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A Two-Stage Push-Pull Production Planning Model

Abstract

We study a hybrid push-pull manufacturing system that the IBM Systems Group implemented as a
response to a complex configuration environment and increasing pressure for responsive order fulfill-
ment lead times. This is a two-stage (fabrication and fulfillment center) manufacturing process, which
builds and stocks tested subassemblies for just- in-time configuration of the final product when a spe-
cific customer order is received. The first production stage (fabrication) is a push process where parts
are replenished, tested, and assembled into subassemblies according to product-level build plans. The
subassembly inventory is kept in stock ready for the final assembly of the end products. The second pro-
duction stage (fulfillment) is a pull-based assemble-to-order process where the final assembly process
is initiated when a customer order is received and no finished goods inventory is kept for end products.
One important planning issue is to find an optimal trade-off between capacity utilization and inventory
cost reduction that strives to meet the quarter-end peak demand. We present a nonlinear optimization
model to minimize the total inventory cost subject to the service level constraints and the production ca-
pacity constraints. This results in a convex program with linear constraints. An efficient algorithm using
decomposition is developed for solving the nonlinear optimization problem. Other numerical methods
including a piece-wise linearization method and a general purpose nonlinear solver are also tested along
with the decomposition method. Several variations of the model are formulated to incorporate additional
features in practice. Numerical results are presented to show the performance improvement generated
by the optimal solutions over a production-smoothing strategy.

Keywords:push-pull production, configure-to-order, production smoothing, capacitated inventory model.
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1. Introduction

Server computer manufacturing is highly capital-intensive and characterized by high customer expectations,

short product life cycles, proliferating product variety, unpredictable demand, long and variable manufac-

turing cycle times, and considerable supply chain complexity. On the one hand, manufacturing firms need

to improve the manufacturing efficiency by maximizing the utilization of production capacity and by mini-

mizing the inventory costs. One the other hand, they need to deal with increasingly complex configuration

requirements and tremendous pressure for responsive order fulfillment.

The emphasis of this paper is to provide decision support for supply chain operations in a hybrid push-

pull system with multiple products and complex bills-of-materials. Products are assembled in two stages

called fabrication and fulfillment. We formulate a multiple-period production-inventory optimization prob-

lem with service level constraints defined at the product level for each period. The goal of the optimization

is to generate a build plan that minimizes the inventory cost while meeting customer demand with a given

service level in a capacity- constrained environment. Capacity limitations are modeled in the form of ma-

chine and labor capacity constraints. Labor capacity can be shared among different manufacturing tasks.

The total labor capacity can be adjusted according to demand by using overtime work force at a premium

cost. Machine capacity can be shared only among tasks that involve manufacturing or testing of similar

components.

Below in the rest of this section, we begin with a review of related literature, followed by a description

of the industrial problem that motivated our study, and an overview of the contributions of this paper. In

Section 2, we define a product-based optimization model where configured systems are built in a squared

set, that is, all components in the bill-of-materials of a system need to be built and replenished at the same

time. In Section 3, we introduce a component-based optimization model where the squared set restriction

is removed to allow additional flexibility when optimizing the build plan. In Section 4 we develop a linear

approximation approach and a decomposition algorithm to provide efficient solutions. Numerical results are

presented in Section 5, and several extensions of the model are presented in Section 6. The paper concludes

with a summary and directions for future research.

1.1 Literature Review

Although there is a large body of literature on pure push systems and pure pull systems, research on hy-

brid systems is relatively sketchy. Some cases of hybrid systems have been studied in specialized contexts.

For example, Aviv and Federgruen (2001) provide an analysis on capacitated multi-item inventory systems

where the items are produced in two stages. They investigate the benefits of various delayed product differ-
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entiation (postponement) strategies and other related issues in a two-stage production system. The typical

setting of two-stage production systems discussed in the postponement literature usually involves a common

intermediate product in the first stage and a simple localization operation in the second stage.

Federgruen and Zipkin (1986a, 1986b) establish the optimality of the modified base-stock policy in a

discrete-time single item, single location finite capacitated production system under an average cost criterion

and a discounted cost criterion. Aviv and Federgruen (1997) allow the values of parameters such as demand

distributions, capacity levels, and costs, to vary in a periodic pattern. They prove that a periodic modified

base- stock policy is optimal, and show that the problem may be solved using a value-iteration method.

Kapuscinski and Tayur (1996) also consider a periodic model; they compute inventory levels using infini-

tesimal perturbation analysis, a simulation-based method of estimating derivatives discussed by Glasserman

and Tayur (1995).

A detailed survey of the state-of-the-art research on assemble-to-order (ATO) systems can be found

in Song and Zipkin (2003). Also refer to the volume on supply chain structures edited by Song and Yao

(2001). Several authors focus on performance evaluation and optimization techniques for the base-stock

policy, assuming that demand in each period has a multivariate normal distribution. Hausman et al. (1998)

examine the problem of maximizing the probability filling all demand in a period within a time window

subject to a linear budget constraint, and develop heuristic methods. The model of Agrawal and Cohen

(2001) minimizes the total expected component inventory costs, subject to constraints on the order fill rates

using an allocation policy characterized by partial FCFS and fair-share allocation. Kaminsky and Swami-

nathan (2004) develop heuristics that utilize forecast evolution information to make production decisions in

a capacitated manufacturing environment, taking into account production costs, holding costs, salvage costs

and stock-out costs. Cheng et al. (2002) study the problem of minimizing average component inventory

holding cost subject to product-family dependent fill rate constraints in a configure-to-order (CTO) system

and provide an exact algorithm and a greedy heuristic for computing the optimal inventory policy. Song and

Yao (2002) investigate the optimal inventory-service tradeoff in a single-product ATO system, focusing on

fill-rate performance. The results are extended to multi-product models in Lu, Song and Yao (2003, 2005),

where issues such as backorder minimization, leadtime variability and advance demand information are also

studied.

Dietrich et al. (2005) discuss the use of implosion technology throughout IBM’s supply chain for a vari-

ety of applications that require a rapid assessment of capability to respond to changes in demand, supply, or

capacity. The paper describes the application of implosion to available-to-promise generation within a com-

plex configured value chain characterized by configure-to-order product structures. Beyer and Ward (2002)

describe an inventory management study conducted at HP’s Network Server Division. The authors compute
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inventory policies that reduce inventory and transportation costs in a two-tier supply network with a single

manufacturing site and multiple fulfillment centers. Feitzinger and Lee (1997) show that postponement pro-

vides an effective means for firms to implement mass customization without incurring large operating costs

associated with managing proliferating product variety.

1.2 Motivation and Contributions

Our work is motivated by a hybrid push-pull manufacturing strategy implemented at IBM’s Systems Group

(SG). As one of the largest providers of server computers, IBM is facing a significant challenge in manag-

ing one of the most vertically integrated supply chains in the industry. The supply chain is under constant

pressure to move towards the assembly of components from a vast array of outside suppliers, and to sell

components to the marketplace. Since IBM manufactures most major assemblies of its server computers

in house, the integrated supply chain is even more complex and difficult to manage. Clearly, such an envi-

ronment makes managing the extended supply chain critical to the companys success. To deal with these

complexities, SG introduced the so-called fab/fulfillment model to their high-end server computer supply

chain. The fab/fulfillment process combines mass production with small-batch production to achieve mass

customization. In this model, the fulfillment center pulls fab tested parts consumptively, and builds complete

systems to order. The goal of the fulfillment center is rapid, customized response to customer orders.

The fab/fulfillment concept was an original design point of IBM’s integrated supply chain reengineering

efforts that aimed at reaching world-class performance on responsiveness (customer serviceability) com-

bined with complex configurations and options offered in a server manufacturing environment. The first

stage (fabrication) is a push process where parts are replenished, tested, and assembled into subassemblies

according to product-level build plans. The second stage (fulfillment) is a pull-based assemble-to-order

process where the final assembly process is initiated when a customer order is received. The assemble-

to-order paradigm offers higher product variety and hence often results in broader market coverage and

increased demand volume. Since the most time consuming manufacturing tasks are completed in the first

stage of production, cycle times in the second stage are relatively short which allows the fulfillment center to

respond rapidly to customer orders. Postponing the final assembly provides additional flexibility in terms of

product variety and achieves resource pooling in terms of maximizing the usage of manufacturing capacities

and parts inventories.

The reconciliation of sales, manufacturing, and financial plans starts with the Sales and Operations

Planning (S&OP) process and continues through the Top-Input decision to the MRP Master Scheduling

process. The S&OP process is designed to help the company maximize customer satisfaction and meet

profitability goals by achieving the optimal balance of demand and supply. Decisions on what to make
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and when and how to deliver finished products are made based on scenarios that best meet business unit

performance goals, factoring in service levels, sales forecasts, revenue plans, and pre-tax income analysis

which balances inventory against the risk of stock outs. The S&OP process establishes an integrated set

of plans that sales, marketing, operations, engineering and financial stakeholders are committed to support.

The focus is at the product family level (such a zSeries z900 servers), and most emphasis is placed on

quarterly total volumes.

The translation into volumes for specific system configurations in a product family (called Machine-

Type-Model part numbers, or MTMs) is made by manufacturing. This process called Top-Input decision

process is designed to make a final build decision such that the totals match the S&OP sales plan, factoring

in the expected mix at the MTM level and feature ratio forecasts that drive the demand for lower level parts.

Feature ratio forecasts are updated monthly, usually using the average of the last several months of actuals

and manually overridden for new products or to incorporate market intelligence. The Top-Input decision

controls how these sources influence the build plan and determines the customer supply commitments.

The committed levels of supply are exploded through the bills-of-materials in the MRP Master Scheduling

process which translates them into supply requests for components, sourced both from IBM manufacturing

plants and externally procured.

The fab/fulfillment concept as practiced by IBM SG includes building tested parts and sub-assemblies

to a build plan. Because of limited production capacity, the fab typically overproduces versus demand

early in the quarter to meet peak demands towards the end of the quarter. The build plan is specified by

a quarterly total and a spread, which determines how much to build in each month of the quarter. Typical

spreads are 30% in month one, 40% in month two, and 30% in month three (denoted as 30/40/30). The

goals of an evenly spread build plan are capacity utilization, plant and supplier requirements stability, and

ramp up for end-of-quarter peak demands, ensuring adequate inventory and even some fab capacity used

for fulfillment at quarter-end. An important implication of this business model is that inventory builds up

during the quarter, and is at its lowest point at the very end of a quarter. A related implication is that safety

stock is almost entirely determined by two factors: the decision of how much to build for the quarter overall,

and the spreading (e.g., 30/40/30) of the build plans. One consequence of this spreading is that the server

supply chain is much less sensitive (and less amenable) to traditional improvement actions. While such

practices simplify planning and decision making by dealing with capacity limitations at an aggregated level,

they fail to address the issue of managing inventory-driven costs including financing, inventory write-downs

and inventory write-offs (obsolescence) which are tremendous cost drivers.

The contributions of the paper are as follows. First, we formulate an optimization problem that is ap-

plicable to a large class of real-world supply chains that deal with a hybrid push-pull manufacturing strategy,
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complex configured products, limited manufacturing and labor capacity, and customer service level agree-

ments. Second, we present two variants of the problem that both have distinct advantages over the common

practice of applying a quarter-to-month spread ratio to derive the build plan (production smoothing). In the

product-based model, we define the weekly build quantities of fully configured systems as decision variables

and demonstrate inventory cost reductions over the production smoothing strategy. In the component-based

model, we derive optimal component- level build quantities to achieve further cost reductions by relaxing

the squared set requirement of the product-based model and exploiting parts commonality. Third, we exploit

the structure of the problem formulation to develop efficient numerical algorithms, in particular a backward-

recursion algorithm that solves the problem optimally through decomposition. And fourth, we demonstrate

the efficacy of the approach by numerical experiments with realistic production data. This produces sev-

eral insights into the build plan optimization problem, specifically regarding the effects of component-based

manufacturing.

2. A Product-Based Model

We formulate an nonlinear optimization problem to model the manufacturing planning problem under study.

Instead of using a quarter-to-month spread ratio to derive the build plan as with the heuristic approach, we

define the weekly build quantities of MTMs as the decision variables to capture potentially greater benefits

from the use of analytic approach.

2.1 Formulation

We use the superscriptK to index the MTM types, and the subscripti to index components (items or sub-

assemblies). LetK denote the set of all MTM types, andI = {1, ...,m} denote the set of all components.

We further partitionI into disjoint subsets,I = ∪n
j=1Aj , with eachAj representing a collection of similar

component, e.g. CPU, memory, and so forth.

Each MTM type is characterized by a subset of components, i.e.,K ⊆ I, along with the usage counts:

uK
i , i ∈ K, i.e., the number of units required from each componenti.

Let t = 1, ..., T index the time periods. For instance, when each period is a week,T = 12 represents a

quarter.

Assume the following are given data:

• CM
j,t , j = 1, ..., n, the machine capacity limit, in terms of the maximum number of componentsi ∈ Aj

that can be processed in periodt. Note that this capacity is shared among all components inAj , and

only those components.
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• hK
t , K ∈ K, inventory cost for each unit of typeK MTM left over at the end of periodt (after

supplying demand). For instance,hK
t =

∑
i∈K ciu

K
i , with ci being the cost (for raw materials,

processing and labor) associated with each unit of componenti. (Note that since the final assembly

is only built to order, the “MTM left over at the end of periodt” really refers to the ensemble of its

components.)

• πt, penalty cost for over-time labor, when the capacity limitCL
t is exceeded.

In addition, assume for each MTM typeK, we know its demand for each period,DK
t . Suppose

DK
t = µK

t + σK
t Zt,

with Zt denoting the standard normal variate; assumeZt’s are i.i.d. over time. Denote

DK(1, t) :=
t∑

s=1

DK
s ;

and similarly denote

µK(1, t) :=
t∑

s=1

µK
s ,

and

σK(1, t) := [
t∑

s=1

(σK
s )2]1/2.

The decision variables are:xK
t , the build quantity for each MTM typeK in each periodt. Note, again,

that the MTMs willnot be actually “built” as they are assembled to orders only. The MTM build quantities

are surrogates for component build quantities. OncexK
t ’s are decided, so will the build quantity for each

component: for componenti, this is equal to
∑

K3i u
K
i xK

t . Denote:

xK(1, t) :=
t∑

s=1

xK
s .

The objective is to minimize the total inventory cost and penalty cost for over-time labor:

min
T∑

t=1

{
∑

K∈K
hK

t E[xK(1, t)−DK(1, t)]+. + πt[
∑

K∈K
xK

t − CL
t ]+ }. (1)

The constraints are:

∑
i∈Aj

∑
K3i

uK
i xK

t ≤ CM
j , j = 1, ..., n, t = 1, ..., T ; (2)

xK(1, t) ≥ µK(1, t) + σK(1, t) · εαK , K ∈ K, t = 1, ..., T. (3)
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The last constraint above is equivalent to

P[xK(1, t) ≥ DK(1, t)] ≥ αK ,

which enforces the service levels, represented byαK , for productK, with εαK denoting the point corre-

sponding to theαK percentile of the standard normal distribution; e.g.,εαK = 1.64 whenαK = 95%.

Note in the objective function in (1), the inventory part assumes full backlog of demand. The expectation

term in (1) can be derived as follows:

E[xK(1, t)−DK(1, t)]+

= E[xK(1, t)− µK(1, t)− σK(1, t) · Z]+

= σK(1, t)E
[xK(1, t)− µK(1, t)

σK(1, t)
− Z

]+

= σK(1, t)H
(xK(1, t)− µK(1, t)

σK(1, t)

)
, (4)

where

H(x) := E[x− Z]+ =
∫ x

−∞
(x− z)φ(z)dz = xΦ(x) + φ(x), (5)

with Φ andφ being the distribution and the density functions ofZ.

SinceH(x) is both increasing and convex inx, the optimization problem has an increasing and convex

objective function, and a set of linear constraints.

Proposition 1 (Feasibility condition) An optimal solution exists to the problem defined by (1)-(3) if the

following conditions are satisfied.

∑
i∈Aj

∑
K3i

uK
i (µK(1, t) + σK(1, t) · εαK ) ≤ CM

j ∗ t, j = 1, ..., n, t = 1, ..., T. (6)

Discussions

1. What’s referred to as MTMs here is really at the level of final products. That is, each MTM has afixed

configuration (bill of materials) in terms of components and their usage counts.

2. Decisions (build quantities) are made at the level of MTM (as defined above), by type and by period.

Since each MTM has a fixed bill of materials, the decisions are readily translated into build quantities

of components and sub-assemblies.

3. Inventory cost is charged to theendinventory of each period.
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4. The definition ofCM
j,t relates readily to more primitive data as follows. For instance in the case

of constant capacity, suppose there arem machines for testing the subset of components inAj , and

suppose each machine handles a batch ofB units at a time, and the testing time isw weeks on average.

Then,CM
j = mB/w per week.

3. A Component-based Model

The product-based model presented above implicitly requires the components as defined by the bill of ma-

terials for an MTM be built in a “square” set, meaning that all the components required to assembly a

particular MTM needs to be built or replenished at the same time. This is simply because the variables de-

fined in the product-based model present the MTM-level build quantities. To convert the MTM-level build

plan to a component-level build plan, one would simply apply the usage rates as defined in the bill of mate-

rials to get the build quantities of the components. With decision variables defined at the component-level,

the “square” set restriction can be removed to allow additional flexibility when optimizing the build plan

with the capacity constraints.

3.1 Component-based Model Formulation

To model the planning of build quantities at the component level, we introduce a set of variables to represent

the build quantity of each component. Letwi
t be the build quantity for componenti in periodt, i ∈ I and

1 ≤ t ≤ T . We also define the accumulative build quantity for componenti from period 1 to periodt as

wi(1, t) =
t∑

s=1

wi
s.

The objective is to minimize the total component inventory cost and the overtime labor cost.

min
T∑

t=1

{
∑
i∈I

hi
tE[wi(1, t)−

∑
K∈K

∑
K3i

uK
i DK(1, t)]+ + πt[

∑
K∈K

xK
t − CL

t ]+ }. (7)

The constraints are:

∑
i∈Aj

wi
t ≤ CM

j , j = 1, ..., n, t = 1, ..., T ; (8)

xK(1, t) ≥ µK(1, t) + σK(1, t) · zαK , K ∈ K, t = 1, ..., T ; (9)

wi(1, t) ≥
∑

K∈K

∑
K3i

uK
i xK(1, t), i ∈ I, t = 1, ..., T. (10)

The last constraint above ensures that the MTM-level build plan is always feasible given the tested parts

available at any given time. In fact we can combine (9) and (10) to get the service level constraints defined
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at the component level as the following

wi(1, t) ≥
∑

K∈K

∑
K3i

uK
i

(
µK(1, t) + σK(1, t) · zαK

)
, t = 1, ..., T,

and eliminate thexK(1, t) variables from the formulation. Also note thathi
t is now the inventory holding cost

for componenti in periodt. Furthermore, this formulation implies that the labor requirement is determined

by the MTM-level production.

Proposition 2 The minimimal cost of the component model is no greater than the minimimal cost of the

corresponding MTM model.

Remarks

• The benefits of the component-based model over the product-based model are achieved by relaxing the

requirement for building “square sets” at the component level. The difference between the product-

based model and the component-based model reflects the cost reduction due to this factor. Since the

capacity constraints are defined at the component level, it is clear that better capacity utilization can

be achieved through optimizing the component level build plan. Especially when the capacity is tight

for some parts in certain periods, one has the flexibility to adjust the build schedules for the parts

to avoid capacity constraints in those periods. On the other hand, the product-based model would

be more restrictive in this case since parts are to be built in “square sets”, therefore, less flexible in

making adjustments of the build plan.

• The another potential factor that could lead to additional cost savings is the risk-pooling effect on

the demand variability when we switch from the product-based model to a component-based model.

This is based on the fact that parts commonality exists among different MTMs. Since the demand

variability is reduced through demand aggregation at the component-level, the safety stock required

to maintain the same level of service should be less than what would be required if the safety stock

was kept at the MTM level.

• However, the cost savings due to the demand variability reduction is not reflected in the current

component-based model because the demand variability reduction is not captured in the model. To

take the advantage of the risk-pooling effect, we would need to model the demand variability re-

duction that could be achieved by forecasting the component-level demand directly. Furthermore, a

component-based (or build block-based) planning methodology should be adopted such that the com-

mon components are indeed shared by the MTMs that require them rather than individually allocated

to each of those MTMs.
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4. Two Solution Approaches

Both the product-based model and the component-based model have nonlinear objective functions, more

specially convex functions, with linear constraints. Today’s high-power nonlinear solvers are probably ca-

pable of solving this type of problems. However, there are certain structures of the problems that can be

explored and utilized to facilitate the computation involved in the optimization. We have developed two

computation approaches that demonstrated improved computation performance through numerical results.

One approach is to approximate the nonlinear objective function through linearization so that a near-optimal

solution can be obtained by using a linear program solver. The second approach is to use a backward-

recursion algorithm to solve the problem through decomposition.

4.1 Piece-wise Linearization

First notice that the penalty part of the objective function in (1) can be replaced byπtu
K
t , with

∑
K∈K

xK
t − CL

t = vt − wt, (11)

andvt, wt ≥ 0 being additional slack variables. Furthermore, since

xK
t = xK(1, t)− xK(1, t− 1),

we can let

yK
t := xK(1, t), t = 1, ..., T ; K ∈ K

be the new variables (and denoteyK
0 := 0 for all K). This way, the optimization problem becomes:

min
T∑

t=1

{
πtvt +

∑
K∈K

hK
t σK(1, t)H

(yK
t − µK(1, t)

σK(1, t)

)}
, (12)

subject to the following constraints:

∑
i∈Aj

∑
K3i

uK
i [yK

t − yK
t−1] ≤ CM

j , j = 1, ..., n, t = 1, ..., T ; (13)

∑
K∈K

[yK
t − yK

t−1]− CL
t = vt − wt, t = 1, ..., T ; (14)

yK
t ≥ µK(1, t) + σK(1, t) · εαK , K ∈ K, t = 1, ..., T ; (15)

yK
T ≥ yK

T−1 ≥ · · · ≥ yK
1 ≥ 0, K ∈ K (16)

vt ≥ 0, wt ≥ 0, K ∈ K, t = 1, ..., T. (17)

Clearly, the above is a separable convex programming problem.
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From (5), it is readily verified that

H(x) ≈ x, for x ≥ 3,

and

H(x) ≈ 0, for x ≤ −3.

Hence, the only non-linearity of the function is within the interval[−3, 3]. (And, over this interval it is

convex).

Hence, we should be able to approximate theH function by piecewise linear functions with a relatively

small number of pieces. Suppose we preselect the following points on thex-axis:

−3 := z0 < z1 < · · · < zp < zp+1 := 3. (18)

For anyx, supposex ∈ [z`, z`+1], for somè ≤ p. We can write

x = z` + λ(z`+1 − z`),

for someλ ∈ [0, 1]. We can then approximateH(x) as follows:

H(x) ≈ H(z`) + λ[H(z`+1)−H(z`)],

which is nothing more than linear interpolation. In general, we can write anyx ∈ (−3,+3) as

x =
p∑

`=0

λ`+1(z`+1 − z`),

and

H(x) ≈
p∑

`=0

λ`+1[H(z`+1)−H(z`)].

These, along withH(x) = x for x ≥ 3 andH(x) = 0 for x ≤ −3, approximate theH function byp + 2

linear pieces.

We now apply this linearization procedure to theH function in (12). Thanks to the constraint in (15),

we can start at

z0 = min
K∈K

{εαK}, (19)

instead ofz0 = −3 as in (18). (The other preselectedz`’s are the same as in (18).)

Write

yK
t = µK(1, t) + σK(1, t)

p∑
`=0

λK,t
`+1(z`+1 − z`). (20)
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Then, we have

H
(yK

t − µK(1, t)
σK(1, t)

)
= H

( p∑
`=0

λK,t
`+1(z`+1 − z`)

)
=

p∑
`=0

λK,t
`+1[H(z`+1)−H(z`)].

Consequently, the original optimization problem becomes:

min
λ

T∑
t=1

{
πtvt +

∑
K∈K

hK
t

p∑
`=0

λK,t
`+1[H(z`+1)−H(z`)]

}
;

with the following constraints:

∑
i∈Aj

∑
K3i

uK
i

p∑
`=0

(λK,t
`+1 − λK,t−1

`+1 )(z`+1 − z`) ≤ CM
j , j = 1, ..., n, t = 1, ..., T ; (21)

p∑
`=0

λK,t
`+1(z`+1 − z`) ≥ εαK , K ∈ K, t = 1, ..., T ; (22)

∑
K∈K

p∑
`=0

(λK,t
`+1 − λK,t−1

`+1 )(z`+1 − z`)− CL
t = vt − wt, t = 1, ..., T ; (23)

p∑
`=0

λK,t
`+1(z`+1 − z`) ≥

p∑
`=0

λK,t−1
`+1 (z`+1 − z`), K ∈ K, t = 1, ..., T ; (24)

0 ≤ λK,t
` ≤ 1, ∀K, t, `. (25)

The above is a linear programming withλK,t
i as decision variables. Once the optimal solution toλK,t

i is

obtained, the optimal solution toyK
t follows from (20).

The modeling results in a convex programming problem, i.e. minimizing a convex function over a poly-

hedron defined by linear constraints, and standard convex programming solvers can be employed to produce

a solution. The objective function is regular both analytically and geometrically in a local sense, that is,

it is locally smooth and flat (close to a linear function). Although the technique of using linear piecewise

function approximation to solve convex programming is usually not practical due to its computational com-

plexity, the form of objective function in this problem allows us to use a linear approximation with a small

number of segments. The unique form of the objective function in our formulation is shared by a large class

of problems in inventory and supply chain management. Therefore, the proposed methods can be adapted

to solve many related problems.

4.2 Decomposition

A special case of the component-based model is when the overtime labor cost is not considered for build

plan decisions. Then we can rewrite the component-based model (7-10) without the penalty part of the

objective function as follows.

min
T∑

t=1

{
∑
i∈I

hi
tE[wi(1, t)− di(1, t)]+}, (26)
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Subject to: ∑
i∈Aj

wi
t ≤ CM

j , ∀j, t; (27)

wi(1, t) ≥ Bi(1, t), ∀i, t. (28)

where

di(1, t) =
∑

K∈K

∑
K3i

uK
i DK(1, t), t = 1, ..., T,

and

Bi(1, t) =
∑

K∈K

∑
K3i

uK
i

(
µK(1, t) + σK(1, t) · zαK

)
, t = 1, ..., T.

Notice that the new problem is separable inj. Therefore, we can decompose the problem byj and solve a

number of smaller problems each with simple constraints. We can rewrite the constraint (27) as∑
i∈Aj

wi(1, t) ≥ C̄j(1, t),

whereC̄j(1, t) is given by

C̄j(1, t) =
∑
i∈Aj

wi(1, t + 1)− CM
j .

In fact this new formulation is also separable int. Therefore, we can further simplify the sub-problem

for a givenj, as defined in (26- 28), by decomposing it for eacht = T, ..., 1, i.e.,

min
∑
i∈Aj

hi
tE[wi(1, t)− di(1, t)]+, (29)

Subject to: ∑
i∈Aj

wi(1, t) ≥ C̄j(1, t), (30)

B̄i(1, t) ≤ wi(1, t) ≤ wi(1, t + 1), i ∈ Aj . (31)

where

B̄i(1, t) = Bi(1, t) + wi(1, t + 1)− B̄i(1, t + 1)

with B̄i(1, T + 1) := 0. Note thatwi(1, t + 1) is a constant given by the solution for periodt + 1 and

wi(1, T +1) := 0. The structure revealed in this simplified formulation allows us to decompose the original

problem byj and byt into a sequence of smaller problems, thus reducing the complexity of the problem

and hence the total computation time required.

The objective function of the sub-problem givenj andt is given by

g(j, t|w(j, t)) =
∑
i∈Aj

hi
tE[wi(1, t)− di(1, t)]+,

14



wherew(j, t) denotes the vectorwi(1, t) : i ∈ Aj . The value function is then defined as

v(j, t) = min
T∑

k=t

g(j, k|w(j, k)).

The new formulation of the problem with the decomposition can be presented as follows.

v(j, t) = min
w(j,t)∈Ut

(v(j, t + 1|w(j, t) + g(j, t + 1|w(j, t + 1))) ,

wheret = 1, ..., T, j = 1, ..., n andv(j, T ) = 0,∀j. Ut is defined by (30) and (31).

Given the structure of the sub-problem for givent andj, it can be observed that the optimal solution

w(j, t) has the following properties

Proposition 3 The problem defined by(29-31)is feasible if

∑
i∈Aj

wi(1, t + 1) ≥ C̄j(1, t). (32)

The optimal solutionw(j, t) is always at the boundaries defined by (30) and (31).

Proof. If (32) does not hold, then clearly (30) cannot be true. Furthermore, since the objective function of the

sub-problemg is convex and non-decreasing inw(j, t), the optimal value must be attained at the boundaries.

There are two cases that an optimal solution can be attained.

• If constraint (30) is not binding, then the optimal solution is directly given by the lower bounds defined

by (31);

• If constraint (30) is binding, the optimal solution lies on the line defined by (30) and between the two

intersects of the line with the bounds defined by (31).

The resulting problem withi ∈ Aj for a givenj can be solved using a backward recursion algorithm

outlined below. Note that each stage of the recursion involves solving a nonlinear optimization problem

with a convex objective and linear constraints. The solution to this problem (29-31) can be easily obtained

by performing a greedy search.

• Step 0: Initializewi(1, t) = dBi(1, t)e, t = 1, ..., T (dxe = the least integer greater than or equal to

x), and let the step size be∆w.

• Step 1: If fort = T ,
∑

i∈Aj
wi(1, t) > CM

j (1, t), then the problem is infeasible. Exit. Otherwise

continue to Step 2.
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• Step 2: Fort = T − 1, ..., 2,

If for somet < T ,
∑

i∈Aj
wi(1, t) > CM

j (1, t), find i∗ = min{hi
tΦ((wi(1, t) − µi(1, t))/σi(1, t))}.

Let wi∗(1, t) := wi∗(1, t) − ∆w andwi∗(1, t − 1) := wi∗(1, t − 1) + ∆w. Repeat this step until∑
i∈Aj

wi(1, t) ≤ CM
j (1, t).

One added benefit of the backward recursion algorithm is that we can easily restrict the solutions to

be integers by letting∆w = 1. Adding the integer constraints in the original formulation would increase

the computational complexity substantially and most likely would render the problem intractable when a

standard NLP solver is used.

5. Numerical Results

This section contains a representative sample of results obtained from implementing the optimization models

described in the previous sections. The data set resembles a typical real-world problem compiled from actual

IBM server data. It consists of 12 machine types, i.e., Model 1 – Model 12. Each machine type configuration

is assembled from components that fall into the four commodity groups, i.e., MCM (multi-chip modules),

power supplies, memory and logic. Each configuration shipped is a potentially unique configuration of

top-level components selected from the configuration menu of the particular machine type being ordered.

The assembly process is modeled as a fulfillment site where the selected components are merged with the

appropriate chassis for shipment to end customers. The precise makeup of a final configuration is not known

until an order is placed because of the ability of customers to personalize their orders. As a result, the bill-

of-materials of a machine type entails fractional usage rates (also called feature ratios) that indicate the

expected usage of a specific component in a particular machine type. The bills-of-materials and feature

ratios as well as the unit component costs are depicted in Figure 1.

The customer demand for end products is modeled as a twelve-week outlook consisting of a sales volume

projection for each week and machine type as shown in Figure 2. In the numerical study we assume that

the forecast for each period is normally distributed with a standard deviation of 20% of the sales volume

projection. Notice that the forecast is heavily skewed towards the later periods in the twelve-week outlook.

In practice, we observed that often up to 60% of customer orders are shipped in the last 3 weeks of a quarter.

Because of limited production capacity, component subassemblies and tests are scheduled ahead of

time early in the quarter to meet peak demands towards the end of the quarter. To optimize production

resources, the fab capacity is spread evenly across the quarter and the parts intake into the line is driven by

the fabrication schedule. Typical spreads are 30% in month one, 40% in month two, and 30% in month three,

denoted as 30/40/30. To demonstrate the advantages of the product-based and component-based models over
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Unit Cost Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12
MCM 1 $1,280 -          -          -          -          -          0.5        -          -          -            -            -            -           
MCM 2 $10,780 -          -          -          -          2.8        -          -          -          -            -            -            2.8         
MCM 3 $5,850 2.0        3.2        8.8        -          -          -          -          -          -            8.0          4.0          -           
MCM 4 $131 -          -          -          14.5      18.6      12.5      24.0      48.0      25.7        -            -            6.0         
MCM 5 $10,780 8.0        2.0        8.8        -          -          -          -          -          -            8.0          2.0          -           
Power 1 $21 7.0        8.0        4.0        3.2        -          2.0        -          1.0        1.0          7.0          8.0          3.0         
Power 2 $94 2.5        3.3        3.0        -          2.0        -          3.0        -          2.0          2.5          3.3          -           
Power 3 $44 2.0        2.0        5.0        2.0        -          -          -          1.0        -            2.0          2.0          1.0         
Memory 1 $244 1.0        2.8        1.5        -          -          -          -          -          -            1.0          2.8          -           
Memory 2 $233 0.1        0.4        -          -          -          -          -          -          -            0.1          0.4          -           
Memory 3 $619 -          -          -          0.2        0.8        1.3        1.0        0.1        1.0          -            -            0.8         
Memory 4 $316 -          -          -          0.4        0.9        1.8        -          0.5        1.4          -            -            1.0         
Logic 1 $522 -          -          1.0        0.8        0.8        0.8        0.8        0.8        0.8          -            -            0.8         
Logic 2 $131 1.0        1.0        -          1.4        2.5        2.7        2.3        1.2        2.1          1.0          1.0          1.0         
Logic 3 $88 -          -          -          3.0        3.0        5.0        5.1        2.4        1.8          -            -            1.5         
Logic 4 $44 2.5        2.5        2.2        3.5        5.6        6.7        5.4        2.6        5.0          2.5          2.5          -           

Figure 1: Unit component costs and bills-of-materials of sample data set.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12
Period 1 6 2 3 6 3 5 6 6 2 5 3 2
Period 2 9 3 5 7 5 8 8 5 4 4 6 4
Period 3 10 2 6 10 5 6 7 6 3 6 7 4
Period 4 16 5 13 14 12 13 15 16 8 10 16 6
Period 5 19 4 11 9 9 11 17 10 8 6 19 6
Period 6 9 4 16 16 10 12 20 14 8 11 19 7
Period 7 18 5 12 17 14 14 18 10 7 15 12 6
Period 8 23 9 23 23 15 26 34 27 12 23 33 11
Period 9 23 6 15 27 13 23 34 20 13 21 31 12
Period 10 25 11 27 38 23 31 40 33 14 28 28 13
Period 11 56 14 42 42 37 39 54 48 26 32 46 19
Period 12 54 20 38 54 30 46 64 60 31 48 68 22
Total 268 85 211 263 176 234 317 255 136 209 288 112

Figure 2: Demand forecast for the 12 machine types.

17



such a production smoothing strategy, we present Figure 3. The figure compares the cumulative parts intake

(in millions of dollars) of the different production strategies. The (un-capacitated) forecast constitutes a

lower bound and is included for reference.
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Figure 3: Cost comparisons among different manufacturing strategies.

To provide a fair comparison, we computed safety stock requirements to achieve a customer service level

target of 90% in all scenarios. The production capacity specified separately for each of the four commodity

groups was limited to 160% of the average weekly commodity run rate over the entire planning horizon. In

the product-based model, we computed the cost of each machine type configuration as the sum of the costs of

the components used in its assembly. Once we obtained the optimal build quantities for each machine type,

we applied the feature ratios to compute the component build quantities which were then used to calculate

the cumulative parts intake.

As a general observation, it is evident that the inventory build-up during the quarter is much higher

under a production smoothing approach than it is under an optimal strategy. For example, the production

smoothing approach indicates that about $190M of component inventory should be built by week 7, whereas

the product-based model and the component-based model recommend building $121M and $101M respec-

tively. Since the product-based model assumes that all components that make up a configured system are

manufactured as a squared set, it is less flexible in its build plan recommendation and yields slightly higher

inventory costs than the component-based model.

For the same scenario, Figures 4 and 5 illustrate the relative amount of inventory produced early as a
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percentage of the cumulative forecast for a low-dollar and a high-dollar MCM part number.
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Figure 4: Relative amount of inventory build ahead of time for a low-dollar MCM component.

Notice that the component-based model results in lower build-ahead volumes than the product-based

model in both instances. And more importantly, the component-based model avoids inventory build-ahead

altogether for the high-dollar part as shown in Figure 5. In other words, the intake of the high-dollar part

number into fabrication is scheduled just-in-time to satisfy customer orders. The reason is that the high-

dollar part MCM5 drives about 58% of the total cost of components assembled into systems that are shipped

to customers over the entire quarter. Since the squared set restriction is removed in the component-based

model, it attempts to schedule low-dollar parts early in the quarter in order to reserve enough production

capacity to schedule the high-dollar parts as close to the end customer demand as possible.

Figures 6 and 7 show a similar comparison for memory part numbers. Notice that in this case the

component-based model produces a larger build-ahead of low-dollar components than the product-based

model. But on the other hand, it also achieves significantly lower levels of inventory for the high-dollar part

number as illustrated in Figure 7. Postponing the manufacturing of high-dollar parts is particularly desirable

because it reduces the high risk and expense associated with building up component inventories in advance

of receiving actual customer orders.

Next we investigate the impact of manufacturing capacity on the optimal build plan. As in the base case,

we assume that the production capacity for each commodity group is 160% of the average weekly demand

over the 12-week planning horizon. Figure 8 illustrates the capacity utilization of one of the commodity
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Figure 5: Relative amount of inventory build ahead of time for a high-dollar MCM component.
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Figure 6: Relative amount of inventory build ahead of time for a low-dollar memory component.
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High-dollar component (memory 3)
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Figure 7: Relative amount of inventory build ahead of time for a high-dollar memory component.

groups (MCMs) for the build plans generated by the optimization models. The available capacity (7,800

units per week) can accommodate about 62% of the peak demand which is shown in the chart for reference.

As expected, inventory in the product-based model starts to ramp up earlier than in the component-based

model, leaving some manufacturing capacity underutilized in weeks 9 and 10. In the component-based

model, the inventory build-up is postponed until week 7 where the manufacturing capacity becomes fully

utilized for the remaining six weeks of the planning horizon. This reiterates the advantages of utilizing

the component- based model when optimizing build plans. Figure 9 shows a similar comparison when the

MCM capacity is further reduced to 5,900 units per week.

The discussion thus far has focused on some qualitative characteristics of the two proposed manufac-

turing strategies. We now turn our attention to the supply chain’s financial outcome as measured by the

total inventory cost given in eqns. (1) and (7). Figures 10 and 11 summarize the total inventory cost (in

millions) pertaining to the three manufacturing strategies for different customer service levels and capacity

limitations. The rows labeled “production smoothing” represent the (30/40/30) quarter-to- month spread to

determine the build quantities. The columns labeled “% cost reduction” report the relative inventory cost

reduction of the product-based and component-based model over the production smoothing strategy. The ta-

bles report the financial outcomes for the case of unlimited manufacturing capacity as well as two additional

scenarios where manufacturing capacity is moderately and tightly constrained.

The results attest to the significant savings that can be achieved when implementing the models discussed
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Figure 8: Comparison between product-based and component-based build plans for MCMs under moderate
capacity constraints.
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Figure 9: Comparison between product-based and component-based build plans for MCMs under tight
capacity constraints.
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Unlimited 
capacity

% cost 
reduction

Light capacity 
constraint

% cost 
reduction

Tight capacity 
constraint

% cost 
reduction

Production smoothing 923                  - 923                          - 923                          -
Product-based model 271                 70.6% 306                         66.8% 398                         56.9%
Component-based model 271                 70.6% 281                         69.6% 301                         67.4%

90% service level

Figure 10: Total cost comparisons among different manufacturing strategies for 90% service level target.

Unlimited 
capacity

% cost 
reduction

Light capacity 
constraint

% cost 
reduction

Tight capacity 
constraint

% cost 
reduction

Production smoothing 1,030               - 1,030                       - 1,030  -
Product-based model 340                 67.0% 391                         62.0% 510 50.5%
Component-based model 340                 67.0% 352                         65.8% 377 63.4%

95% service level

Figure 11: Total cost comparisons among different manufacturing strategies for 95% service level target.

in this paper. Overall inventory cost can be reduced by 50% or more if the solution of the product-based

model is implemented. Furthermore, optimizing the build quantities at the component level can generate as

much as 30% additional savings over the product-based model. When capacity becomes more constrained

the demand in later periods exceeds the available capacity and components need to be built ahead of time

when demand volumes are low. In the product-based model, the squared-set requirements impose additional

restrictions that force the optimization to build components even earlier, whereas the component-based

model can often delay the assembly of high-dollar components to later periods as the squared-set restriction

is being removed.

6. Extensions

We describe briefly below a number of extensions that incorporate additional considerations in real-world

scenarios.

6.1 A Modified Formulation

In reality, some of the test capacities are not specific to a certain type of components (called commodity

type). For example, MCM parts and memory parts may go through similar tests requiring the same capacity.

Here we define the capacity constraints in terms of the type of tests to be performed (called driver type).

Denote the subset ofK with components requiring the test capacity of driver typej by Vj . Note thatVj may

not be disjoint since some components are tested with more than one driver type. We further define thatCV
j

be the test capacity of driver typej, j = 1, ..., nv (nv is the number of different driver types), andvij be the
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usage rate by componenti when driver typej is used. The new constraints are:∑
i∈Vj

vijw
i
t ≤ CV

j , j = 1, ..., nv; (33)

(34)

To deal with temporal dependency requirements, we introduce a new variable representing the number

of the components that have completed the first test each time that such a dependency occurs. LetÎ be the

set of components going through two tests with a dependency requirement. For eachi ∈ Î andt = 1, ..., T ,

we define a new variablewi′(1, t) and a new constraint

wi′(1, t) ≥ wi(1, t + τi),

whereτi is the lead time (rounded to weeks) of the first test. The cases where the dependency is defined for

a component in more than two tests can be treated in a similar fashion.

6.2 Dynamic Capacity

To deal with peak demands, capacity can be added dynamically using a special type of test machines called

“WIP drivers”, which are built to increase the production capacity during the peak demand period. These

WIP drivers can be disassembled after the peak demand period and the components are used to fulfill de-

mand.

LetK0 denote the special class of the WIP test machines. We haveK0 = {K1,K2, · · · ,Kn}, whereKj

represents the MTM of the WIP test machines for component typej, j = 1, · · · , n. Two more classes of

variables need to be added to the original problem,

• xKj (1, t) andx
Kj

t are the cumulative amount of the testing machines for component typej produced

up to timet and increment at timet respectively;

• yKj (1, t) andy
Kj

t denote the cumulative amount of the amount of the test machines disassembled up

to timet and increment at timet respectively.

Another change is that the machine capacity is no longer constantCM
j any more, but

CM
j,t = CM

j,0 + vj [xKj (1, t)− yKj (1, t)],

wherevj denote the contribution of WIP testing machineKj to the test capacity for commodity typej, and

CM
j,0 denotes the initial testing capacity.

An additional feasibility constraint is

yKj (1, t) ≤ xKj (1, t).
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The labor cost in the objective function needs to be changed as follows

πt[
∑

K∈K∪K0

xK
t +

∑
K∈K0

yK
t − CL

t ]+.

To reflect the parts inventory of the disassembled WIP drivers, we need to introduce a set of variables

to represent the build quantity (including the disassembled parts) of each component. Letwi
t be the build

quantity for componenti in periodt, i ∈ I and1 ≤ t ≤ T . Similarly, let

wi(1, t) =
t∑

τ=1

wi
τ .

The objective is to minimize the component inventory cost and the overtime labor cost.

min
T∑

t=1

{
∑
i∈I

hi
tE[wi(1, t)−

∑
K∈K

∑
K3i

uK
i DK(1, t)]+ (35)

+πt[
∑

K∈K∪K0

xK
t +

∑
K∈K0

yK
t − CL

t ]+ }.

The constraints are:

∑
i∈Aj

[wi
t −

∑
KinK0

∑
K3i

uK
i yK

t ] ≤ CM
j,0 + vj [xKj (1, t)− yKj (1, t)], j = 1, ..., n; (36)

yKj (1, t) ≤ xKj (1, t), j = 1, ..., n; (37)

xK(1, t) ≥ µK(1, t) + σK(1, t) · εαK , K ∈ K, t = 1, ..., T ; (38)

wi(1, t) ≥
∑

K∈K∪K0

∑
K3i

uK
i xK(1, t), t = 1, ..., T. (39)

Since this formulation has the same structure as the original problem (i.e., a convex program with linear

constraints), the solution methods discussed in Section 4 still apply.

7. Concluding Remarks

In this paper we presented two variants of a production planning problem in hybrid push-pull systems. We

exploited the structure of the problem formulation to develop efficient numerical algorithms, in particular a

backward-recursion algorithm that solves the problem optimally through decomposition. Both variants of

the model have distinct advantages over a commonly implemented production smoothing strategy. Numer-

ical experimentation with realistic production data produced several business insights, in particular regard-

ing the effects of component-based manufacturing. Specifically we demonstrated that the component-based

model achieves much lower levels of inventory by postponing the manufacturing of high-dollar parts, thus

reducing the risk and expense associated with building up component inventories in advance of receiving
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actual customer orders. We described several extensions to incorporate additional real-world features and

demonstrated that the resulting models can also be solved using the solution methods developed in this

paper.
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