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Abstract. In High Dose Rate (HDR) brachytherapy the conventional dose optimization 
algorithms consider the multiple objectives in form of an aggregate function which combines 
individual objectives into a single utility value. As a result, the optimization problem becomes 
single objective, prior to optimization. Up to 300 parameters must be optimized satisfying 
objectives which are often competing. We use multiobjective dose optimization methods 
where the objectives are expressed in terms of quantities derived from dose-volume 
histograms or in terms of statistical parameters of dose distributions from a small number of 
sampling points. For the last approach we compare the optimization results of evolutionary 
multiobjective algorithms with deterministic optimization methods. The deterministic 
algorithms are very efficient and produce the best results, but they also have the certain 
limitations. The performance of the multiobjective evolutionary algorithms is improved if a 
small part of the population is initialized by deterministic algorithms.  
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1 INTRODUCTION  

High dose rate brachytherapy is a treatment method for cancer where empty catheters are 
inserted within the tumor volume. Once the correct position of these catheters is verified, a 
single 192Ir source is moved inside the catheters at discrete positions (dwell positions) using a 
computer controlled machine. The problem that we consider is the determination of the n 
dwell times (which sometimes are called as well dwell position weights or simply weights) for 
which the source is at rest and delivers radiation at each of the n dwell positions, resulting in 
a three-dimensional dose distribution which fulfills the defined quality criteria. In modern 
brachytherapy, the dose distribution has to be evaluated with respect to the irradiated normal 
tissues and the Planning Target Volume (PTV) which includes besides the Gross Tumor 
Volume (GTV) an additional margin accounting for position inaccuracies, patient 



movements, etc. Additionally, for all critical structures, either located within the PTV or in its 
immediate vicinity or otherwise within the body contour, the dose should be smaller than a 
critical dose Dcrit. In practice it is difficult, if not impossible to meet all these objectives. 
Usually, the above mentioned objectives are mathematically quantified separately, using 
different objective functions and then added together in various proportions to define the 
overall treatment objective function [1, 2].  

   The number of source positions varies from 20 to 300. It is therefore a high dimensional 
problem with competing objectives. The use of a single weighted sum leads to information loss 
and is not generally to be recommended, especially for non convex problems and for those 
cases where objectives have not the same dimensions and in addition maybe competing. An 
understanding of which objectives are competing or non-competing is valuable information. 
We therefore use multiobjective evolutionary algorithms in HDR brachytherapy. One 
algorithm is based on the optimization of dose-volume histograms (DVH), which describes the 
distribution of the dose within an object, or from these derived distributions. These 
distributions are evaluated for the PTV, the surrounding tissue and organs at risk from a set of 
up to 100000 sampling points [3]. The calculation of the DVH requires a considerable amount 
of time and for implants with 300 sources the optimization requires a few hours. Another 
limitation of this method is that a comparison with deterministic algorithms is not possible. We 
have therefore considered the optimization of the dose distribution using as objectives the 
variance of the dose distribution on the PTV surface and within the PTV obtained from a set 

of 1500÷4000 sampling points. These functions are convex and a unique global minimum 
exists.  
   In the past comparisons of the effectiveness of evolutionary algorithms have been made with 
either other evolutionary algorithms [4] or with manually optimized plans [1, 2]. We have 
compared the Pareto fronts obtained by multiobjective evolutionary algorithms with the Pareto 
fronts obtained by a weighted sum approach using deterministic optimization methods [5].  
   We use here only objectives where gradient based algorithms are superior. However, we 
must consider also critical structures partly inside the target or close to it which have to be 
protected by excessive radiation. Other objectives are the optimum position and the 
minimum number of sources. In such cases the gradient based algorithms can not be used. 

2 METHODS  

2.1 Dose Statistics Based Optimization 
 

The DVH based optimization method requires a large number of sampling points for the 
computation of the histograms and the COIN1 distribution and therefore is computational 
expensive. We have developed a stratified sampling approach where the sampling points are 
non uniform distributed and which reduces the number of required sampling points by a factor 

of 5÷10. Even then for implants with 200÷300 sources the optimization time can reach 1÷2 
hours. A comparison of the performance with deterministic and gradient based algorithms is 
not practical or not even possible. 
   Therefore we consider another set of two objectives:  For the conformity objective we use 
the variance fS of the dose distribution of sampling points uniformly distributed on the PTV. In 
order to avoid excessive high dose values inside the PTV we require a small as possible dose 
distribution variance fV inside the PTV. Due to the source characteristics these two objectives 
are competing. We use normalized variances for the two objectives:  

                                                 
1A conformal Index (COIN) was proposed as a measure of implant quality and dose specification in brachytherapy [6]. 

This index takes into account patient anatomy, both of the tumor and normal tissues and organs. 
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Where m is the average dose value and N the corresponding number of sampling points. 

 
2.2 Multiobjective Optimization with Genetic Algorithms 
 

These objectives allow us to use deterministic gradient based algorithms. We use a weighted 
sum approach for the multiobjective optimization, where for a set of weights for the volume 
and surface variance we perform a single objective optimization of fw: 

fw  = wS fS + wV fV    (2) 

where wS , wV ≥ 0 are the surface and volume importance factors, respectively and wS + wV = 1. 
We used 21 optimization runs where wS varied from 0 to 1 in steps of 0.05 to determine the 
shape of the trade-off curve. A problem in using deterministic optimization methods is that the 
solution contains a large number of dwell weights with negative values. This is a non physical 
solution. In the past either constrained optimization methods were used or a correction was 
applied by setting to 0 all negative weights in each optimization step. A constrained 
optimization method increases the number of parameters by a factor of two. The correction 
method for the negative weights reduces the quality of the optimization results. We use a 
simple technique by replacing the decision variables, the weights wk, with the parameters w'k = 
wk

1/2. Using this mapping technique we avoid non feasible solutions. For this  unconstrained 
optimization we use the Polak-Ribiere variant of Fletcher-Reeves algorithm or the Broyden-
Fletcher-Goldfarb-Shanno quasi-Newton based algorithm [5]. These require the first derivative 
of the objective function with respect to the decision variables to be calculated. The derivative 
of the normalized variance f used by the gradient based optimization methods is:  
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As a gradient free method we used the modified Powell method of Numerical Recipes [5].  

 
2.3 Multiobjective Optimization with Evolutionary Algorithms 
 

The population of multiobjective algorithms consists of strings storing a set of weights for each 
source dwell position. The weights are initially produced randomly distributed within the 
interval [0,1]. A part of population can be initialized by solutions of the deterministic 
algorithms, and more on this will be written further [7]. 
In our algorithm analysis we used these selection mechanisms:  
-The niched Pareto algorithm (NPGA) proposed by Horn and Nafpliotis [8]; 
-Strength Evolutionary Approach algorithm (SPEA) by Zitzler and Thiele [9], 
-Non-dominated Ranking Algorithm by Fonseca and Flaming (FFGA) [10, 11] 
-Non-elitist Non-dominated Sorting Genetic Algorithm (NSGA) and Controlled Elitist Non-
dominated Sorting Genetic Algorithms (NSGA II) [12,13,14]  
   After a new population is formed, the strings of randomly selected pairs undergo a crossover 
operation with a probability Pc and mutation with a probability Pm. We have found that Pc must 
be larger than 0.7 and Pm should be smaller than 0.1. The size of the population should be 
larger than 50. Various crossover types can be selected such as single point, two point, and 
arithmetic crossover. For the mutation operation also we have used various forms: uniform or 
non-uniform mutation. We use a real representation for the gene values. A detailed description 
of the genetic operators is given in reference [7]. 



3 RESULTS 

The dose variances are calculated from 1000 ÷ 4000 quasi-randomly distributed sampling 
points. The distances of these points to each source dwell position r, more precisely the inverse 
square distances 1/r2, are stored for speed maximization in look-up tables. We assume a 
invariant kernel K(r)= 1/r2 and ignore any spatial anisotropy, namely attenuation and scattering 

effect. This dosimetric simplification 
has no measurable influence on the 
results of the optimization. 
All calculations presented in our study 
have been made by using for the 
mutation probability Pm a value of 
0.0065 and for the crossover 
probability Pc a value of 0.85. 
   The dose prescription is realized at 
the Dref, the isodose value resulting in 
the maximal conformity. This results 
generally in mean normalized dose 
values at the surface of PTV different 
from 1.0. 
The multiobjective genetic algorithm, 
which uses dose-volume based 
constraints, produces equivalent or 
even better results than algorithms 
which were based on 

phenomenological methods and used in the majority of treatment planning systems [15,16,17]. 
   The deterministic gradient based algorithms are very effective in generating the Pareto front 
using a summed weights approach. Powells algorithm which does not require derivatives is 
efficient only for implants with a small number of sources (time consuming), whereas the 
gradient based algorithms require only 1-2 minutes. Gradient based algorithms are limited by 
the fact that they can be trapped in local minima, or that non convex regions are not accessible 
using the weighted sum method [18]. 
   From the evolutionary algorithms NSGAII and SPEA have been found to produce the best 
results, since it applies an elitism and sharing mechanism. For implants with many sources the 
genetic algorithms used converge in some cases to a Pareto set which was far away from the 
true Pareto set. Such an example for an implant with 215 source dwell positions is shown in 
Fig. 1. The SPEA algorithm converges after 200 generations to a Pareto front which is very 
small and far from the Pareto set generated by the gradient based algorithms. The optimization 
path is shown for a set of importance factors fV, fS for the Polak-Ribiere algorithm. After 10 
iterations a point on the Pareto front is reached. 
Using random sets of decision variables we have found for this example that the number of 
function evaluations required by a random search method to obtain points on the Pareto front 
is larger than 1030 [7]. A random search would require 1010 times more function evaluations to 
generate points on the Pareto set found by the SPEA algorithm without initialization. Even 
with this performance the SPEA algorithm is not able to produce points on the Pareto front 
found by the deterministic methods. Using a few members initialized by the gradient based 
algorithm the multiobjective evolutionary algorithms reproduced the Pareto fronts obtained by 
the deterministic algorithms, Fig. 1. For a more detailed comparison of the deterministic and 
evolutionary algorithms see reference [7]. 

Figure 1 - Pareto front obtained by the gradient 
based algorithm and with the SPEA algorithm 

with and without initialization. 



4 CONCLUSIONS 

   We used for the first time multiobjective evolutionary anatomy based dose optimization 
algorithms in HDR brachytherapy. For the COIN-based objectives we have found that 
multiobjective evolutionary algorithms produced solutions which are better than by 
conventional algorithms in treatment planning systems which use deterministic algorithms and 
catheter-oriented objectives. They also have the problem with infeasible negative weights which 
they avoid by a repair mechanism or by using special constraints to the objective functions in 
order to reduce their numbers and the degree of the violation. 
   The results of various algorithms for the variance based objectives have been compared using 
a representative set of 22 implants encountered in clinical practice. We have limited our study 
to cases where no critical structures are considered. Trade-off surfaces which reveal the nature 
of the multiobjective problem of the dose optimization in brachytherapy have been obtained. 
Due to the variety of the trade-off surfaces found, which depends on the implant and complex 
catheter geometry, no common set of optimal importance factors exists. Therefore it is useful 
to determine the Pareto front and then to select a solution according to its characteristics. 
Pareto sets have been obtained by a deterministic unconstrained optimization method using a 
simple mapping technique which transforms the linear into a quadratic optimization problem 
and removes infeasible solutions with negative dwell position weights. The gradient based 
algorithms, if they can be used, are very effective because they converge very fast and generate 
the Pareto fronts which in most cases are much better than the Pareto front obtained by 
evolutionary multiobjective algorithms. 
   If the number of objectives increases then the number of combinations using a weighted sum 
approach with deterministic algorithms increases. Deterministic methods are not efficient for 
non analytic complex objectives such as used by the COIN based method. When more 
objectives are included then a non convex feasible space could be the result [19]. A 
combination of deterministic and evolutionary multiobjective algorithms seems to be the best 
choice for a robust and efficient multiobjective dose optimization in HDR brachytherapy.  
   We are currently studying for various sets of objectives the Pareto fronts using 
multiobjective evolutionary algorithms and if possible in combination with deterministic 
algorithms. 
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