
 1

Tuning a Parametric Clarke-Wright

Heuristic via a Genetic Algorithm

Maria Battarra*, Bruce Golden+, Daniele Vigo*

* Università di Bologna, Dipartimento di Elettronica Informatica e Sistemistica

Via Venezia, 52, - 47023 Cesena, Italy, {mbattarra,dvigo}@deis.unibo.it

+Robert H. Smith School of Business, University of Maryland, College Park, MD 20742,

U.S.A., BGolden@rhsmith.umd.edu

Technical Report DEIS OR.INGCE 2006/1R
July 2006

 2

Abstract

Almost all heuristic optimization procedures require the presence of a well-tuned set of

parameters. The tuning of these parameters is usually a critical issue and may entail intensive

computational requirements. We propose a fast and effective approach composed of two

distinct stages. In the first stage, a genetic algorithm is applied to a small subset of

representative problems to determine a few robust parameter sets. In the second stage, these

sets of parameters are the starting points for a fast local search procedure, able to more deeply

investigate the space of parameter sets for each problem to be solved. This method is tested on

a parametric version of the Clarke and Wright algorithm and the results are compared with an

enumerative parameter setting approach previously proposed in the literature. The results of

our computational testing show that our new parameter-setting procedure produces results of

the same quality as the enumerative approach, but requires much shorter computational time.

Keywords: Vehicle Routing, Heuristics, Genetic Algorithms.

 3

1. Introduction

Almost all heuristic optimization procedures require the setting of some parameters, such as

the weights used in evaluation formulae and the number of iterations to be performed.

Determining appropriate values for such parameters, i.e., that allow good performance over

all the relevant instances to be solved, is clearly a critical issue in the design and testing of

algorithms that may require intensive computational requirements. Therefore, the research on

fast and effective approaches for parameter tuning is of considerable importance both from a

theoretical and a practical point of view.

The use of genetic algorithms to solve parameter setting problems was first proposed by

(Golden et al, 1998), who used a two-stage procedure to define the parameter values of a

Lagrangian Relaxation based heuristic for the Vehicle Routing Problem (VRP). Given a small

set of representative problem instances, called the analysis set in the following, in the first

stage of the procedure, a genetic algorithm is used to determine, for each separate instance, a

good parameter vector. Then, in the second stage, another genetic algorithm determines a set

of weights to combine the different parameter vectors into one overall vector. The

computational testing, over a larger set of benchmark instances from the literature, showed

that this approach produced more robust parameter settings than traditional experimental

design methods. The same technique was applied by (Pepper et al, 2002) to the parameter

setting phase of an annealing-based heuristic for the Travelling Salesman Problem (TSP).

 4

More recently, (Chandran et al, 2003) introduced a simpler single-stage procedure in which a

genetic algorithm produces the parameters by considering the analysis set as a whole. This

approach was applied with very good results by Chandran et al. to a variant of the so-called

demon algorithm for the TSP.

In this paper, we further investigate this approach by defining a single stage procedure based

on a genetic algorithm for a parametric version, proposed by (Altınel and Öncan, 2005), of the

well-known (Clarke and Wright, 1964) heuristic for the VRP. In their approach, Altınel and

Öncan run an enhancement of the Clarke and Wright heuristic with several thousands of

different parameter vectors and obtained a considerable improvement in terms of overall

solution quality with respect to the original Clarke and Wright heuristic. Our genetic-based

parameter setting procedure experimentally proved capable of obtaining results of comparable

quality with much shorter computing times.

The paper is organized as follows. In Section 2, the VRP is defined and the Altınel and Öncan

parametric heuristic is briefly described. Our genetic algorithm for the determination of a

good set of parameters is presented in Section 3. The results of an extensive computational

testing of the proposed approach are discussed in Section 4.

 5

2. The Vehicle Routing Problem and the

Altınel and Öncan parametric heuristic

The Vehicle Routing Problem (VRP) is an important and difficult combinatorial optimization

problem (Toth and Vigo, 2001) which requires the determination of an optimal set of routes

used by a fleet of vehicles to serve a set of customers, taking into account various operational

constraints. The most studied variant of this problem is the so-called Capacitated VRP

(CVRP) in which all vehicles are identical and only the vehicle capacity constraints are

considered. More precisely, let V= {0, …, n} be the set of nodes of a complete undirected

graph G= (V, E). Node 0 represents the depot, where the vehicles, each with capacity D, are

stationed, whereas the remaining nodes represent the n customers, each associated with a

nonnegative demand di, i =1,…, n. In addition, for each arc (i, j) ∈E, let cij denote the cost of

traversing it. The CVRP calls for the determination of a set of routes with minimum total cost

such that each customer is visited once by a single vehicle which starts and ends its route at

the depot, and whose total demand does not exceed the vehicle capacity.

An early and well-known heuristic proposed for the CVRP is the Clarke and Wright algorithm

(Clarke and Wright, 1964). This famous heuristic uses the concept of savings to rank merging

operations between routes. The savings is a measure of the cost reduction obtained by

combining two small routes into one larger route. Given two customers i and j, the associated

saving is defined as follows:

 6

(1) ijjiij cccs −+= 00 .

The algorithm starts with a solution in which each customer is served alone on a route. Next,

for all customer pairs, the saving is computed and the savings list is sorted from largest to

smallest. At each iteration of the algorithm, the next savings is considered, and if the two

associated customers which belong to two different routes can be feasibly merged into a new

route, then the routes are merged. The Clarke and Wright algorithm is very fast and relatively

easy to implement, however, given its greedy, nature the solutions obtained are often of

insufficient quality with respect to more sophisticated approaches. In particular, it should be

noted that the Clarke and Wright algorithm does not allow control over the final number of

routes obtained, since the possibility of route mergings may drastically decrease after the first

few iterations in tightly constrained problems. Several attempts have been made in the

literature to introduce modified parameter-dependent savings formulae that yield better

overall results. (Gaskell, 1967) and (Yellow, 1970) introduced the parameter λ (called the

route shape parameter) which controls the relative importance of the direct arc between the

two customers in the savings computation. (Paessens, 1988) included in the saving expression

a new term, together with a weight parameter μ, which takes into account the “asymmetry” in

terms of distance from the depot to each of the two “merged” customers.

 The resulting savings formula is:

(2) 0000 jiijjiij cccccs −+−+= μλ .

 7

Altınel and Öncan further modified the parametric savings expression in an attempt to

consider the twofold nature of the CVRP. In particular, the CVRP combines the structure of a

multiple TSP (m-TSP) and that of the Bin Packing Problem (BPP). The previously proposed

savings formula did not consider the benefit of fully utilizing a vehicle’s capacity, hence

Altınel and Öncan introduced a third weighted term in the savings formula to focus on

customer demands, according to a “larger combined route is better” idea:

(3) dddcccccs jijiijjiij /)(0000 ++−+−+= νμλ .

where d is the average customer demand.

The new expression requires the tuning of the three independent parameters (λ, μ,ν). To this

end, Altınel and Öncan used a simple enumerative approach. They executed the algorithm

with parameter values varying in the ranges [0.1, 2] for parameter λ and [0, 2] for parameters

μ and ν, using a step size equal to 0.1. In this way, 8820 different parameter vectors are

obtained. The resulting enumerative algorithm proved better than the original Clarke and

Wright heuristic which corresponds to a parameter vector of (1,0,0), but clearly requires a

much larger computing time which is overly burdensome when the number of customers is

large.

 8

3. The parameter setting procedure

In this section, we describe the single-phase parameter setting procedure that we propose to

determine good values of the parameters to be used with the (Altınel and Öncan, 2005)

savings formula. To this end, we use a genetic algorithm that explores the parameter space so

as to determine a small subset of vectors Q which are able to produce the best average results

when applied to the instances of the analysis set. Then, for each instance, our overall

algorithm, called BGV, applies the Altınel and Öncan parametric savings algorithm using

only the parameter vectors belonging to set Q and those obtained with a limited local search

step. As already done in previous works from the literature such as (Golden, 1998), (Pepper,

2002) and (Chandran, 2003), a genetic algorithm is used for the tuning process since this type

of algorithm is particularly well-suited for the solution of non-constrained optimization

problems, such as the tuning problem we are considering.

Genetic algorithms belong to the class of metaheuristics and are adaptive procedures inspired

by principles of natural selection and survival of the fittest: see (Holland, 1992) and

(Michalewicz, 1996) for a complete introduction. The goal of a genetic algorithm is the

optimization of a fitness function, which expresses the performance of a specific solution. A

genetic algorithm starts with an initial population of solutions (usually generated at random).

During a number of iterations or generations, the solution space is explored. As with

evolution and natural selection, the individuals with the most promising characteristics and

 9

the best fitness values are more likely to engage in reproduction and are more likely to

survive. Each iteration of a genetic algorithm consists of the following steps:

1) Crossover. The most promising individuals in the population, in terms of fitness value,

are chosen as parents for reproduction. Offspring are produced and they reflect the

genetic heritage of their parents.

2) Mutation. The genetic characteristics of every offspring are modified following

probabilistic rules.

3) Selection. Every offspring, after mutation, is evaluated in terms of its fitness. If this

value is high, the offspring is introduced in the population (and another less fit

individual is typically expelled), otherwise the offspring is aborted.

Steps 1-3 are repeated until a given stopping criterion is satisfied.

As previously mentioned, a single stage parameter-setting procedure is applied to a subset of

problem instances, called the analysis set. The instances chosen in the analysis set should be

representative of the CVRP instances to be solved but their number should be kept small so as

to require a moderate computing time to evaluate the fitness function for each parameter set at

a given generation of the genetic algorithm. As illustrated later, in our computational testing

we used an analysis set made up of 5 instances chosen from different testing sets.

 10

In our parameter-setting genetic algorithm, the individuals of the population correspond to

different vectors of the three parameters (λ, μ, ν) in the (Altınel and Öncan, 2005) savings

formula (3). The initial population contains 25 individuals obtained by a random choice of

each parameter within the ranges used by Altınel and Öncan, i.e., [0.1, 2] for parameter λ and

[0, 2] for parameters μ and ν. The fitness function considered by our genetic algorithm is that

proposed by (Chandran et al, 2003). For a given parameter vector w, this function measures

the average, over all instances i∈P of the analysis set, of the squared relative excess deviation,

of the solutions D(w,i) obtained with parameter vector w, with respect to the best known

solution for instance i denoted by B(i). Note that the ratio D(w,i)/B(i) is not smaller than 1,

therefore, 1 is subtracted from the ratio so as to give the excess deviation. The overall value of

the fitness function to be minimized is, thus, given by the following expression:

(4) ∑
=

−⋅⋅=
P

i
iBiwD

P
wF

1

2)1))(/),(((1100)(.

The genetic algorithm iteratively evolves the individuals of the population to obtain the

individuals of the next generation by means of the following operators:

1) Crossover. The best individual in the population, called the queen mother, is

identified. An offspring is generated as a product of the queen mother and each other

individual in the population. These other individuals are the fathers. In a given

 11

offspring, the value of each parameter is randomly generated from a uniform

distribution in the range defined by the corresponding parameter values of the parents.

2) Mutation. For each offspring, the value of each parameter is mutated with probability

r, by randomly generating a new value according to a uniform distribution in the

original range.

3) Selection. The best 25 individuals, in terms of fitness value, of the intermediate

population made up of the current set of 25 parents plus the 24 offspring generated by

the two previous operators, are selected as the current population for the next iteration

of the algorithm.

The iterative process is stopped as soon as the average fitness value of the individuals in the

population has not decreased in the last h generations.

To determine the set Q of parameter vectors to be used in our overall algorithm, we proceed

as follows. During the genetic algorithm, we store all the different parameter vectors that were

generated. At the end of the execution, we select the vector with the smallest fitness value.

We select at most |Q|-1 additional vectors whose fitness values are not greater than 20%

higher than the best one and that maximize the “distance” from the best vector. As a distance

between two vectors, we used the sum of the absolute differences of the corresponding

parameter values.

 12

In our heuristic BGV, we run the Clarke and Wright algorithm with the (Altınel and Öncan,

2005) savings formula with a small number of parameter vectors, including those in set Q and

some obtained by performing a limited local search around them. More precisely, the local

search considers a small neighbourhood including the 14 points corresponding to the 8

vertices and the 6 centres of the faces of a cube whose edge length is 0.2 and whose centre is

at the point whose coordinates are the parameter values of the current vector. The parametric

Clarke and Wright is executed for each vector in the neighbourhood and the best one not yet

visited is selected as new current vector. For each vector of set Q, the local search is iterated

three times obtaining 41 different vectors, namely the starting one, plus the 14 vectors of the

first neighbourhood and 13 vectors of each subsequent neighbourhood. Since |Q|=5, our

overall algorithm requires only 205 executions of the parametric Clarke and Wright

algorithm. This value is more than 40 times smaller than the number of executions required

by the enumerative procedure of (Altınel and Öncan, 2005).

4. Computational results

In this section, we discuss the results obtained during an extensive computational analysis of

the BGV heuristic described in this paper. The main aim of this analysis is to verify whether

the single-phase parameter setting approach that generates the small subset of parameter

vectors used by BGV is able to find vectors that produce, with considerably smaller

computing time, solutions having comparable quality to those that can be obtained by the

enumerative parameter-setting approach proposed by (Altınel and Öncan, 2005).

 13

In our experiments, we used the same CVRP test instances considered by (Altınel and Öncan,

2005) as a benchmark set, namely the seven instances of (Christofides et al, 1969), eight

instances of (Christofides and Eilon, 1969), and 72 instances of the three classes proposed by

(Augerat et al, 1995). All these instances may be downloaded at the site

http://www.branchandcut.org. As an analysis set, we selected (from the benchmark set) five

instances differing in terms of number of customers and spatial location of the depot. The

analysis set is made up of the instances indicated in Table 1.

Name n+1 D Test set

Depot

Location

Best

Known

Solution

P-n16-k8 16 35 (Augerat et al, 1995), set P bottom-left 450

A-n53-k7 53 100 (Augerat et al, 1995), set A centre-left 1010

B-n78-k10 78 100 (Augerat et al, 1995), set B bottom-centre 1221

E-n101-k14 101 112 (Christofides and Elion, 1969) centre 1067

CMT199 199 200 (Christofides et al, 1979) centre 1291.45

Table 1 The instances of the analysis set

The genetic parameter setting algorithm was coded in Matlab and run on a PC with AMD

Athlon TM XP Processor 3000+, 797 MHz and 256 MB RAM. Using this algorithm, with |Q|

= 5 we determined, within about 12 minutes of computing time, the five parameter vectors

reported in Table 2.

 14

Vector
Fitness

value

Distance

from vector 1
λ μ ν

1 5.0564 - 1.5578 0.6920 0.8190

2 5.3053 1.4457 0.8830 0.6948 1.5871

3 5.3704 1.3165 0.7335 0.6657 1.2849

4 5.9371 1.1883 1.4891 0.6404 1.8870

5 5.4035 0.9719 1.6442 0.7251 1.6714

Table 2 The |Q| parameter vectors, produced by the genetic algorithm

The results of the algorithm BGV when applied to the entire set of 87 benchmark instances

are summarized in Table 3 and compared with those of the enumerative parameter setting

algorithm of (Altınel and Öncan, 2005). More precisely, for each of the five classes of

instances in the benchmark set and for each algorithm, the table reports the average

computing time in seconds, and the average percentage improvement of the solutions obtained

with the algorithm over those obtained from the original Clarke and Wright algorithm. As to

the BGV approach, we report both the results obtained by using just the five parameter

vectors of Table 2 and with the limited local search (LS) step. To correctly compare the

computing times, we use our implementation of the (Altınel and Öncan, 2005) algorithm and

all experiments are run on a PC with AMD Athlon TM XP Processor 3000+, 797 MHz, 256

MB RAM. The average percentage improvements of our implementation are nearly equal to

those reported in the Altınel and Öncan paper. Finally, the last row of the table gives the

average results over all 87 instances of the benchmark set.

 15

 Altınel and Öncan BGV

BGV with

Local Search

Test set

of

instances

Average

Time

(sec)

% solution

improvement

over CW

Average

Time

(sec)

% solution

improvement

over CW

Average

Time

(sec)

% solution

improvement

over CW

(Augerat et al, 1995), set A 27 35.76 2.44 0.02 1.13 0.97 1.84

(Augerat et al, 1995), set B 23 39.27 2.10 0.01 0.88 1.06 1.80

(Augerat et al, 1995), set P 22 33.20 4.35 0.02 2.52 0.88 1.96

(Christofides and Elion, 1969) 8 50.12 3.05 0.03 1.84 1.25 1.96

(Christofides et al, 1979) 7 179.26 3.06 0.10 1.07 4.37 1.96

Total 87 48.91 2.94 0.02 1.47 1.27 2.22

Table 3 Comparison of the parameter setting method with and without Local Search with

respect to Altınel and Öncan approach.

By examining Table 3, it can be observed that the BGV algorithm, without the local search

step, is more than three orders of magnitude faster than that of Altınel and Öncan and is still

able to obtain about half of the improvement relative to the original Clarke and Wright

approach. Indeed, it improves on the CW by about 1.5% while Altınel and Öncan improves

by less than 3%. By introducing the limited local search step, the computing times are still

about 40 times smaller and the improvement is practically the same as that of Altınel and

Öncan. In both cases, we did not include the computing time required by the genetic

parameter settings procedure which is run once for all instances. On the other hand, even if

we include the parameter setting time, equal to 720 seconds in our Matlab implementation,

the total time required by the BGV approach for the whole set of 87 instances is still more

than five time faster than Altınel and Öncan, which requires more than 4255 seconds in total.

 16

We should observe that the computing time of the parameter tuning procedure may be

considerably shortened by using an efficient implementation in the C language rather than the

Matlab code that we used. Moreover, given the considerable variety of the instances that were

used in the computational testing, it is likely that the set of parameters determined during the

parameter tuning can be used with other instances with comparable results, not requiring

specific tuning steps.

Ackowledgments

Work partially supported by Ministero dell’Università e della Ricerca, Italy.

 17

References

Altınel I K, Öncan T (2003). A new enhancement of the Clarke and Wright savings heuristic

for the capacitated vehicle routing problem. FBE-IE-02/2003-02. Institute for Graduate

Studies in Science and Engineering, Bogaziçi University, Bebek, Istanbul, Turkiye.

Altınel I K, Öncan T (2005). A new enhancement of the Clarke and Wright savings heuristic

for the capacitated vehicle routing problem. J Opl Res Soc 56: 954-961.

Augerat P, Belenguer J M, Benavent E, Corberan A, Naddef D, Rinaldi G (1995).

Computational results with a branch and cut code for the capacitated vehicle routing

problem. Technical report RR 949-M, University Joseph Fourier, Grenoble, France.

Chandran B, Golden B, Wasil E (2003). A Computational Study of Three Demon Algorithm

Variants for Solving the Travelling Salesman Problem. In: Barghava HK and Ye N (eds).

Computational Modelling and Problem Solving in the Networked World: Interfaces in

Computer Science and Operations Research. Operations Research/Computer Science

Interfaces Series, Kluwer Academic Publisher: Boston, MA, pp 155-175.

Christofides N, Eilon S (1969). An algorithm for the vehicle routing dispatching problem. Opl

Res Quart 20: 309-318.

 18

Christofides N, Mingozzi A, Toth P(1979). The vehicle routing problem. In: Christofides N,

Mingozzi A, Toth P, Sandi C (eds). In: Combinatorial Optimization. Wiley, Chichester, pp

315-338.

Clarke G, Wright J (1964). Scheduling of vehicles from a central depot to a number of

delivery points. Opns Res 12 (4): 568-581.

Coy S (1998). Fine-tuned Learning: A New Approach to Improving the Performance of Local

Search Heuristics. Ph.D.Dissertation, Univ.of Md.,College Park.

Gaskell T J (1967). Bases for vehicle fleet scheduling. Opl Res Quart 18: 281-295.

Golden B, Pepper J, Vossen T (1998). Using genetic algorithms for setting parameter values

in heuristic search. In: Intelligent Engineering System through Artificial Neural Networks,

ASME Press, New York, 8: 239-245.

Holland H (1992). Adaptation in Natural and Artificial Systems. MIT Press: Ann Arbor, MI.

Michalewicz Z (1996). Genetic Algorithms + Data Structures = Evolution Programs, Third,

revised and Extended Edition. Springer-Verlag Berlin Heidelberg New York Publishing:

Berlin.

 19

Paessens H (1988). The savings algorithm for the vehicle routing problem. Eur J Opl Res 34:

336-344.

Pepper J, Golden B, Wasil E (2002). Solving the travel salesman problem with annealing-

based heuristics: a Computational Study. IEEE Transactions on Systems, Man and

Cybernetics A 32(1): 72-77.

Toth P, Vigo D (2001). The vehicle routing problem. SIAM Monographs on Discrete

Mathematics and Applications. SIAM Publishing: Philadelphia, PA.

Yellow P (1970). A computational modification to the savings method of vehicle scheduling.

Ops Res Quart 21: 281-283.

