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1 Introduction

Classical Vehicle Routing Problems (VRPs) normally assume perfect knowledge of the problem
parameters such as clients’ demands, and traveling and service times. However, in real world
scenarios, very often this is a strong assumption, and the stochastic nature of such parameters
should be addressed by specially targeted algorithms [2]. To tackle this aspect, a great research
effort has been devoted to study the so called stochastic VRPs (SVRPs).

One of the most studied SVRPs is the VRP with stochastic demands (VRPSD) [4]. The
problem consists of finding the optimal set of feasible routes to service a set of clients whose
demand is a random variable of known distribution. The VRPSD is recognized to be com-
putationally intractable [4] and large instances can only be handled by heuristic approaches
[2]. A generalization of the VRPSD is the multi-compartment VRP with stochastic demands
(MC-VRPSD), a problem where clients have stochastic demands for several products, but due
to incompatibility constraints they must be transported on separate compartments.

In practice, the MC-VRPSD naturally arises in the dairy industry. Daily, milk from dif-
ferent breeds of dairy cattle are to be collected from a large number of farms located on the
country side. Since each type of milk is an ingredient for different products, vehicles with
multiple compartments prevent different milk types from mixing. The uncertainty on the de-
mand comes from random factors that affect the productivity of the cattle and from the best
economic strategy of the producers.

The interest in solving real world multi-compartment VRPs (MC-VRPs) has increased
in recent years. Avella et al. [1] solved a distribution problem where different types of fuel
are delivered in tankers with multiple compartments. Oppen and Løkkentangen [7] targeted
a livestock transportation problem, where different animals are transported from ranches to
slaughterhouses on independent compartments to avoid stress that could result on poor quality
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meat. More recently, El Fallahi et al. [3] tackled a variant of MC-VRP where each product
can be delivered to the clients by a different vehicle although the full delivery of a single
product must be performed by only one vehicle. The cited cases, however, are solved only in
deterministic scenarios.

Despite the practical applicability of the MC-VRPSD, to the best of our knowledge the
only reference to the problem is the set of construction heuristics proposed in [6]. To fill
this void, this paper presents a genetic algorithm (GA) designed to solve a MC-VRPSD. The
algorithm couples components proven to be effective on deterministic VRPs with two different
evaluation strategies designed to guide the search considering the stochastic nature of the
problem. To analyze the performance of both strategies, the algorithm was tested on a large
set of instances.

2 Problem definition

Formally, the MC-VRPSD can be defined on a complete and undirected graph G = (N ,E)
where N = {0, . . . , n} is the node set and E the edge set. Nodes i = 1 . . . n represent the clients
and node i = 0 represents the depot. A distance de is associated to edge e = (i, j) = (j, i) ∈ E
and it represents the travel cost between nodes i and j. It is assumed that the triangular
inequality is satisfied (i.e., d(i,j) + d(j,k) ≥ d(i,k)). There exists a set P = {1, . . . , p, . . . ,m} of
products that must be transported on independent compartments. Hence, each vehicle has a
dedicated compartment of fixed capacity Qp for each product. All vehicles are identical and
the fleet size unrestricted. For a product p the client i has an independent random demand ξi,p

following a normal distribution N (µi,p, σi,p). The actual values of the demands (realizations)
are only known upon arrival to the client’s location and all realizations are nonnegative and
less than the capacity of the corresponding compartment Qp. Finally, each node must be
visited by exactly one route and the total length of each route lr cannot exceed a maximum
distance L.

The MC-VRPSD can be formulated as a two-stage stochastic programming model. On
the first stage, a set R of a priori routes is selected. Each route r ∈ R is a sequence of
nodes r = (0, i1, . . . , ik, . . . , inr , 0), where ik ∈ N \ {0} and nr is the number of client nodes
in route r. On the second stage, each planned route is executed until a route failure occurs.
A route failure is said to occur whenever the capacity of one compartment is exceeded while
visiting a client. When failing, the compartment is loaded up to its capacity and a recourse
action takes place. The recourse action is defined as a return trip to the depot to unload
the compartments, followed by a trip back to the client’s location to complete the service.
After service completion, the route is resumed from that point on as originally planned. The
problem is then to determine the set of routes R that minimizes the total expected cost E[C]
given by:

E[C] =
∑

r∈R
lr +

∑

r∈R
E[Gr(R, ξ)] (1)

where the first term is the planned length of the routes in R and E[Gr(R, ξ)] is the expected
length of the return trips caused by route failures.
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3 Genetic Algorithm

3.1 General structure

The proposed GA encodes the MC-VRPSD solutions into a multipermutation genotype known
as the Genetic Vehicle Representation (GVR) [8]. Specifically, each permutation contains an
ordered set of clients representing a route. Starting from an initial population P(0) comprised
of P individuals, the algorithm follows an evolutionary process of T generations. At every
generation t, crossover and mutation operators are applied with probabilities pc and pm on
each individual of population P(t). The offspring produced by the genetic operators form a
new children population C(t) = Cc(t) ∪ Cm(t). Both C(t) and P(t) are then merged into an
extended population E(t), from where the best P individuals are selected to become part of
the new population P(t + 1).

To accelerate algorithmic convergence, the initial population is generated based on a
Stochastic Nearest Neighbor (SNN) heuristic [6]. The notion of nearest neighbor in the SNN
heuristic is based not only on the distance to the last added node but also on the increment
on the cost of recourse of the resulting tour. Phenotypic clones are eliminated and replaced
by randomly generated solutions, leading to a diversified initial population with good quality
solutions.

The crossover operator is based on the GVR crossover proposed by Pereira et al. [8], in
which a child inherits all the traits (routes) from one parent and a small portion of the genetic
material (subroute) from the other parent (donor). The subroute is randomly selected from
the donor and inserted into the child at the lowest insertion cost. To speed up the procedure,
the insertion cost is calculated taking into account only the deterministic part of the objective
function (1). Duplicate nodes are eliminated from the child preserving those in the inserting
subroute.

The mutation operator, known as inversion mutation, reverses the visit order of all nodes in
a randomly selected subroute. Since the expected cost of recourse of a route is not symmetric
in both directions [4], the inversion mutation diversifies the search not only in terms of route
structure but also in terms of traveling direction.

3.2 Reparation and fitness evaluation

The genetic operators may generate infeasible solutions in terms of the distance constraint.
To repair individuals, the GA uses a procedure based on the split mechanism proposed by
Prins [9]. Split requires the GVR genotype to be transformed into a chromosome without
route delimiters; that is, a single permutation of nodes (see top of Figure 1). From the
chromosome, an auxiliary graph G′ is built and used to find the optimal partition of the
permutation into feasible routes. The directed graph G′ = (N ′,A) is composed of the node
set N ′ = {0, i1, . . . , ik, . . . , in} and the arc set A. Nodes i1, . . . , in ∈ N \ {0} and node 0 is
an auxiliary node. Arc (ik, ik+nr) ∈ A represents a feasible route r with length lr starting and
ending at the depot and traversing the sequence of client nodes from ik+1 to ik+nr . The split
procedure consists of finding the set of arcs (i.e., routes) along the shortest path connecting
0 and in in G′. Figure 1 illustrates the split procedure. A GVR individual containing an
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infeasible route (L = 60) is transformed into a single chromosome, followed by a partition into
two feasible routes using split.
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Figure 1: Split procedure for individual reparation

The fitness of an individual is the objective function (1). Under the proposed recourse
action, the cost of recourse of a route is given by E[Gr(x, ξ)] =

∑nr
k=1 2d(0,ik) × p(z(ik) =

1), where p(z(ik) = 1) is the probability of failing while visiting node ik. On the multi-
compartment scenario, estimating the exact value of p(z(ik) = 1) is a complex and time
consuming process, for what the GA uses the take-all approximation (TAP) derived in [5];
that is

p(z(ik) = 1) =
k−1∑

j=0




m∏

p=1

F (ij+1, ik−1, p)−
m∏

p=1

F (ij+1, ik, p)


× p (z(ij) = 1) (2)

where F (ij+1, ik−1, p) is the cumulative probability that the total demand for product p col-
lected between nodes in position j + 1 and k − 1 in route r, does not exceed the capacity of
the compartment Qp.

To evaluate the fitness of an individual, two strategies are proposed. The first strategy
(split) consists of applying the split procedure followed by the evaluation of the objective
function of the repaired solution. On the other hand, the second strategy (s-split) consists
of a stochastic variant of the split procedure that simultaneously repairs and evaluates an
individual. Following the same principle of its deterministic counterpart, s-split partitions the
single chromosome into feasible routes by finding the shortest path in the auxiliary graph G′.
However, the weight of each arc (ik, ik+nr) ∈ A is given by lr + E[Gr(R, ξ)] instead of lr.
Figure 2 illustrates the s-split procedure on the same example shown in Figure 1.

4 Computational experiments

After fine tuning the set of parameters (P , T , pc, and pm) for each evaluation strategy, the
GA was tested on a large set of randomly generated instances. Problems with 50, 100, and
150 client nodes and 3 products were generated with the following characteristics. For each
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Figure 2: The s-split procedure for individual reparation and evaluation

demand, the value of µi,p was randomly generated within [20,100]; whereas the value of σi,p

was set by randomly selecting a coefficient of variation σi,p/µi,p ∈ {0.1, 0.2, 0.3}. To set the
capacity of the compartments, the tightness ratio (

∑
i∈N\{0} ξi,p)/Qp was set at two different

values, namely, 5 and 15. Thirty instances were generated for each combination of number of
clients and tightness ratio. For each of the 180 (3× 2× 30) problems, the maximum distance
L was randomly set as 3 or 4 times the distance from the farthest node to the depot.

To compare the evaluation strategies, four different metrics were calculated: first, the
average (avg.) improvement with respect to the best solution in P(0) (after split or s-split);
second, the average gap with respect to the best solution found by the GA; third the number
of best solutions found; and fourth, the CPU time. Table 1 summarizes the results.

Instance type Avg. improvement Avg. gap to best Best solutions CPU time (s)*
clients tightness split s-split split s-split split s-split split s-split

50 5 14.17% 12.11% 1.75% 0.52% 10 20 89 322
50 15 12.45% 11.22% 0.57% 0.78% 19 11 98 310

100 5 19.45% 17.84% 1.43% 0.63% 12 18 223 1279
100 15 13.40% 12.39% 1.77% 0.54% 11 19 256 1266
150 5 20.11% 18.58% 1.25% 1.02% 12 18 438 3310
150 15 14.96% 12.32% 0.60% 0.74% 15 15 408 2329
Average/Total 15.76% 14.08% 1.23% 0.70% 79 101 - -

* Intel Xeon Woodcrest 5120 processor with 4 Gbytes of RAM, running Windows Server 64 bits.

Table 1: Comparison of split vs s-split evaluation strategies for the MC-VRPSD

The results show that both evaluation strategies lead the GA to an average improvement
of 14.92% over the best solution in the initial population. A closer look to Table 1 shows that
this improvement is larger on instances with low tightness ratios. A plausible explanation, is
that on such instances fewer failures are expected. Hence, there are more routing alternatives
that avoid failures or it is possible to allocate them in convenient positions. The iterative
process of the GA exploits this condition better than the single-pass SNN, generating signif-
icant improvements in the cost of recourse. On the other hand, the results show that the
improvement is less significant on instances with low number of clients. As in other VRP vari-
ants [3] it is likely that in the MC-VRPSD the construction heuristics, like the SNN, are very
competitive in small instances, letting to the GA small margins for amelioration. Focusing on
the comparison between the evaluation strategies, a further analysis shows a slightly better
performance of s-split over split. Out of the 180 instances, s-split reported the best solution
in 101 vs 79 for split. Note, however, that in terms of solution accuracy this disparity might
not be significant since the difference in the average gap with respect to the best solution is
less than 1% (1.23%-0.70%). In contrast, in terms of CPU time the results clearly show that
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split outperforms s-split. Hence, provided the tradeoff between accuracy and efficiency, split
seems to be better for the overall performance of the GA.

5 Conclusions

This paper presents a GA for the MC-VRPSD that couples components proven to be effective in
deterministic VRPs with two fitness evaluation strategies that account for the stochastic nature
of the problem. Experiments conducted on a set of random instances show that the genetic
effort is responsible for improvements of 14.92% (on average) with respect to the best solution
in the initial population, found by a multi-start construction heuristic . The execution time
varies from 1.48 to 38.81 minutes depending on the instance size and the selected evaluation
strategy. Research currently underway includes the implementation of local search procedures
and population management techniques specially tailored to enhance the proposed GA.
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