode eiωx can be
written as

s(x) =
1

Ξ(ω, h)

∞
∑

j=−∞
φ(x − hj)eiωhj . (3.1)

This formula is of limited utility, since it diverges if φ(r) grows as r → ∞. Invoking
the generalized Fourier transform circumvents this difficulty. The starting point is
then to view the summation in (3.1) as a discrete Fourier transform, and let that
be represented via a continuous Fourier transform summed over a 2π

h grid (again a
Poisson sum):

∞
∑

j=−∞
φ(x − hj)eiωhj =

1

h

∞
∑

j=−∞

∫ ∞

−∞
φ (x − y) ei(ω+ 2πj

h )ydy.

By the commutative law for convolutions we have

∞
∑

j=−∞
φ(x − hj)eiωhj =

1

h

∞
∑

j=−∞

∫ ∞

−∞
φ(y)ei(ω+ 2πj

h )(x−y)dw

=
1

h

∞
∑

j=−∞
φ̂(ω +

2πj

h
)ei(ω+ 2πj

h )x ,

i.e. the interpolant becomes

s(x) =

∑∞
j=−∞ φ̂(ω + 2πj

h )ei(ω+ 2πj
h )x

hΞ(ω, h)
(3.2)

To obtain the RBF interpolant for cos(ωx) (rather than for eiωx), we take the real
part of (3.2):

s(x) =
1

∑∞
j=−∞ φ̂(ω + 2πj

h )

∞
∑

j=−∞
φ̂(ω +

2πj

h
) cos

(

(ω +
2πj

h
)x

)

. (3.3)

In contrast to (3.1), convergence now depends only on the smoothness of φ(r) (which
for this purpose is sufficient in all cases that we are studying), and not on whether
φ(r) decays or grows for large r.

It follows from (3.3) that, if φ̂(ξ) decreases exponentially fast with ξ, spectral
convergence will result when h → 0. This is the case for infinitely smooth RBFs, such
as IQ, MQ, and GA.
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RBF φ(x) Interpolant s(x) to cosωx

r2n−1
Re

(

eiωx ∂2n−1

∂ω2n−1

[

(cot ωh
2 +i)e

iωh{ x
h}
])

∂2n−1

∂ω2n−1 cot ωh
2

r2n ln r

Re
(

eiωx
[

1
|ω|2n+1 +

(

h
2π

)2n+1

×
(

ei 2πx
h

(

Φ(ei 2πx
h , 2n + 1, 1 + ωh

2π

)

+e−i 2πx
h

(

Φ(e−i 2πx
h , 2n + 1, 1− ωh

2π

))])

1
1+(εr)2

cos ωx sinh 2π−ωh
εh +cos(ωx− 2πx

h ) sinh ω
ε

(cosh 2π
εh −cos 2πx

h )(cosh( ω
ε ) coth( π

εh )−sinh( ω
ε ))

√

1 + (εr)2
∑∞

j=−∞

K1( 1
εh

|ωh+2πj|)

|ωh+2πj| cos(ω+ 2πj
h )x

∑∞
j=−∞

K1( 1
εh

|ωh+2πj|)

|ωh+2πj|

e−(εr)2
∑∞

j=−∞ e
−( ωh+2πj

2εh )
2

cos(ω+ 2πj
h )x

∑∞
j=−∞ e

−( ωh+2πj
2εh )2

Table 3.1

The interpolant s(x) to cos(ωx) for different radial functions φ(r)

3.2. Closed form expressions for the RBF interpolants to cosωx. Closed
form expressions for the interpolant s(x) (as given by (3.3)) can be derived in several
cases, such as powers, TPS, and IQ. In the cases of MQ and GA, we cannot sum (3.3)
in closed form, but that is of little consequence. In all cases when φ(r) is smooth,
the sum in (3.3) converges extremely fast, and only the first terms (with j = 0, ±1)
need to be considered in order to find the leading error. Table 3.1 summarizes these
formulas for the interpolants s(x) to cosωx in cases of different radial functions φ(r).
A couple of notational comments:

• For φ(r) = r2n−1, the symbol
{

x
h

}

denotes the fractional part of the argument

(i.e.
{

x
h

}

= x
h −

[

nearest integer ≤ x
h

]

).
• For φ(r) = r2n ln r, the symbol Φ denotes the Lerch transcendental function,

defined as Φ(z, s, a) =
∑∞

k=0
zk

(a+k)s .

In the summation in (3.3), the j = 0 term recovers the trigonometric mode cosωx
(albeit with a slightly wrong amplitude), and the j = ±1 terms give a higher frequency
correction, such that the interpolation conditions can be met at all the nodes.

Figure 3.1 illustrates the interpolation errors for different choices of φ(r) in the
case of ω = 1 and n = 12, i.e. h = 2π/n. In the IQ, MQ, and GA cases, the shape
parameter is set to ε = 1. The solid curves in Figure 3.1 show the true interpolation
errors, according to the formulas in Table 3.1 (with the interpolation points marked
by dots - the errors of course being zero at these locations). The dashed curves show
the approximation for the error we get if we include only the j = 0 term in (3.3). We
denote these j = 0 errors (small multiples of cosωx) as the leading mean errors.

It is interesting to note that the RBF interpolation error is of a somewhat different
structure than what is typical for polynomial and trigonometric interpolation. In those
cases, the error usually oscillates locally around a zero mean rather than around a
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−0.02

0

0.02

φ(r) = r

0 2 4 6

−2

−1

0

1

2

x 10
−3 φ(r) = r2ln r

0 2 4 6
−2

−1

0

1

2
x 10

−4 φ(r) = r3

0 2 4 6
−1

0

1
x 10

−4 Inverse quadratic (IQ)

0 2 4 6
−2

−1

0

1

2
x 10

−6 Multiquadric (MQ)

0 2 4 6
−2

−1

0

1

2
x 10

−13 Gaussian (GA)

Fig. 3.1. The true error (solid) and the leading mean error (dashed) in approximating cos ωx
in the case of ω = 1, n = 12, i.e. h = 2π/n. In the IQ, MQ, and GA cases, the shape parameter
ε = 1. The dots mark were the errors are zero due to the interpolation conditions.

curve that is a very small multiple of the function being interpolated.

3.3. Comparison between the RBF interpolation errors when h → 0
and when ε → 0. The order of accuracy of a method refers to the rate by which the
error decreases to zero when the grid spacing h → 0. When using smooth RBFs, we
also have the shape parameter ε present. The influence of ε on the accuracy is less
intuitively clear. We are here interested in analyzing the error both as h → 0 and
(separately) ε → 0. In the present case of interpolating very smooth (trigonometric)
functions, we will see that the effects of h → 0 and ε → 0 are very similar. Figure
3.1 shows the interpolation errors when ε = 1 and h is quite small. Although the
curves in the different subplots look similar, the scales on the vertical axes are vastly
different. To approximate the amplitude of the leading mean error, we simply need to
take the three central terms (j = 0,±1) in (2.8) (for the Poisson sum) and the j = 0
term of the summation given in (3.3). Both as h → 0 and as ε → 0, the amplitude
of the leading mean errors (denoted by gh(ω, ε, h) and gε(ω, ε, h), respectively), are
obtained by
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Radial function φ(r) gh(ω, ε, h) gε(ω, ε, h)

r2n−1 2
(

ωh
2π

)2n −

r2n ln r 2
(

ωh
2π

)2n+1 −

1
1+(εr)2 e−

2π
εh

(

1 + e
2ω
ε

)

e−
2(π−ωh)

εh

√

1 + (εr)2 e−
2π
εh

[√
εωh3/2

K1(
ω
ε )2π cosh(ω

ε )
]

e−
2(π−ωh)

εh

√
ωh

[

(

1
2π−ωh

)3/2
]

e−(εr)2 e
− π

(εh)2
(π−ωh)

same as h → 0
Table 3.2

Amplitudes of leading mean errors when h → 0 and (separately) ε → 0.

sj=0(x) =
cosωx

1 + φ̂−1(ω)
[

φ̂(ω + 2π
h ) + φ̂(ω − 2π

h )
]

= cosωx (1 − gh(ω, ε, h)) h → 0 (3.4)

= cosωx (1 − gε(ω, ε, h)) ε → 0 , (3.5)

recalling that φ̂ is also a function of ε. These two error functions for different φ(r)
are summarized in Table 3.2.

The error clearly depends directly on the smoothness of the RBFs. For example
for the radial function φ(r) = r3, with a discontinuity in the third derivative at
the origin (recalling that φ(r) for r ≥ 0 is extended symmetrically to r ≤ 0) the
converges becomes O(h4), whereas for φ(r) = r2 ln r (with a discontinuity in the
second derivative), it becomes O(h3), i.e. in both cases algebraic convergence. For
the cases of IQ and MQ, we see spectral convergence of the interpolant both as h → 0
and as ε → 0. MQ converge faster than IQ when h → 0 since its error expression
contains an additional factor of h3/2. GA gives a much faster convergence still - of
the form O(e−const/h2

) rather than O(e−const/h). We will denote this super-spectral

convergence.
In the past, the regime of ε → 0 was numerically inaccessible (in cases of scat-

tered, multivariate data) due to the ill-conditioning of the linear system that leads
to the expansion coefficients λk. The Contour-Padé method by Fornberg and Wright
[8] has recently changed that, allowing numerically stable computations even in the
limit of ε → 0. Although the method (in its current form) is not practical for large
data sets (more than about a hundred points), it has nevertheless conclusively demon-
strated that numerical ill-conditioning as ε → 0 is not an intrinsic problem for RBF
interpolants, but instead is merely an undesirable artifact of a particular traditional
approach to compute RBF interpolants. The difficulty of working numerically with
small ε is technical rather than fundamental in nature.

4. Approximation of the first derivative at grid points. Knowing the RBF
interpolation errors in cases of trigonometric data, we can explore how well derivatives
are approximated.
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4.1. Analysis for FD schemes. We start by illustrating in Fourier space the
standard second order centered FD approximation (abbreviated FD2). When a basic
Fourier mode eiωx is differentiated analytically, the result becomes d

dx eiωx = i ω eiωx.
Ignoring the ”i”, the factor that emerges in front of the exponential is fexact(ω) = ω.
Using FD2

d

dx
eiωx ≈

1
2 (eiω(x+h) − eiω(x−h))

h
= i

sin ωh

h
eiωx

and we find

fFD2(ω) =
sin ωh

h
.

On an equi-spaced grid over [−π, π] with spacing h, the range of Fourier modes that
can be represented is ω ε [−π

h , π
h ]. That makes it natural to plot hf against hω over

the domain [−π, π] or, noting that hf is an odd function of hω, over the domain [0, π].
The curve marked FD2 in Figure 4.1 a shows hfFD2(ω). We can see that only a small
fraction of modes near the origin are treated reasonably well (compared against the
exact result - dotted straight line). The formal order of accuracy of the FD2 scheme
can be read off from the level of fit at the origin:

h fFD2(ω) = sin ωh = ωh − 1

6
(ωh)3 + . . . ,

showing that only powers up to second order are correct. Similarly, we obtain

h fFD4(ω) =
4

3
sin ωh − 1

6
sin 2ωh = ωh − 1

30
(ωh)5 + . . . ,

etc. Figure 4.1 a shows also this function, as well as the corresponding ones for FD
schemes up to order 10.

A cubic B -spline on a unit-spaced grid takes, at its three non-zero nodes, the
values

first derivative values 1
2 0 1

2
function values 1

6
2
3

1
6

.

From this follows the function hfCS(ω) for the derivatives computed from an inter-
polating cubic spline. It becomes

h fCS(ω) = i
1
2e−iωh + 0e0iωh − 1

2eiωh

1
6e−iωh + 2

3e0iωh + 1
6eiωh

=
3 sin ωh

2 + cosωh
= ωh − 1

180
(ωh)5 + . . . (4.1)

Figure 4.1 a includes hf also for this cubic spline method (denoted CS4, since (4.1)
shows it to be fourth order accurate). We can see that order alone does not tell the
full story about the accuracy of a scheme - the (global) spline-based CS4 method
holds its own very well against for example the FD6 scheme in the sense of providing
good approximations over a wide frequency range.

4.2. Analysis for the piecewise smooth RBF schemes. The starting point
is now equation (3.2). For xk = kh, k ∈ Z, the interpolant reduces to

s(xk) =
eiωxk

hΞ(ω, h)

∞
∑

j=−∞
φ̂(ω +

2πj

h
) = eiωxk
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0
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hω

h 
f(

ω
,h
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a.  FD2,...,FD10 (solid) and CS4 (dashed)

FD2

FD4

FD6
FD8

FD10

←CS4

0 1 2 3
0

0.5

1

1.5

2

2.5

3

hω

h 
f(

ω
,h

)

b.  φ(r) = r2n−1 (solid) and φ(r) = r2nln r (dashed)

n=1

n=3

Fig. 4.1. hf plotted against hω for (a) centered FD methods and the cubic spline method, and
(b) RBF approximations based on the radial functions φ(r) = r2n−1 (dashed) and φ(r) = r2n ln r
(solid).

(as should be expected, since the interpolation is exact at the nodes). The first
derivative at the node points becomes

s′(xk) = i
eiωxk

hΞ(ω, h)

∞
∑

j=−∞
(ω +

2πj

h
) φ̂(ω +

2πj

h
),

i.e.

f(ω, h) =
s′(xk)

i s(xk)
=

∑∞
j=−∞(ω + 2πj

h ) φ̂(ω + 2πj
h )

∑∞
j=−∞ φ̂(ω + 2πj

h )
, (4.2)

where the denominator is equal to hΞ(ω, h).
In the case of φ(r) = r2n−1, (4.2) becomes

h fr2n−1(ω, h) =

∑∞
j=−∞

1
(ω+ 2πj

h )2n−1

∑∞
j=−∞

1
(ω+ 2πj

h )2n

= −h(2n− 1)
d2n−2

dω2n−2 cot(ωh
2 )

d2n−1

dω2n−1 cot(ωh
2 )

.

For some low values of n, this simplifies to

n = 1 hf = sin ωh = ωh − 1
6 (ωh)3 + . . .

2 hf = 3 sin ωh
2 + cos ωh = ωh − 1

180 (ωh)5 + . . .

3 hf = 50 sin ωh+5 sin 2ωh
33+26 cos ωh+cos 2ωh = ωh − 1

5040 (ωh)7 + . . .

· · · · · ·

For the cubic case φ(r) = r3 (n = 2), we recover (4.1) for cubic splines. More
generally (on a periodic domain), RBFs based on φ(r) = r2n−1 and splines of order
2n − 1 give identical interpolants.

In the case of φ(r) = r2n ln r, the general expression for hf becomes similarly

h fr2n ln r(ω, h) =

∑∞
j=−∞

1

|ω+ 2πj
h |2n

∑∞
j=−∞

1

|ω+ 2πj
h |2n+1

= −4nπ
Ψ(2n−1)(ωh

2π ) − Ψ(2n−1)(1 − ωh
2π )

Ψ(2n)(ωh
2π ) + Ψ(2n)(1 − ωh

2π )
,
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Fig. 4.2. hf vs. hω for IQ RBFs in the cases of (a) ω = 1 and different ε, and (b) ε = 0.1
and different ω.

which for some low values of n becomes

n = 1 hf = −4π
Ψ(1)( ωh

2π )−Ψ(1)(1−ωh
2π )

Ψ(2)( ωh
2π )+Ψ(2)(1−ωh

2π )
= ωh + 3Ψ(2)(1)

8π3 (ωh)4 + . . .

2 hf = −8π
Ψ(3)( ωh

2π )−Ψ(3)(1−ωh
2π )

Ψ(4)( ωh
2π )+Ψ(4)(1−ωh

2π )
= ωh + 5Ψ(4)(1)

384π5 (ωh)6 + . . .

3 hf = −12π
Ψ(5)( ωh

2π )−Ψ(5)(1−ωh
2π )

Ψ(6)( ωh
2π )+Ψ(6)(1−ωh

2π )
= ωh + 7Ψ(6)(1)

46080π7 (ωh)8 + . . .

· · · · · ·

.

As before, Ψ(n)(z) = dn+1

dzn+1 ln Γ(z) denotes the polygamma function. We can note

that Ψ(2n)(1) are negative for all positive integers n. Like for φ(r) = r2n−1, hf < hω
for 0 < hω ≤ π.

Figure 4.1 b compares hf against hω in the cases of φ(r) = r2n−1 and φ(r) =
r2n ln r. The accuracy improves with increasing values of n, giving derivative approx-
imations of order 2n for φ(r) = r2n−1 and of order 2n + 1 for φ(r) = r2n ln r. For
the same value of n, the accuracies differ by one order (just as was the case for
interpolants, as was seen from the gh(ω, ε, h) functions in Table 3.2).

4.3. Analysis for RBF schemes with φ(r) infinitely differentiable. A new
aspect enters in the analysis when φ(r) is infinitely differentiable. Not only does the
shape parameter ε introduce an additional length scale, the variables ω and h in
f(ω, h) will no longer appear only in the form of the product ωh. As an example, for
the IQ case, φ(r) = 1/(1 + (εr)2), we can obtain from (4.2)

h fIQ(ω, h) = ωh − π sinh ω
ε

sinh π
hε cosh

(

π
hε − ω

ε

) = ωh − 2π(e2ω/ε − 1) e−
2π
εh + . . . .

The exponential decay of the error as h → 0 (ω fixed) signifies its spectral accuracy.
For the cases of MQ and GA, there do not appear to be any simple closed-form

expressions available for hf(ω, h), but the functions can be readily computed from
(4.2) and displayed graphically. In previous cases (with piecewise smooth φ(r)), each
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Fig. 4.3. hf vs. hω displayed for IQ, MQ, and GA in the case of ω = 1 and (a) ε = 1.0 , (b)
ε = 0.1.

method was fully described by one single curve in the hf(ω, h) against hω plots. In
these cases with φ(r) infinitely differentiable, we need to draw different curves not
only for different values of ε, but also for different values of ω. Figures 4.2 a and b
show hf(ω, h) against hω in the IQ cases of {ω = 1, different ε} and {ε = 0.1, different
ω}, respectively.

In Figure 4.3 a, b the three main types of infinitely smooth RBFs that are con-
sidered in this study (IQ, MQ, and GA), are compared against each other for the case
of ω = 1 and ε = 1.0 and ε = 0.1, respectively. For ε = 1.0 we see the high formal
order of accuracy by the accuracy of the fit to the exact solution near the origin, but
the treatment of high frequencies is not much better than with typical FD methods.
This case (ε = 1.0, with the basis functions not particularly flat), is probably typical
of the regime in which RBFs are often used. MQ is here clearly the most attractive
choice of the three we are considering. For ε = 0.1 we have reached a different regime,
and the accuracies are far higher. The advantage of MQ over IQ is now rather slim
(due to the extra factor of h1/2 for gε(ω, ε, h) noted in Table 3.2). More noticeable is
the strength of the GA method. However, since all the three methods offer excellent
accuracy over almost all the wave modes that are present, the practical advantage of
the GA method’s super-spectral accuracy (both as h → 0 and ε → 0) remains unclear.

5. Conclusions. The main strength of RBF interpolants lie in their flexibility,
convenience, and accuracy when applied to scattered multi-dimensional data sets. In
such a general setting, errors can be computed numerically, but analytic error analysis
is often difficult or impractical (although notable such estimates have been achieved,
e.g. [17], [18], [20]). By considering the simplified case of equi-spaced periodic data,
we have been able to obtain a number of novel closed-form expressions, as well as
estimates of errors which support previously observed convergence properties. In
particular, we have described how the errors decrease for very smooth functions when
we increase the number of node points (h → 0) and when the basis functions are
made increasingly flat (ε → 0). The closed-form error expressions show how the errors
for different RBFs fall in three categories - algebraic, spectral, and super-spectral -
dependent on the decay rates of the Fourier transform of the radial function. The
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limit of ε → 0 is of particular theoretical interest because (excepting rare special
cases)

• 1-D: Over a finite set of arbitrarily spaced nodes, the limiting interpolant
becomes identical to the standard Lagrange’s interpolation polynomial [5],
and

• n-D: The limit becomes a low-degree multivariate interpolation polynomial
[9].

This demonstrates that, in the ε → 0 limit, RBF methods reproduce traditional
spectral methods, such as Chebyshev, Fourier, etc. Not only have spectral methods
become generalized to unstructured node sets in arbitrary domains, we have also
obtained the option in spectral methods of not proceeding all the way into the ε → 0
limit. Many challenges remain in the area of RBF analysis. To mention just a couple:

• Generalize the full range of the present 1-D equispaced results to irregular
node situations in more dimensions, and

• Understand the generality and utility of super-spectral convergence.
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