
Image analysis algorithms for cell contour recognition in budding yeast

Abstract:  Quantification  of  protein  abundance  and  subcellular  localization 
dynamics from fluorescence microscopy images is of high contemporary interest in 
cell and molecular biology. For large-scale studies of cell populations and for time-
lapse  studies,  such quantitative analysis  can  not  be  performed  effectively  without 
some kind of automated image analysis tool.  Here, we present fast  algorithms for 
automatic  cell  contour  recognition in  bright  field  images,  optimized to  the model 
organism budding yeast (Saccharomyces cerevisiae). The cell contours can be used to 
effectively quantify  cell  morphology parameters  as well  as protein abundance and 
subcellular localization from overlaid fluorescence data.

1. Introduction
Fluorescence  microscopy  is  an  exceptionally  powerful  technique  to  study 

protein processes  in vivo.  However, due to the qualitative and subjective nature of 
human interpretation of images, quantitative data analysis is not straightforward. In 
addition, for statistical or high throughput measurements, manual analysis becomes 
highly time consuming. Automated image analysis opens up for advanced studies in 
the diversity of cell populations, i.e. characterization of phenotype heterogeneity, or 
single  cell  studies  in  vivo.  This  type of  studies  have  recently  attracted  significant 
attention, and have provided key insights in for example, gene expression noise and 
cell cycle regulation.

In this report, novel algorithms designed for automatic analysis of bright field 
and fluorescence images of budding yeast (Saccharomyces cerevisiae) are presented. 
Budding yeast is one of the most important model organisms for cell and molecular 
biology,  with  advantages  of  being  easy  to  handle  and modify  genetically.  In  this 
context, it also benefits from the library of chromosomally tagged Green Fluorescence 
Protein  (GFP)  fusion  proteins  that  became  publicly  available  in  2003.  The  main 
principle behind our approach is to use bright field images for cell recognition and 
then transfer  the  extracted  contours  to  the  corresponding  fluorescence  images  for 
protein analysis. Hence, our method does not rely on staining of the cell membrane 
and it is therefore suitable for in vivo studies.

Automatic  identification  and  recognition  of  cells  in  microscopy  images  has 
been reported before, but rather few authors have addressed the entire process from 
image to determination of precise cell contours of individual cells. Chen et al. used a 
machine learning approach to automatically  find approximate cell  boundaries  in a 
graphical  model  representation.  de  Carvalho  et  al.   used  the  watershed  transform 
applied  on  a  topology  based  on  a  combination  of  gray-scale  images  and  various 
hierarchical and geometric properties of the cells. Niemist¨o also used a watershed 
approach  for  separating  yeast  cells  prior  to  localization  of  small  fluorescent 
organelles. Rue and Husby successfully used an advanced deformable template model 
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for the near-circular cells of interest in order to identify fluorescently labeled contours 
of cells even when the borders are in part not visible. The drawback with their scheme 
is its huge computational complexity and the computations had to be carried out using 
a  Markov  chain  Monte  Carlo  (MCMC)  algorithm.  Mardia  et  al.  used  a  similar 
approach  to  detect  partially  occluded  objects.  Software  for  automatic  analysis  of 
fluorescence microscopy images of budding yeast has been presented by other groups. 
Miroshita and co-workers developed an image analysis program for cell morphology 
characterization of gene-deletion strains. However, their algorithm requires the cell 
membrane to be stained with a fluorescent dye. The open-source software Cell-ID, on 
the other hand, uses bright field images for cell recognition. The actual image analysis 
methods used have not yet been published.

We  here  present  algorithms  for  the  entire  process  of  image  analysis,  from 
thresholding and segmentation of images, to refined precise single cell contours. The 
main  novel  contribution  in  this  work  is  the  method  for  refined  cell  contour 
extraction.We utilize a shape model similar to the deformable template model used by 
Rue and Husby, with constraints between three consecutive points on the cell contour. 
Our model, on the other hand, enables computations of much lower computational 
complexity  and,  hence,  higher  speed.  Figure  1  illustrates  the  main  steps  of  our 
method.  The initial  steps involve segmentation  using a  new adaptive thresholding 
technique, for finding suitable candidate cell centers, see Figs. 1(a)-(c). The final step 
is the cell contour extraction, where a more refined cell contour is searched for. The 
final resulting contours are shown in Fig. 1(d). 

Fig. 1. Illustration of the main steps of the cell  recognition method: (a) the original bright field 
image showing a population of budding yeast  cells;  (b) the gradient, or edge map,image,  where 
bright pixels represent a large gradient magnitude; (c) the segmented image with identified circles in 



red. The centers of these circles will serve as candidate cell centers; (d) the result after cell contour 
extraction.

The  cell  contour  extraction  algorithm  computes  the  optimal solution  in 
polynomial  time,  using  a  dynamic  programming  scheme.  The  high  speed  of  the 
algorithm makes it suitable for studies where large data sets are involved, such as 
time-lapse or high-throughput studies of cell populations. Our method is shown to be 
fast  and,  for the kind of images considered,  we found that 96% of the cells were 
satisfactorily recognized. The algorithms are also found to be robust and adaptive, in 
the sense that they work without human intervention and are able to identify cells 
with high precision even in the presence of  several  neighboring cells,  at  different 
illumination levels or if the cells are slightly out of focus.

The paper is organized as follows: first the experimental and biological setup, 
used for producing the images in this paper, is presented. The image analysis methods 
are described in the subsequent section which is the main part and focus of the paper. 
We then evaluate our image analysis method, and exemplify its use in a biological 
application.  Details  regarding the  cell  contour  algorithm have  been moved  to  the 
Appendix.

2. Methods
2.1. Image acquisition
Images were collected using an inverted epi-fluorescence microscope (Nikon 

TE2000E) equipped with a back illuminated, electron multiplying gain CCD camera 
(Ixon DV887- DCSBV, Andor Technology). Bright field images, used to describe the 
image  analysis  method,  were  recorded  using  either  a  60X  objective  (Plan  Apo, 
NA=1.40) or a 100X objective (Plan Apo, NA=1.45). Images used in the rest of the 
paper were recorded with the 60X objective.

For the biological study, images were recorded in bright field and fluorescence 
mode every 10 minutes for 6 hours. To ensure that all nuclei were recorded, the cells 
were  imaged  in  three  image  planes  with  a  separation  of  approximately  2  μm.  A 
mercury  lamp  was  used  for  fluorescence  excitation  and  a  filter  set  (excitation: 
HQ470/40x, emission: HQ515/30m, dichroic: 505DCLP, Chroma Corporation, USA) 
were  used  for  GFP  imaging.  The  fluorescence  images  were  recorded  with  an 
integration time of 500 ms using an excitation intensity of approximately 0.1 W/cm2 
at the sample.

2.2. Strains and cultivation
TheMCM4 strain was obtained from the GFP-library. The cells were kept at 

agar plates with YPD medium containing 1% (w/v) yeast extract (Merck), 2% (w/v) 
Bacto-peptone (Merck), and 2% (w/v) glucose (Merck). For microscopy studies, cells 
were taken from the plate and placed in YNB medium that was composed of 0.17% 



(w/v) yeast nitrogen base without amino acids (Difco), 0.5% (w/v) ammonium sulfate 
(Merck),  2% (w/v)  glucose  and  aminoacid  supplement  lacking  histidine  (BIO101 
Inc.). The pH of all media was adjusted to 6.0. The cells were pre-grown using an 
orbital shaker at 30◦C. At early log phase, 10 μl of the suspension was placed between 
two cover slides separated by the secure seal spacer S24737 from Molecular Probes, 
creating an enclosed well.  The cells were kept at  approximately 20  ◦C during the 
experiments.

3. Cell contour recognition algorithm
3.1. Adaptive thresholding and segmentation
The segmented image is computed via thresholding on the gradient image  I  

mag , which is computed from the original bright field image I. The reasons for using 
I mag are twofold. First of all, the distribution of gradient pixel values is uni-modal, 
which makes it easier to find a suitable threshold, see Fig. 2. 

Fig. 2.  Illustration of how differences in illumination level  and cell  densities in the bright field 
images,  (a) and (c), affect  the gradient image histograms, shown in (b) and (d). The red curves 
represent the corresponding Rayleigh distributions that have been fitted to values in the histogram 
that lay below the median value, here displayed as blue vertical lines. The horizontal axis has been 
truncated at 30 for ease of display.

Operating on Imag also has the benefit of making the segmentation invariant to 
differences in the overall illumination level of the image. In practice, this invariance 
also holds for a slowly varying background illumination level. Regions in the image 
where  cell  contours  are  located  typically  exhibit  a  large  gradient  magnitude.  The 
opposite is true for background regions. This relationship between I and I mag can be 
seen by comparing Figs. 1(a) and (b).

The gradient image is computed using Prewitt’s method. The original bright 
field image  I  is filtered with two masks,  one for each direction, where each mask 
enhances differences in the corresponding direction. This results in two new images, I  
x  and  Iy, each being a measure of the pixelwise variation in the  x  and  y  directions, 

respectively. After this, we let  for each pixel location. Pixels 
with gradient values above a certain threshold β will now be assigned as foreground 
regions. In Fig. 1(c) we show the thresholded gradient image after filling of holes and 
running a morphological opening.



The crucial part in the segmentation step is to automatically find the threshold 
β. It is particularly important to adapt to the illumination level and the density of cells 
in the image. Depending on the experimental setup, the preferred threshold level may 
vary  substantially.  Adaptive  thresholding  techniques  found  in  the  literature,  e.g. 
Otsu’s nonparametric method or the parametric method of fitting the histogram to a 
mixture  of  Gaussians,  typically  rely  on  bimodality  of  the  histogram or  that  pixel 
values have a specific distribution. From the histograms in Fig. 2, we see that bi-
modality is not the case here. Furthermore, the distribution for large gradient pixel 
values  is  hard  to  categorize.  Although  not  displayed  in  the  figure,  the  apparent 
uniformity for large values continuous up to values above 200 where it finally starts 
to decline.

The  maximum  value  of  these  particular  histograms  are  588  and  770.  The 
method  we  present  here  does  not  make  any  assumptions  on  the  distribution  of 
gradient  pixel  values  of  large  magnitude,  the  only  assumption  made  is  that  the 
distribution of noise in background regions are approximately normal distributed.

Gradient values below the median, shown as vertical lines in Figs. 2(b) and (d), 
are fitted to a Rayleigh distribution function,

 (1)
where  σ  is the parameter that is varied until the best fit is found and x  is the 

pixel value. The rationale behind this procedure is that gradient pixel values of I mag 
will be Rayleigh distributed under the assumptions that the values of  Ix  and  Iy  are 
identical,  independent,  and normally  (Gaussian)  distributed.  Even though this  is  a 
crude assumption, we see from the fitted curves in Figs. 2(b) and (d), that Eq. (1) 
gives an excellent description of the gradient value distribution below the median.

The parameter σ constitutes a good measure of the pixel intensity variation for 
low gradient pixel values, i.e. for pixels in the background regions. Therefore, pixels 
which have gradient values far larger than  σ should be rejected as background and 
instead be considered as foreground.

Here we let the threshold relate to  σ  through  β  = 7.5σ  . This corresponds to 
declaring pixels with gradient values more than 6 standard deviations larger than the 
mean  of  the  estimated  distribution  of  background  pixels  as  foreground  pixels.  It 
should be mentioned that it  is  not necessary to specifically use the median as the 
delimiter for fitting the Rayleigh distribution.

To obtain the final  segmented  image,  the holes  (black regions  encircled  by 
white regions) in the thresholded image are filled. Furthermore, in order to remove 
small  structures  due  to  noise,  we  apply  a  morphological  opening  with  a  circular 
structure element of radius 4 pixels. In Fig. 3, these two steps are illustrated for the 
image in Fig. 1.



Fig. 3. Final steps of the segmentation; (a) thresholded gradient image, where white pixels are above 
β; (b) the final segmented image after filling of holes and after applying a morphological opening to 
the image in (a).

3.2. Finding candidate cell centers
Since each connected component in the segmented image represents a possible 

cluster of cells, these clusters need to be disconnected into individual cells. This is 
accomplished by searching for circle segments along the outer contours of objects in 
the segmented image, using a variation of the circular Hough transform. The principle 
is illustrated in Fig. 4. 

Fig. 4. Illustration of the method for finding candidate cell centers. The outer boundary of the cell 
cluster  and the approximate normals are shown in red and blue,  respectively.  The accumulation 
matrix is displayed as a grey scale image in the background. The identified circles are displayed in 
green.

While traversing the outer boundary of a connected region in the segmented 
image, an approximate normal to the boundary is computed at each point. Along each 
normal, we step-wise go inwards and register the distances to the current boundary 
point. In this way, an accumulation matrix is formed where each element holds the 
number of times it has been ”hit” by a normal from the boundary and keeps track of 
the corresponding distances. When each point along a cell cluster boundary has been 



visited, we look for local maxima in this accumulation matrix. The resulting circles in 
Fig. 1(c) are displayed in green. The centers of the circles will then act as candidate 
cell centers for the final contour extraction.

A common approach for finding suitable object centers from segmented images 
in similar applications is to look for local maxima in the distance transform of the 
segmented  image.  However,  the  distance  transform  only  works  when  cells  are 
sparsely clustered, up to approximately three or four cells in each cluster. Although 
somewhat  more  computationally  intensive,  the method described above works  for 
heavier  clustering  and  is  hence  more  generally  applicable.  Nevertheless,  both 
approaches depend on that all cells must have at least a part of the boundary exposed 
to the background region in the segmented image.

3.3. Cell contour extraction using dynamic programming
Reasonable  yeast  cell  contours  are  fairly  smooth  and,  at  least  to  a  certain 

degree, convex in shape. In order to find the ”most suitable” cell contour, such shape 
constraints should be balanced with the data in the image, for example gradients and 
directional derivatives. In the literature, a shape model that is adapted according to 
surrounding edges is often referred to as a deformable template, see e.g. [18, 11, 10]. 
The reason behind using a shape model is that it will guide the solution to pick the 
edges which correspond best to the model, when image information is either missing 
or when it contains inconsistent and ambiguous edges. Examples are loss of contrast 
at a specific part of a cell boundary or nearby occluding cells. Concerning the image 
information part of the cell extraction, it turns out that the dark diffraction fringe that 
is evident around yeast cells imaged in bright field, is located at approximately the 
same distance to  the true cell  contour,  irrespective  of  the distance from the focal 
plane. In this paper we utilize this feature to locate cell contours, but this can easily be 
modified depending on the application.

In principle, each closed sequence of connected pixels surrounding a candidate 
cell  center  is  a  candidate  for  a  cell  contour,  and  therefore  the  space  of  possible 
contours is immense.  In order to regularize the problem, we introduce a reference 
system in  the  form of  a  polar  plot  relative  to  each  candidate  center.  Figure  5(a) 
displays  the  directional  derivatives  I  x  and  Iy  at  M  = 32 rays  emanating  from a 
candidate cell  center,  where each ray is sampled at  N  = 30 equally  spaced radial 
points. Here we let suitable contour points to be those that are located in between 
positions with large derivatives directed in opposite directions. This conforms with 
the notion that the true cell boundary lies at the dark fringe around the cell. Formally, 
f (r,φ ) denotes the contour point criterion function for a point at distance r and angle 
φ to be a contour point. The angle φ is measured in the counter-clockwise direction, 
starting at the black arrow in Fig. 5(a).

Let 



 for I є {1,2, . . . ,N} and m є {1,2, . . . ,M}. Ix (r,φ ) and Iy (r,φ ) are interpolated 
values (where needed) at distance r and angle φ from the candidate cell center in the 
derivative images I x and Iy , respectively. The cosine and sine operations correspond 
to a projection along the current ray.

This  will  result  in  less  impact  of  edges  that  are  not  oriented  in  the  same 
direction as the ray. In Fig. 5(b), the criterion function  f  (r,φ ) is displayed for the 
candidate center in Fig. 5(a).

Fig.  5.  (a)  Directional  derivatives  along  M  = 32 rays,  each sampled  at  N  = 30 radial  distances 
emanating from a candidate cell center; (b) Polar plot of the criterion function  f in Eq. (2) at the 
points along the rays in (a). The angles  φ are measured in the counterclockwise direction, starting 
from the black arrow in (a). The rows in (b) correspond to the radial  distances  r  in (a) and the 
columns in (b) correspond to the the angles of the rays  φ . Bright pixels  in (b) represent  good 
contour points as measured by the criterion function.

Bright pixels in Fig. 5(b) represent high values of f and hence ”good” positions. 
The idea is  now to pick a path from left  to right  in this polar  plot,  visiting each 
column once.  To find the optimal  path,  we use  dynamic  programming.  Note that 
simply taking the maximum point  r  for each ray in direction  φ will in general not 
produce a continuous and closed contour.

When picking a path from left to right in the polar plot, restrictions on radial 
transitions will affect the variety of shapes of the final contour. In other words, the 
restrictions  will  define  our  deformable  template  model.  When  using  dynamic 
programming, it is only possible to put local restrictions on these transitions; they 
cannot for example depend on the entire path up to the present angle φ . Global shape 
constraints, such as convexity, are therefore not possible to enforce directly. It is not 
even possible to guarantee that the final contour will be closed, i.e. that it starts and 
ends  in  the  same  radial  position.  In  the special  cases  of  enforcing  convexity  and 
closedness, there are however methods to circumvent this problem.

Here  we  use  a  method  that  penalizes  transitions  in  the  polar  plot  that 
correspond  to  right  turns  in  the  original  image  coordinates  as  we  encircle  the 
candidate center in a counter-clockwise direction. If we in addition can guarantee that 
the resulting contour will  be closed,  this local  convexity condition will  produce a 
globally  convex contour,  i.e.  the contour of a shape that  is  geometrically  convex. 
Closedness can in turn be enforced implicitly by running the algorithm separately for 



each of the N possible starting points. Nevertheless, we use a heuristic algorithm that 
runs the dynamic programming scheme for three consecutive laps and uses the middle 
part  of the final path as the solution. Details regarding the dynamic programming 
scheme and the transition conditions are presented in the Appendix.

In Fig. 6, we demonstrate the contour extraction method. In the upper example, 
we  used  a  simple  transition  rule  that  only  allows  straight  or  diagonal  transitions 
between consecutive  columns  in  the polar  plot.  In  the lower  example,  we used a 
condition that penalizes transitions that corresponds to making right-turns, also called 
the local  convexity condition. With the latter condition,  the algorithm manages to 
retrieve the contour even though the candidate center is heavily off-centered. This is 
the  typical  behavior  of  the  algorithm.  By  using  the  local  convexity  rule,  the 
deformable template is flexible enough to handle heavily off-centered candidate cell 
centers while still being able to enforce the convexity of the resulting contour. Hence, 
besides being more theoretically appealing than the transition rule exemplified in the 
upper example of Fig. 6 which is commonly used in contour extraction using dynamic 
programming,  the local  convexity rule also has increased robustness towards poor 
positioning of candidate cell centers. In both examples, we used the heuristic three 
laps-methods for obtaining closed contours, where the middle part (between the two 
vertical red lines) is used as optimal path and displayed in the corresponding images 
on the right. Note that only using one lap in the polar plot of Fig. 6, the upper example 
would not have resulted in a closed contour, since the optimal path deviates upwards 
from the correct one as it approaches the boundary on the right.

Fig. 6. Illustration of the refined contour extraction algorithm using two different transition rules. On 
the left are two optimal paths in three consecutive copies of the polar plot. The upper transition rule 
only allows for straight or diagonal transitions in the polar plot, whereas the transition rule in the 
lower example is the local convexity condition that penalizes transitions that corresponds to turning 
right in the image as the candidate center is encircled. The solution to the middle copy of the polar 
plot is used as resulting contour. The resulting contours to the examples on the left are displayed in 
the sub-images on the right as green squares.



4. Performance
The  cell  contour  recognition  algorithms  were  run  on  1163  cells  in  25 

independent images, each containing between 24 to 65 cells. Typical images exhibited 
a relatively low degree of cell clustering and cell density and are well represented by 
the examples in Figs. 1 and 2. The density and clustering of the images in the study 
are comparable to the density and clustering in the example images of the references. 
Visual  examination  of  the  defined  cell  contours  showed  that  96% were  correctly 
defined, and the algorithms were proven to be robust both in regards to differences in 
cell sizes as well as the degree of off focus positioning. The remaining 4% of the cells 
were  either  missed,  incorrectly  defined,  or  were  false  hits.  These  classes  are 
exemplified in Figs. 7(a)-(d). Cells are missed mainly as a consequence of being part 
of a cluster. Even if they are not completely surrounded by cells, the outer border of 
cells located inside clusters could be too short for a candidate cell center to be defined 
using the method illustrated in Fig. 4. This is case for the missed cells in Fig. 7(d). 
Incorrectly defined contours are generally only generated for buds. Here, it could be 
argued that buds should not be included as a separate cell at all. However, if they 
should,  a  more  narrow  range  of  possible  radial  distances  in  the  refined  contour 
extraction step should be used for buds. In either case, a last step could fairly easily be 
included, discarding unreasonable contours, e.g. those that are too small or have a too 
large overlap with other cells. In this way, the number of incorrect contours and false 
hits could be reduced. 

Fig. 7. Performance of cell contour recognition. Figures (a)-(d) illustrate the contour classes used in 
the success rate estimation. Of >1000 cells analyzed, 96% were defined correctly, 1% incorrectly, 
1% were false hits and 2% were missed. The two missed cells in (d) were lost because they only 
have a minor part of their border free to fit to a circle, as shown in (e).

To estimate  the speed of the algorithms,  cpu-times were measured with the 
algorithms  running on a  PC with  an Intel  Duo-Core  CPU at  1.66GHz with 2GB 
RAM,  in  Windows  XP  and Matlab  R2006a.  Time-critical  algorithms  were 
implemented  in  C  and  linked  to  Matlab  using  the  mex-utility.  Cpu-times  were 
measured  by alternate  use of  the ”tic”  and ”toc”  commands  in  Matlab.  For  three 
example images, containing 49, 96 and 173 cells, the cpu-times for cell recognition 
from bright field image to refined cell contours were measured to be approximately 
1.4, 2.0 and 2.8 seconds, respectively. The convex contour extraction part, using the 
heuristic three-laps method, takes about 10 ms per candidate center to compute for M 
= 32 and N = 30.


