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Abstract 

 

Almost all heuristic optimization procedures require the presence of a well-tuned set of 

parameters. The tuning of these parameters is usually a critical issue and may entail intensive 

computational requirements. We propose a fast and effective approach composed of two 

distinct stages. In the first stage, a genetic algorithm is applied to a small subset of 

representative problems to determine a few robust parameter sets. In the second stage, these 

sets of parameters are the starting points for a fast local search procedure, able to more deeply 

investigate the space of parameter sets for each problem to be solved. This method is tested on 

a parametric version of the Clarke and Wright algorithm and the results are compared with an 

enumerative parameter setting approach previously proposed in the literature. The results of 

our computational testing show that our new parameter-setting procedure produces results of 

the same quality as the enumerative approach, but requires much shorter computational time. 

 

Keywords: Vehicle Routing, Heuristics, Genetic Algorithms.  



 3

 

1. Introduction 

Almost all heuristic optimization procedures require the setting of some parameters, such as 

the weights used in evaluation formulae and the number of iterations to be performed. 

Determining appropriate values for such parameters, i.e., that allow good performance over 

all the relevant instances to be solved, is clearly a critical issue in the design and testing of 

algorithms that may require intensive computational requirements. Therefore, the research on 

fast and effective approaches for parameter tuning is of considerable importance both from a 

theoretical and a practical point of view.  

 

The use of genetic algorithms to solve parameter setting problems was first proposed by 

(Golden et al, 1998), who used a two-stage procedure to define the parameter values of a 

Lagrangian Relaxation based heuristic for the Vehicle Routing Problem (VRP). Given a small 

set of representative problem instances, called the analysis set in the following, in the first 

stage of the procedure, a genetic algorithm is used to determine, for each separate instance, a 

good parameter vector. Then, in the second stage, another genetic algorithm determines a set 

of weights to combine the different parameter vectors into one overall vector. The 

computational testing, over a larger set of benchmark instances from the literature, showed 

that this approach produced more robust parameter settings than traditional experimental 

design methods. The same technique was applied by (Pepper et al, 2002) to the parameter 

setting phase of an annealing-based heuristic for the Travelling Salesman Problem (TSP). 
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More recently, (Chandran et al, 2003) introduced a simpler single-stage procedure in which a 

genetic algorithm produces the parameters by considering the analysis set as a whole. This 

approach was applied with very good results by Chandran et al. to a variant of the so-called 

demon algorithm for the TSP. 

 

In this paper, we further investigate this approach by defining a single stage procedure based 

on a genetic algorithm for a parametric version, proposed by (Altınel and Öncan, 2005), of the 

well-known (Clarke and Wright, 1964) heuristic for the VRP. In their approach, Altınel and 

Öncan run an enhancement of the Clarke and Wright heuristic with several thousands of 

different parameter vectors and obtained a considerable improvement in terms of overall 

solution quality with respect to the original Clarke and Wright heuristic. Our genetic-based 

parameter setting procedure experimentally proved capable of obtaining results of comparable 

quality with much shorter computing times. 

 

The paper is organized as follows. In Section 2, the VRP is defined and the Altınel and Öncan 

parametric heuristic is briefly described. Our genetic algorithm for the determination of a 

good set of parameters is presented in Section 3. The results of an extensive computational 

testing of the proposed approach are discussed in Section 4. 
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2. The Vehicle Routing Problem and the 

Altınel and Öncan parametric heuristic 

The Vehicle Routing Problem (VRP) is an important and difficult combinatorial optimization 

problem (Toth and Vigo, 2001) which requires the determination of an optimal set of routes 

used by a fleet of vehicles to serve a set of customers, taking into account various operational 

constraints. The most studied variant of this problem is the so-called Capacitated VRP 

(CVRP) in which all vehicles are identical and only the vehicle capacity constraints are 

considered. More precisely, let V= {0, …, n} be the set of nodes of a complete undirected 

graph G= (V, E). Node 0 represents the depot, where the vehicles, each with capacity D, are 

stationed, whereas the remaining nodes represent the n customers, each associated with a 

nonnegative demand di, i =1,…, n. In addition, for each arc (i, j) ∈E, let cij denote the cost of 

traversing it. The CVRP calls for the determination of a set of routes with minimum total cost 

such that each customer is visited once by a single vehicle which starts and ends its route at 

the depot, and whose total demand does not exceed the vehicle capacity.  

 

An early and well-known heuristic proposed for the CVRP is the Clarke and Wright algorithm 

(Clarke and Wright, 1964). This famous heuristic uses the concept of savings to rank merging 

operations between routes. The savings is a measure of the cost reduction obtained by 

combining two small routes into one larger route. Given two customers i and j, the associated 

saving is defined as follows: 
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(1) ijjiij cccs −+= 00 . 

 

The algorithm starts with a solution in which each customer is served alone on a route. Next, 

for all customer pairs, the saving is computed and the savings list is sorted from largest to 

smallest. At each iteration of the algorithm, the next savings is considered, and if the two 

associated customers which belong to two different routes can be feasibly merged into a new 

route, then the routes are merged. The Clarke and Wright algorithm is very fast and relatively 

easy to implement, however, given its greedy, nature the solutions obtained are often of 

insufficient quality with respect to more sophisticated approaches. In particular, it should be 

noted that the Clarke and Wright algorithm does not allow control over the final number of 

routes obtained, since the possibility of route mergings may drastically decrease after the first 

few iterations in tightly constrained problems. Several attempts have been made in the 

literature to introduce modified parameter-dependent savings formulae that yield better 

overall results. (Gaskell, 1967) and (Yellow, 1970) introduced the parameter λ  (called the 

route shape parameter) which controls the relative importance of the direct arc between the 

two customers in the savings computation. (Paessens, 1988) included in the saving expression 

a new term, together with a weight parameter μ, which takes into account the “asymmetry” in 

terms of distance from the depot to each of the two “merged” customers. 

 The resulting savings formula is:  

 

(2) 0000 jiijjiij cccccs −+−+= μλ .  
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Altınel and Öncan further modified the parametric savings expression in an attempt to 

consider the twofold nature of the CVRP. In particular, the CVRP combines the structure of a 

multiple TSP (m-TSP) and that of the Bin Packing Problem (BPP). The previously proposed 

savings formula did not consider the benefit of fully utilizing a vehicle’s capacity, hence 

Altınel and Öncan introduced a third weighted term in the savings formula to focus on 

customer demands, according to a  “larger combined route is better” idea: 

 

(3) dddcccccs jijiijjiij /)(0000 ++−+−+= νμλ . 

 

where d  is the average customer demand.  

 

The new expression requires the tuning of the three independent parameters (λ, μ,ν). To this 

end, Altınel and Öncan used a simple enumerative approach. They executed the algorithm 

with parameter values varying in the ranges [0.1, 2] for parameter λ and [0, 2] for parameters 

μ and ν, using a step size equal to 0.1. In this way, 8820 different parameter vectors are 

obtained. The resulting enumerative algorithm proved better than the original Clarke and 

Wright heuristic which corresponds to a parameter vector of (1,0,0), but clearly requires a 

much larger computing time which is overly burdensome when the number of customers is 

large.  
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3. The parameter setting procedure 

In this section, we describe the single-phase parameter setting procedure that we propose to 

determine good values of the parameters to be used with the (Altınel and Öncan, 2005) 

savings formula. To this end, we use a genetic algorithm that explores the parameter space so 

as to determine a small subset of vectors Q which are able to produce the best average results 

when applied to the instances of the analysis set. Then, for each instance, our overall 

algorithm, called BGV, applies the Altınel and Öncan parametric savings algorithm using 

only the parameter vectors belonging to set Q and those obtained with a limited local search 

step. As already done in previous works from the literature such as (Golden, 1998), (Pepper, 

2002) and (Chandran, 2003), a genetic algorithm is used for the tuning process since this type 

of algorithm is particularly well-suited for the solution of non-constrained optimization 

problems, such as the tuning problem we are considering.  

 

Genetic algorithms belong to the class of metaheuristics and are adaptive procedures inspired 

by principles of natural selection and survival of the fittest: see (Holland, 1992) and 

(Michalewicz, 1996) for a complete introduction. The goal of a genetic algorithm is the 

optimization of a fitness function, which expresses the performance of a specific solution. A 

genetic algorithm starts with an initial population of solutions (usually generated at random). 

During a number of iterations or generations, the solution space is explored. As with 

evolution and natural selection, the individuals with the most promising characteristics and 
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the best fitness values are more likely to engage in reproduction and are more likely to 

survive. Each iteration of a genetic algorithm consists of the following steps: 

 

1) Crossover. The most promising individuals in the population, in terms of fitness value, 

are chosen as parents for reproduction. Offspring are produced and they reflect the 

genetic heritage of their parents. 

 

2) Mutation. The genetic characteristics of every offspring are modified following 

probabilistic rules. 

 

3) Selection. Every offspring, after mutation, is evaluated in terms of its fitness. If this 

value is high, the offspring is introduced in the population (and another less fit 

individual is typically expelled), otherwise the offspring is aborted.  

 

Steps 1-3 are repeated until a given stopping criterion is satisfied. 

 

As previously mentioned, a single stage parameter-setting procedure is applied to a subset of 

problem instances, called the analysis set. The instances chosen in the analysis set should be 

representative of the CVRP instances to be solved but their number should be kept small so as 

to require a moderate computing time to evaluate the fitness function for each parameter set at 

a given generation of the genetic algorithm. As illustrated later, in our computational testing 

we used an analysis set made up of 5 instances chosen from different testing sets. 
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In our parameter-setting genetic algorithm, the individuals of the population correspond to 

different vectors of the three parameters ( λ, μ, ν) in the (Altınel and Öncan, 2005) savings 

formula (3). The initial population contains 25 individuals obtained by a random choice of 

each parameter within the ranges used by Altınel and Öncan, i.e., [0.1, 2] for parameter λ and 

[0, 2] for parameters μ and ν. The fitness function considered by our genetic algorithm is that 

proposed by (Chandran et al, 2003). For a given parameter vector w, this function measures 

the average, over all instances i∈P of the analysis set, of the squared relative excess deviation, 

of the solutions D(w,i) obtained with parameter vector w, with respect to the best known 

solution for instance i denoted by B(i). Note that the ratio D(w,i)/B(i) is not smaller than 1, 

therefore, 1 is subtracted from the ratio so as to give the excess deviation. The overall value of 

the fitness function to be minimized is, thus, given by the following expression:  

 

(4) ∑
=

−⋅⋅=
P

i
iBiwD

P
wF

1

2)1))(/),(((1100)( . 

 

The genetic algorithm iteratively evolves the individuals of the population to obtain the 

individuals of the next generation by means of the following operators:  

 

1) Crossover. The best individual in the population, called the queen mother, is 

identified. An offspring is generated as a product of the queen mother and each other 

individual in the population. These other individuals are the fathers. In a given 
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offspring, the value of each parameter is randomly generated from a uniform 

distribution in the range defined by the corresponding parameter values of the parents.  

 

2) Mutation. For each offspring, the value of each parameter is mutated with probability 

r, by randomly generating a new value according to a uniform distribution in the 

original range.  

 

3) Selection. The best 25 individuals, in terms of fitness value, of the intermediate 

population made up of the current set of 25 parents plus the 24 offspring generated by 

the two previous operators, are selected as the current population for the next iteration 

of the algorithm. 

 

The iterative process is stopped as soon as the average fitness value of the individuals in the 

population has not decreased in the last h generations.  

 

To determine the set Q of parameter vectors to be used in our overall algorithm, we proceed 

as follows. During the genetic algorithm, we store all the different parameter vectors that were 

generated. At the end of the execution, we select the vector with the smallest fitness value. 

We select at most |Q|-1 additional vectors whose fitness values are not greater than 20% 

higher than the best one and that maximize the “distance” from the best vector. As a distance 

between two vectors, we used the sum of the absolute differences of the corresponding 

parameter values.  
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In our heuristic BGV, we run the Clarke and Wright algorithm with the (Altınel and Öncan, 

2005) savings formula with a small number of parameter vectors, including those in set Q and 

some obtained by performing a limited local search around them. More precisely, the local 

search considers a small neighbourhood including the 14 points corresponding to the 8 

vertices and the 6 centres of the faces of a cube whose edge length is 0.2 and whose centre is 

at the point whose coordinates are the parameter values of the current vector. The parametric 

Clarke and Wright is executed for each vector in the neighbourhood and the best one not yet 

visited is selected as new current vector. For each vector of set Q, the local search is iterated 

three times obtaining 41 different vectors, namely the starting one, plus the 14 vectors of the 

first neighbourhood and 13 vectors of each subsequent neighbourhood. Since |Q|=5, our 

overall algorithm requires only 205 executions of the parametric Clarke and Wright 

algorithm. This value is more than 40 times smaller than the number of executions required 

by the enumerative procedure of (Altınel and Öncan, 2005).  

4. Computational results 

In this section, we discuss the results obtained during an extensive computational analysis of 

the BGV heuristic described in this paper. The main aim of this analysis is to verify whether 

the single-phase parameter setting approach that generates the small subset of parameter 

vectors used by BGV is able to find vectors that produce, with considerably smaller 

computing time, solutions having comparable quality to those that can be obtained by the 

enumerative parameter-setting approach proposed by (Altınel and Öncan, 2005). 
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In our experiments, we used the same CVRP test instances considered by (Altınel and Öncan, 

2005) as a benchmark set, namely the seven instances of (Christofides et al, 1969), eight 

instances of (Christofides and Eilon, 1969), and 72 instances of the three classes proposed by 

(Augerat et al, 1995). All these instances may be downloaded at the site 

http://www.branchandcut.org. As an analysis set, we selected (from the benchmark set) five 

instances differing in terms of number of customers and spatial location of the depot. The 

analysis set is made up of the instances indicated in Table 1. 

 

Name n+1 D Test set 

Depot 

Location 

Best 

Known 

Solution 

P-n16-k8 16 35 (Augerat et al, 1995), set P bottom-left 450 

A-n53-k7 53 100 (Augerat et al, 1995), set A centre-left 1010 

B-n78-k10 78 100 (Augerat et al, 1995), set B bottom-centre 1221 

E-n101-k14 101 112 (Christofides and Elion, 1969) centre 1067 

CMT199 199 200 (Christofides et al, 1979) centre 1291.45 

 

Table 1 The instances of the analysis set 

 

The genetic parameter setting algorithm was coded in Matlab and run on a PC with AMD 

Athlon TM XP Processor 3000+, 797 MHz and 256 MB RAM. Using this algorithm, with |Q| 

= 5 we determined, within about 12 minutes of computing time, the five parameter vectors 

reported in Table 2. 
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Vector 
Fitness 

value 

Distance 

from vector 1 
λ μ ν 

1 5.0564 - 1.5578 0.6920 0.8190 

2 5.3053 1.4457 0.8830 0.6948 1.5871 

3 5.3704 1.3165 0.7335 0.6657 1.2849 

4 5.9371 1.1883 1.4891 0.6404 1.8870 

5 5.4035 0.9719 1.6442 0.7251 1.6714 

 

Table 2 The |Q| parameter vectors, produced by the genetic algorithm 

 

The results of the algorithm BGV when applied to the entire set of 87 benchmark instances 

are summarized in Table 3 and compared with those of the enumerative parameter setting 

algorithm of (Altınel and Öncan, 2005). More precisely, for each of the five classes of 

instances in the benchmark set and for each algorithm, the table reports the average 

computing time in seconds, and the average percentage improvement of the solutions obtained 

with the algorithm over those obtained from the original Clarke and Wright algorithm. As to 

the BGV approach, we report both the results obtained by using just the five parameter 

vectors of Table 2 and with the limited local search (LS) step. To correctly compare the 

computing times, we use our implementation of the (Altınel and Öncan, 2005) algorithm and 

all experiments are run on a PC with AMD Athlon TM XP Processor 3000+, 797 MHz, 256 

MB RAM. The average percentage improvements of our implementation are nearly equal to 

those reported in the Altınel and Öncan paper. Finally, the last row of the table gives the 

average results over all 87 instances of the benchmark set. 
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  Altınel and Öncan BGV 

BGV with  

Local Search 

Test set 

# of 

instances 

Average

Time 

(sec) 

%  solution 

improvement 

over CW 

Average

Time 

(sec) 

%  solution 

improvement 

over CW 

Average 

Time 

(sec) 

%  solution 

improvement 

over CW 

(Augerat et al, 1995), set A 27 35.76 2.44 0.02 1.13 0.97 1.84 

(Augerat et al, 1995), set B 23 39.27 2.10 0.01 0.88 1.06 1.80 

(Augerat et al, 1995), set P 22 33.20 4.35 0.02 2.52 0.88 1.96 

(Christofides and Elion, 1969) 8 50.12 3.05 0.03 1.84 1.25 1.96 

(Christofides et al, 1979) 7 179.26 3.06 0.10 1.07 4.37 1.96 

Total 87 48.91 2.94 0.02 1.47 1.27 2.22 

 

Table 3 Comparison of the parameter setting method with and without Local Search with 

respect to Altınel and Öncan approach. 

 

By examining Table 3, it can be observed that the BGV algorithm, without the local search 

step, is more than three orders of magnitude faster than that of Altınel and Öncan and is still 

able to obtain about half of the improvement relative to the original Clarke and Wright 

approach. Indeed, it improves on the CW by about 1.5% while Altınel and Öncan improves 

by less than 3%. By introducing the limited local search step, the computing times are still 

about 40 times smaller and the improvement is practically the same as that of Altınel and 

Öncan. In both cases, we did not include the computing time required by the genetic 

parameter settings procedure which is run once for all instances. On the other hand, even if 

we include the parameter setting time, equal to 720 seconds in our Matlab implementation, 

the total time required by the BGV approach for the whole set of 87 instances is still more 

than five time faster than Altınel and Öncan, which requires more than 4255 seconds in total.  
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We should observe that the computing time of the parameter tuning procedure may be 

considerably shortened by using an efficient implementation in the C language rather than the 

Matlab code that we used. Moreover, given the considerable variety of the instances that were 

used in the computational testing, it is likely that the set of parameters determined during the 

parameter tuning can be used with other instances with comparable results, not requiring 

specific tuning steps.  
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