
Image analysis algorithms for cell contour recognition in budding yeast

Abstract: Quantification of protein abundance and subcellular localization
dynamics from fluorescence microscopy images is of high contemporary interest in
cell and molecular biology. For large-scale studies of cell populations and for time-
lapse studies, such quantitative analysis can not be performed effectively without
some kind of automated image analysis tool. Here, we present fast algorithms for
automatic cell contour recognition in bright field images, optimized to the model
organism budding yeast (Saccharomyces cerevisiae). The cell contours can be used to
effectively quantify cell morphology parameters as well as protein abundance and
subcellular localization from overlaid fluorescence data.

1. Introduction
Fluorescence microscopy is an exceptionally powerful technique to study

protein processes in vivo. However, due to the qualitative and subjective nature of
human interpretation of images, quantitative data analysis is not straightforward. In
addition, for statistical or high throughput measurements, manual analysis becomes
highly time consuming. Automated image analysis opens up for advanced studies in
the diversity of cell populations, i.e. characterization of phenotype heterogeneity, or
single cell studies in vivo. This type of studies have recently attracted significant
attention, and have provided key insights in for example, gene expression noise and
cell cycle regulation.

In this report, novel algorithms designed for automatic analysis of bright field
and fluorescence images of budding yeast (Saccharomyces cerevisiae) are presented.
Budding yeast is one of the most important model organisms for cell and molecular
biology, with advantages of being easy to handle and modify genetically. In this
context, it also benefits from the library of chromosomally tagged Green Fluorescence
Protein (GFP) fusion proteins that became publicly available in 2003. The main
principle behind our approach is to use bright field images for cell recognition and
then transfer the extracted contours to the corresponding fluorescence images for
protein analysis. Hence, our method does not rely on staining of the cell membrane
and it is therefore suitable for in vivo studies.

Automatic identification and recognition of cells in microscopy images has
been reported before, but rather few authors have addressed the entire process from
image to determination of precise cell contours of individual cells. Chen et al. used a
machine learning approach to automatically find approximate cell boundaries in a
graphical model representation. de Carvalho et al. used the watershed transform
applied on a topology based on a combination of gray-scale images and various
hierarchical and geometric properties of the cells. Niemist¨o also used a watershed
approach for separating yeast cells prior to localization of small fluorescent
organelles. Rue and Husby successfully used an advanced deformable template model

Autor Kvarnstrom M.
http://www.opticsinfobase.org/

for the near-circular cells of interest in order to identify fluorescently labeled contours
of cells even when the borders are in part not visible. The drawback with their scheme
is its huge computational complexity and the computations had to be carried out using
a Markov chain Monte Carlo (MCMC) algorithm. Mardia et al. used a similar
approach to detect partially occluded objects. Software for automatic analysis of
fluorescence microscopy images of budding yeast has been presented by other groups.
Miroshita and co-workers developed an image analysis program for cell morphology
characterization of gene-deletion strains. However, their algorithm requires the cell
membrane to be stained with a fluorescent dye. The open-source software Cell-ID, on
the other hand, uses bright field images for cell recognition. The actual image analysis
methods used have not yet been published.

We here present algorithms for the entire process of image analysis, from
thresholding and segmentation of images, to refined precise single cell contours. The
main novel contribution in this work is the method for refined cell contour
extraction.We utilize a shape model similar to the deformable template model used by
Rue and Husby, with constraints between three consecutive points on the cell contour.
Our model, on the other hand, enables computations of much lower computational
complexity and, hence, higher speed. Figure 1 illustrates the main steps of our
method. The initial steps involve segmentation using a new adaptive thresholding
technique, for finding suitable candidate cell centers, see Figs. 1(a)-(c). The final step
is the cell contour extraction, where a more refined cell contour is searched for. The
final resulting contours are shown in Fig. 1(d).

Fig. 1. Illustration of the main steps of the cell recognition method: (a) the original bright field
image showing a population of budding yeast cells; (b) the gradient, or edge map,image, where
bright pixels represent a large gradient magnitude; (c) the segmented image with identified circles in

red. The centers of these circles will serve as candidate cell centers; (d) the result after cell contour
extraction.

The cell contour extraction algorithm computes the optimal solution in
polynomial time, using a dynamic programming scheme. The high speed of the
algorithm makes it suitable for studies where large data sets are involved, such as
time-lapse or high-throughput studies of cell populations. Our method is shown to be
fast and, for the kind of images considered, we found that 96% of the cells were
satisfactorily recognized. The algorithms are also found to be robust and adaptive, in
the sense that they work without human intervention and are able to identify cells
with high precision even in the presence of several neighboring cells, at different
illumination levels or if the cells are slightly out of focus.

The paper is organized as follows: first the experimental and biological setup,
used for producing the images in this paper, is presented. The image analysis methods
are described in the subsequent section which is the main part and focus of the paper.
We then evaluate our image analysis method, and exemplify its use in a biological
application. Details regarding the cell contour algorithm have been moved to the
Appendix.

2. Methods
2.1. Image acquisition
Images were collected using an inverted epi-fluorescence microscope (Nikon

TE2000E) equipped with a back illuminated, electron multiplying gain CCD camera
(Ixon DV887- DCSBV, Andor Technology). Bright field images, used to describe the
image analysis method, were recorded using either a 60X objective (Plan Apo,
NA=1.40) or a 100X objective (Plan Apo, NA=1.45). Images used in the rest of the
paper were recorded with the 60X objective.

For the biological study, images were recorded in bright field and fluorescence
mode every 10 minutes for 6 hours. To ensure that all nuclei were recorded, the cells
were imaged in three image planes with a separation of approximately 2 μm. A
mercury lamp was used for fluorescence excitation and a filter set (excitation:
HQ470/40x, emission: HQ515/30m, dichroic: 505DCLP, Chroma Corporation, USA)
were used for GFP imaging. The fluorescence images were recorded with an
integration time of 500 ms using an excitation intensity of approximately 0.1 W/cm2
at the sample.

2.2. Strains and cultivation
TheMCM4 strain was obtained from the GFP-library. The cells were kept at

agar plates with YPD medium containing 1% (w/v) yeast extract (Merck), 2% (w/v)
Bacto-peptone (Merck), and 2% (w/v) glucose (Merck). For microscopy studies, cells
were taken from the plate and placed in YNB medium that was composed of 0.17%

(w/v) yeast nitrogen base without amino acids (Difco), 0.5% (w/v) ammonium sulfate
(Merck), 2% (w/v) glucose and aminoacid supplement lacking histidine (BIO101
Inc.). The pH of all media was adjusted to 6.0. The cells were pre-grown using an
orbital shaker at 30◦C. At early log phase, 10 μl of the suspension was placed between
two cover slides separated by the secure seal spacer S24737 from Molecular Probes,
creating an enclosed well. The cells were kept at approximately 20 ◦C during the
experiments.

3. Cell contour recognition algorithm
3.1. Adaptive thresholding and segmentation
The segmented image is computed via thresholding on the gradient image I

mag , which is computed from the original bright field image I. The reasons for using
I mag are twofold. First of all, the distribution of gradient pixel values is uni-modal,
which makes it easier to find a suitable threshold, see Fig. 2.

Fig. 2. Illustration of how differences in illumination level and cell densities in the bright field
images, (a) and (c), affect the gradient image histograms, shown in (b) and (d). The red curves
represent the corresponding Rayleigh distributions that have been fitted to values in the histogram
that lay below the median value, here displayed as blue vertical lines. The horizontal axis has been
truncated at 30 for ease of display.

Operating on Imag also has the benefit of making the segmentation invariant to
differences in the overall illumination level of the image. In practice, this invariance
also holds for a slowly varying background illumination level. Regions in the image
where cell contours are located typically exhibit a large gradient magnitude. The
opposite is true for background regions. This relationship between I and I mag can be
seen by comparing Figs. 1(a) and (b).

The gradient image is computed using Prewitt’s method. The original bright
field image I is filtered with two masks, one for each direction, where each mask
enhances differences in the corresponding direction. This results in two new images, I
x and Iy, each being a measure of the pixelwise variation in the x and y directions,

respectively. After this, we let for each pixel location. Pixels
with gradient values above a certain threshold β will now be assigned as foreground
regions. In Fig. 1(c) we show the thresholded gradient image after filling of holes and
running a morphological opening.

The crucial part in the segmentation step is to automatically find the threshold
β. It is particularly important to adapt to the illumination level and the density of cells
in the image. Depending on the experimental setup, the preferred threshold level may
vary substantially. Adaptive thresholding techniques found in the literature, e.g.
Otsu’s nonparametric method or the parametric method of fitting the histogram to a
mixture of Gaussians, typically rely on bimodality of the histogram or that pixel
values have a specific distribution. From the histograms in Fig. 2, we see that bi-
modality is not the case here. Furthermore, the distribution for large gradient pixel
values is hard to categorize. Although not displayed in the figure, the apparent
uniformity for large values continuous up to values above 200 where it finally starts
to decline.

The maximum value of these particular histograms are 588 and 770. The
method we present here does not make any assumptions on the distribution of
gradient pixel values of large magnitude, the only assumption made is that the
distribution of noise in background regions are approximately normal distributed.

Gradient values below the median, shown as vertical lines in Figs. 2(b) and (d),
are fitted to a Rayleigh distribution function,

 (1)
where σ is the parameter that is varied until the best fit is found and x is the

pixel value. The rationale behind this procedure is that gradient pixel values of I mag
will be Rayleigh distributed under the assumptions that the values of Ix and Iy are
identical, independent, and normally (Gaussian) distributed. Even though this is a
crude assumption, we see from the fitted curves in Figs. 2(b) and (d), that Eq. (1)
gives an excellent description of the gradient value distribution below the median.

The parameter σ constitutes a good measure of the pixel intensity variation for
low gradient pixel values, i.e. for pixels in the background regions. Therefore, pixels
which have gradient values far larger than σ should be rejected as background and
instead be considered as foreground.

Here we let the threshold relate to σ through β = 7.5σ . This corresponds to
declaring pixels with gradient values more than 6 standard deviations larger than the
mean of the estimated distribution of background pixels as foreground pixels. It
should be mentioned that it is not necessary to specifically use the median as the
delimiter for fitting the Rayleigh distribution.

To obtain the final segmented image, the holes (black regions encircled by
white regions) in the thresholded image are filled. Furthermore, in order to remove
small structures due to noise, we apply a morphological opening with a circular
structure element of radius 4 pixels. In Fig. 3, these two steps are illustrated for the
image in Fig. 1.

Fig. 3. Final steps of the segmentation; (a) thresholded gradient image, where white pixels are above
β; (b) the final segmented image after filling of holes and after applying a morphological opening to
the image in (a).

3.2. Finding candidate cell centers
Since each connected component in the segmented image represents a possible

cluster of cells, these clusters need to be disconnected into individual cells. This is
accomplished by searching for circle segments along the outer contours of objects in
the segmented image, using a variation of the circular Hough transform. The principle
is illustrated in Fig. 4.

Fig. 4. Illustration of the method for finding candidate cell centers. The outer boundary of the cell
cluster and the approximate normals are shown in red and blue, respectively. The accumulation
matrix is displayed as a grey scale image in the background. The identified circles are displayed in
green.

While traversing the outer boundary of a connected region in the segmented
image, an approximate normal to the boundary is computed at each point. Along each
normal, we step-wise go inwards and register the distances to the current boundary
point. In this way, an accumulation matrix is formed where each element holds the
number of times it has been ”hit” by a normal from the boundary and keeps track of
the corresponding distances. When each point along a cell cluster boundary has been

visited, we look for local maxima in this accumulation matrix. The resulting circles in
Fig. 1(c) are displayed in green. The centers of the circles will then act as candidate
cell centers for the final contour extraction.

A common approach for finding suitable object centers from segmented images
in similar applications is to look for local maxima in the distance transform of the
segmented image. However, the distance transform only works when cells are
sparsely clustered, up to approximately three or four cells in each cluster. Although
somewhat more computationally intensive, the method described above works for
heavier clustering and is hence more generally applicable. Nevertheless, both
approaches depend on that all cells must have at least a part of the boundary exposed
to the background region in the segmented image.

3.3. Cell contour extraction using dynamic programming
Reasonable yeast cell contours are fairly smooth and, at least to a certain

degree, convex in shape. In order to find the ”most suitable” cell contour, such shape
constraints should be balanced with the data in the image, for example gradients and
directional derivatives. In the literature, a shape model that is adapted according to
surrounding edges is often referred to as a deformable template, see e.g. [18, 11, 10].
The reason behind using a shape model is that it will guide the solution to pick the
edges which correspond best to the model, when image information is either missing
or when it contains inconsistent and ambiguous edges. Examples are loss of contrast
at a specific part of a cell boundary or nearby occluding cells. Concerning the image
information part of the cell extraction, it turns out that the dark diffraction fringe that
is evident around yeast cells imaged in bright field, is located at approximately the
same distance to the true cell contour, irrespective of the distance from the focal
plane. In this paper we utilize this feature to locate cell contours, but this can easily be
modified depending on the application.

In principle, each closed sequence of connected pixels surrounding a candidate
cell center is a candidate for a cell contour, and therefore the space of possible
contours is immense. In order to regularize the problem, we introduce a reference
system in the form of a polar plot relative to each candidate center. Figure 5(a)
displays the directional derivatives I x and Iy at M = 32 rays emanating from a
candidate cell center, where each ray is sampled at N = 30 equally spaced radial
points. Here we let suitable contour points to be those that are located in between
positions with large derivatives directed in opposite directions. This conforms with
the notion that the true cell boundary lies at the dark fringe around the cell. Formally,
f (r,φ) denotes the contour point criterion function for a point at distance r and angle
φ to be a contour point. The angle φ is measured in the counter-clockwise direction,
starting at the black arrow in Fig. 5(a).

Let

 for I є {1,2, . . . ,N} and m є {1,2, . . . ,M}. Ix (r,φ) and Iy (r,φ) are interpolated
values (where needed) at distance r and angle φ from the candidate cell center in the
derivative images I x and Iy , respectively. The cosine and sine operations correspond
to a projection along the current ray.

This will result in less impact of edges that are not oriented in the same
direction as the ray. In Fig. 5(b), the criterion function f (r,φ) is displayed for the
candidate center in Fig. 5(a).

Fig. 5. (a) Directional derivatives along M = 32 rays, each sampled at N = 30 radial distances
emanating from a candidate cell center; (b) Polar plot of the criterion function f in Eq. (2) at the
points along the rays in (a). The angles φ are measured in the counterclockwise direction, starting
from the black arrow in (a). The rows in (b) correspond to the radial distances r in (a) and the
columns in (b) correspond to the the angles of the rays φ . Bright pixels in (b) represent good
contour points as measured by the criterion function.

Bright pixels in Fig. 5(b) represent high values of f and hence ”good” positions.
The idea is now to pick a path from left to right in this polar plot, visiting each
column once. To find the optimal path, we use dynamic programming. Note that
simply taking the maximum point r for each ray in direction φ will in general not
produce a continuous and closed contour.

When picking a path from left to right in the polar plot, restrictions on radial
transitions will affect the variety of shapes of the final contour. In other words, the
restrictions will define our deformable template model. When using dynamic
programming, it is only possible to put local restrictions on these transitions; they
cannot for example depend on the entire path up to the present angle φ . Global shape
constraints, such as convexity, are therefore not possible to enforce directly. It is not
even possible to guarantee that the final contour will be closed, i.e. that it starts and
ends in the same radial position. In the special cases of enforcing convexity and
closedness, there are however methods to circumvent this problem.

Here we use a method that penalizes transitions in the polar plot that
correspond to right turns in the original image coordinates as we encircle the
candidate center in a counter-clockwise direction. If we in addition can guarantee that
the resulting contour will be closed, this local convexity condition will produce a
globally convex contour, i.e. the contour of a shape that is geometrically convex.
Closedness can in turn be enforced implicitly by running the algorithm separately for

each of the N possible starting points. Nevertheless, we use a heuristic algorithm that
runs the dynamic programming scheme for three consecutive laps and uses the middle
part of the final path as the solution. Details regarding the dynamic programming
scheme and the transition conditions are presented in the Appendix.

In Fig. 6, we demonstrate the contour extraction method. In the upper example,
we used a simple transition rule that only allows straight or diagonal transitions
between consecutive columns in the polar plot. In the lower example, we used a
condition that penalizes transitions that corresponds to making right-turns, also called
the local convexity condition. With the latter condition, the algorithm manages to
retrieve the contour even though the candidate center is heavily off-centered. This is
the typical behavior of the algorithm. By using the local convexity rule, the
deformable template is flexible enough to handle heavily off-centered candidate cell
centers while still being able to enforce the convexity of the resulting contour. Hence,
besides being more theoretically appealing than the transition rule exemplified in the
upper example of Fig. 6 which is commonly used in contour extraction using dynamic
programming, the local convexity rule also has increased robustness towards poor
positioning of candidate cell centers. In both examples, we used the heuristic three
laps-methods for obtaining closed contours, where the middle part (between the two
vertical red lines) is used as optimal path and displayed in the corresponding images
on the right. Note that only using one lap in the polar plot of Fig. 6, the upper example
would not have resulted in a closed contour, since the optimal path deviates upwards
from the correct one as it approaches the boundary on the right.

Fig. 6. Illustration of the refined contour extraction algorithm using two different transition rules. On
the left are two optimal paths in three consecutive copies of the polar plot. The upper transition rule
only allows for straight or diagonal transitions in the polar plot, whereas the transition rule in the
lower example is the local convexity condition that penalizes transitions that corresponds to turning
right in the image as the candidate center is encircled. The solution to the middle copy of the polar
plot is used as resulting contour. The resulting contours to the examples on the left are displayed in
the sub-images on the right as green squares.

4. Performance
The cell contour recognition algorithms were run on 1163 cells in 25

independent images, each containing between 24 to 65 cells. Typical images exhibited
a relatively low degree of cell clustering and cell density and are well represented by
the examples in Figs. 1 and 2. The density and clustering of the images in the study
are comparable to the density and clustering in the example images of the references.
Visual examination of the defined cell contours showed that 96% were correctly
defined, and the algorithms were proven to be robust both in regards to differences in
cell sizes as well as the degree of off focus positioning. The remaining 4% of the cells
were either missed, incorrectly defined, or were false hits. These classes are
exemplified in Figs. 7(a)-(d). Cells are missed mainly as a consequence of being part
of a cluster. Even if they are not completely surrounded by cells, the outer border of
cells located inside clusters could be too short for a candidate cell center to be defined
using the method illustrated in Fig. 4. This is case for the missed cells in Fig. 7(d).
Incorrectly defined contours are generally only generated for buds. Here, it could be
argued that buds should not be included as a separate cell at all. However, if they
should, a more narrow range of possible radial distances in the refined contour
extraction step should be used for buds. In either case, a last step could fairly easily be
included, discarding unreasonable contours, e.g. those that are too small or have a too
large overlap with other cells. In this way, the number of incorrect contours and false
hits could be reduced.

Fig. 7. Performance of cell contour recognition. Figures (a)-(d) illustrate the contour classes used in
the success rate estimation. Of >1000 cells analyzed, 96% were defined correctly, 1% incorrectly,
1% were false hits and 2% were missed. The two missed cells in (d) were lost because they only
have a minor part of their border free to fit to a circle, as shown in (e).

To estimate the speed of the algorithms, cpu-times were measured with the
algorithms running on a PC with an Intel Duo-Core CPU at 1.66GHz with 2GB
RAM, in Windows XP and Matlab R2006a. Time-critical algorithms were
implemented in C and linked to Matlab using the mex-utility. Cpu-times were
measured by alternate use of the ”tic” and ”toc” commands in Matlab. For three
example images, containing 49, 96 and 173 cells, the cpu-times for cell recognition
from bright field image to refined cell contours were measured to be approximately
1.4, 2.0 and 2.8 seconds, respectively. The convex contour extraction part, using the
heuristic three-laps method, takes about 10 ms per candidate center to compute for M
= 32 and N = 30.

