
One improvement to "nearest neighbor"
method for solving "Traveling

salesman" problem

mr Jozef Kratica1,mr Slobodan Radojevi}1

Source: http://www.geocities.com/jkratica/papers/lira95.pdf

Abstract
This paper describes one improvement to "nearest neighbor"

method for solving "traveling salesman" problem. This improvement
finds sub optimal solutions (heuristic), so as original method.

The only algorithms that are known are of exponential execution
time, because "traveling salesman" problem is NP complete ([4]).
These algorithms are correct theoretically, and they easily find
solution for small number of graph nodes (N<20), but for large
number of nodes (N>20) execution time is enormously large.

Therefore, this paper describes improvement of "nearest
neighbor" method, which gives suboptimal solutions (heuristic), but
has O(n2) execution time.

AMS Subject Classifications:
90C27 Combinatorial programming
90C35 Network programming
90-08 Computational methods (optimization)

1 University of Belgrade, Faculty of Mechanical Engineering, Department of
Mathematics, 27. marta 80.

1. Introduction

1.1 NP complete problems

There is a class of problems which have not been theoretically proved to have
exponential complexities, but no polynomial algorithms have been found. Some of
problems (which are known as NP complete problems) are: Traveling salesman
problem, problem of Hamiltonian paths, knapsack problem, problem of optimal
graph coloring. If a polynomial solution could be found for any of these problems ,
than all of the NP problems would have polynomial solution. NP complete problems
are described in more detail in [2] [4] [9] [10].

1.2 Traveling salesman problem

Let G be a connected graph with N nodes. Let a tour is sequence of all nodes,
passing each node once, except the first, which is also the last node in sequence,
and is passed twice. Problem is to find tour with minimal path (sum of including
edges). Respecting the fact that problem is NP, three alternatives exist:

Use of existing algorithms of exponential complexity, which give optimal
solutions, but are applicable only for small number of nodes (N<20).

Use of heuristic algorithms of polynomial complexity, which give solutions
near optimal, but are applicable for large number of nodes (N<1000). Later in this
text an improvement of such type will be presented.

Combining few different methods, which are used in several stages. First
stage is one of heuristic algorithms, which give starting suboptimal solution. Next
stages improve solutions (one example is k-interchange method).

1.3 Optimal solutions algorithms

All possible tours can be searched (number of all possible tours is (n-1)!) by
backtracking. This method has small memory requirements, but largest O(n!)
execution time. For example, for 20 nodes graph, execution time would be several
millenniums.

We can use technique known as "dynamic programming" ([2]). It has
execution time O(n2 2n), which is smaller than , but has large O(n 2n) memory
requirements. For example, in 20 nodes graph, execution time would be several
hours, but memory requirement would be approximately 100MB.

Or, we can use technique known as "branch and bound" ([1] [2]). This is an
improved solution of 1.3.1. (backtracking), but only feasible (and not all possible)
tours are searched. This method has theoretical execution time of O(n!), same as
"backtracking", but its execution time can be much shorter when applied on some
particular graphs.

1.4 Heuristic methods
Problem can be partially reduced to problem of finding "minimal spanning

tree" ([3]). Finding solution for this problem, by use of Prim or Kruscal algorithm ([2]
[9] [10]), gives us solution to "traveling salesman" which is not more than twice of
optimal solution length. It's applicability is bounded only to "Euclidean traveling
salesman" problem, and it's execution time is O(n) ([2] [10]).

Nearest neighbor method ([7] [10]) finds minimal possible distance (in each
iteration) connecting unused nodes. It has easy implementation and O(n)
execution time.

Other ways of solving this problem are presented in [5] [7] [8].
"Best adjunct" algorithm, described in [6].

1.5 Combination of methods
The k-interchange method can be applied to solutions found by use of

methods described in 1.4. This method checks for k edges, which give shorter path
than actual "traveling salesman" path. For k=2, this method, named 2-interchange,
give reasonable solution, with O(n) execution time. Increasing of k gives better
solutions, but execution time and complexity of implementation increase rapidly (
[7] [8] [10]).

To solution found by use of methods described in 1.4, and eventually
improved as explained in 1.5.1., some of "branch and bound" methods, or their
combination, can be applied. Previously found solution by heuristic, are used as a
bound for feasible solutions. If previously found suboptimal solution is excellent,
and we search all possible branches, optimal solution can be found in real time.
Although this way can lead to near optimal or optimal solution, it's execution time is
theoretically exponential ([7] [10]).

2. "Nearest neighbor" algorithm

2.1 Description of algorithm
"Nearest neighbor" algorithm is a heuristic algorithm (for more information on

heuristic see [9] and [10]). Execution time is O(n), and memory requirements are
O(n), because of distance matrix being stored.

Algorithm starts from arbitrary chosen node, in every iteration goes along the
edge with minimal distance from current node, viewing only unused nodes and
starting from current node. Terminating node of the edge chosen as described is
add to the sequence and is pronounced to be the current node. Note that the last
iteration leaves us with only one edge (leading to the starting node).

2.2 Improvement of algorithm
Algorithm can be modified to start from node that not chosen randomly (where

favorable choice of starting node can give good results, and some other choice can
give bad results), but from the node which is beginning node of the shortest edge in
the entire graph. Next node is terminating node of that edge, and procedure
continues the way described above.

This way of choosing
starting node gives
statistically better results
than former method.
Slightly better results can
be achieved by
recalculating sequence for
each possible starting node,
but that would rise execution
time to O(n3).

The following described
algorithm, implementation is
in C programming language.

2.3 Examples

Example 1. Graph is
given by Figure 1.

Classical "nearest
neighbor" algorithm gives sequence starting from node 1:
Node nearest to node 1 is node 2 (edge 1-2 has distance 3). Node nearest to

node 2 is node 3 (with distance 6), and nearest to node 3 is 5 (with distance 4).
Node 5, nearest unused node is 4 (with distance 5), and to go from node 4, there
is only one unused node 6 (with distance 15).

Given sequence 1 2 3 5 4 6 1 has length 58.
Improved algorithm give sequence 1 2 3 5

4 6 1, also of length 58, because minimal
length edge in graph is 1-2 (with distance 3).
That edge (1-2) starts the sequence, and later
procedure has equal steps as first procedure.

Optimal solution in Example 1 is 1 2 3 6 4
5 1, with length of 56.

Note: In Tables 1-3 first number is number of
graph nodes, second number is starting
node, and other numbers represent distance
matrix.

Table 1. Distance matrix for
graph given in Example 1

Figure 1. Graph from Example 1.

Example 2. Graph is given
by Table 2.

Classical algorithm
starting from node 1 gives
solution 1 8 9 4 10 6 2 7 5 3
1, length 403.

Improved algorithm gives
solution 6 10 4 9 8 1 5 7 3 2
6, length 323. For this
example, that is optimal
solution.

Example 3. Graph is
given by Table 3, solutions
are:

Classical algorithm
starting from node 1 give a sequence 1 3 2 5 7 9 4 6 10 8 1, length 805.

Improved algorithm gives
sequence 8 10 2 3 1 5 7 9 4 6
8, length 788.

Optimal tour is 1 3 2 8 10
5 7 9 4 6 1, length 725.

T
a
Table 3. Distance matrix for graph given in
Example 3

Table 2. Distance matrix for graph given in
Example 2.

Application of "nearest neighbor" algorithm and its modification is (as of other
suboptimal algorithms) mostly in practical work where graph with large number of
nodes occur. In these conditions optimal solution algorithms are unusable because
of their exponential execution time, i.e. their impossibility to yield solution in
acceptable time.

Good features of improved "nearest neighbor" algorithm are:
Relatively short execution time O(n2).
Easy implementation.
Small memory requirements O(n2).
Solution can be improved using by the algorithms described in 1.5.

Deficiencies of algorithm are:
Being unable to find theoretical bounds of solutions suboptimality. For some

algorithms theoretical bound of solutions suboptimality (see 1.4.1) can be
calculated, but these methods statistically have worse results (see examples in [3]
[10]), and are applicable for more specific graphs.

In case of graph with small number of edges which isn't totally connected
may exist situations where this algorithm can't yield solution, though there exists.

4. Conclusion

5. References
[1] Bellmore M., Nemhauser G. L. "The traveling salesman problem: A Survey"
Operations Research, 16(3), pp.538-558, 1968.

[2] Brassard G., Bratley P . "Algorithmics - Theory and Practice", Prentice-Hall
International, 1988.

[3] Christofides N. "Worst-case analysis of a new heuristic for the traveling salesman
problem", Management Sciences Research Report no. 388, Carnegie-Mellon University,
Pittsburgh, 1976.

[4] Garey M.R., Johnson D.S. "Computers and Intractability: A Guide to the Theory of
NP Completness", W.H. Freeman and Co., 1979.

[5] Horowitz E., Sahni S. "Fundamentals of Computer Algorithms" Computer Science
Press, 1978.

[6] Kratica J. "One method for solving Traveling salesman problem", Proceedings of the
Fourth Symposium about Capacity utilization of Metal-refinement industry in reduced
production limitations, pp. 143-145, 1994.

[7] Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., Shmoys D.B. "The Traveling
Salesman Problem", John Wiley & Sons, 1985.

[8] Lin S., Kernighan B.W. "An effective heuristic for the traveling salesman problem",
Operations Research, 21, pp. 498-516., 1973.

[9] Manber U. ”Introduction to Algorithms - A Creative Approach", Addison-Wesley
Publishing Company, 1989.

[10] Nemhauser G.L., Wolsey L.A. "Integer and combinatorial optimization", John Wiley
& Sons, 1988.

