
A Physically Based Approach to 2{D Shape Blending

Thomas W. Sederberg

Eugene Greenwood

Brigham Young University1

Abstract

This paper presents a new algorithm for smoothly blending be-
tween two 2{D polygonal shapes. The algorithm is based on a
physical model wherein one of the shapes is considered to be con-
structed of wire, and a solution is found whereby the �rst shape
can be bent and/or stretched into the second shape with a min-
imum amount of work. The resulting solution tends to associate
regions on the two shapes which look alike. If the two poly-
gons havem and n vertices respectively, the algorithm is O(mn).
The algorithmavoids local shape inversions in which intermediate
polygons self-intersect, if such a solution exists.

Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling.

General Terms: Algorithms

Additional Key Words and Phrases: Computer graphics, shape
blending, animation, physically based algorithms.

1 Introduction

The topic of this paper is illustrated in Figures 1{3. Given
two polygonal shapes, the problem is to compute a continuous
shape transformation from one to the other. For example, in
Figure 1, the far left and far right sketches of a chicken are
given, and the three intermediate shapes are automatically
computed with no user interaction. This operation is known
variously as shape averaging, shape interpolation, metamor-
phosis, shape evolving, and shape blending. It has widespread
application in illustration, animation, and industrial design.
2{D shape blending is an increasingly popular feature in many
commercial illustration software packages (such as [1], [6], [7],
[17], [18]).

Solutions to the 3{D shape interpolation problem have also
been proposed ([4], [10], [14]). Indeed, the research e�ort re-

0

1Engineering Computer Graphics Laboratory
368 Clyde Building
Brigham Young University
Provo, UT 84602
(801)378-6330
(801)378-2478 FAX
tom@tws.ce.byu.edu

Figure 1: Shape blend example

Figure 2: Shape blend example

Figure 3: Shape blend example

Page 1

ported in this paper initially focused on the 3{D problem.
However, the authors soon realized that even the 2{D prob-
lem had many open questions, such as how can a shape blend
algorithm avoid chaotic intermediate shapes and how can an
algorithm recognize similar, though not identical, features on
the two terminal shapes (such as the feet and head of the
chicken in Figure 1) and maintain those features throughout
the blend.

We tested several commercial shape blending software pack-
ages on some of our shape examples. The best of any results
for the chicken outline is shown in Figure 4 and the best E to
F blend is shown in Figure 5. Notice how the chicken feet in
Figure 4 degenerate to a self-intersecting scribble.

Figure 4: Shape blend of chicken using commercial software

Figure 5: Shape blend of E to F using commercial software

The algorithm presented in this paper is based on a physical
model. Imagining that each shape is made of a piece of wire,
the blend is determined by computing the minimum work re-
quired to bend and stretch one wire shape into the other. The
user can specify some physical properties of the wire, which
control the relative di�culty with which it can be bent or
stretched. A severe penalty is charged for blends which expe-
rience a local self intersection due to the wire bending through
an angle of zero degrees. This penalty nearly always prevents
the self intersection problem in Figure 4. All of the blends
in this paper were generated automatically with no user in-
tervention (Figures 4 and 5 by commercial packages, the rest
by our algorithm) except for initially specifying the physical
attributes of the wire.

1.1 Related work

Shape blending is a problem which has been motivated by
several di�erent applications and attacked in several di�erent
ways. For example, if we envision the family of blend poly-
gons as forming a ruled surface in (x; y; t) space, as shown in
Figure 6, the shape blending problem bears strong similarity
to the contour triangulation problem [5], [8], [9], [15]. This is
the background from which we approached the problem, and
our solution borrows graph theory concepts from [15] and [8].
The algorithms used in the commercial illustration software
cited above probably resemble the triangulation algorithms in
[5] and [9] since these areO(n) in time and memory, thus more
suitable for PC applications than ones based on graph theory.

The �rst paper on 3{D shape interpolation [4] was moti-
vated by industrial design. It tackles the problem by slic-
ing the two 3{D shapes into contours, blending corresponding

Figure 6: Family of blend polygons as a function of t

contours, then reconstructing the 3{D blended surface. More
recent solutions, [10] and [14], are based on Minkowski sums.
These approaches give impressive results, but leave some room
for further investigation. For example, two non-convex objects
with similar features (such as a dog and a horse) will lose pro-
truding details such as legs during intermediate shapes. In
fact, the blend of a non-convex object with itself is not a con-
stant shape.
Problems related to 2{D shape blending arise in shape

recognition [2], [19] and curve matching for graphical search
and replace [16]. In these applications, the primary concern
is determining how similar two complete objects are. Shape
blending also resembles the computer vision problem of con-
tour identi�cation, for which one solution is based on en-
ergy minimization [13], as is the shape blending algorithm
described herein.
When the two shapes to be blended are taken to be

keyframes in a character animation (such as in Figure 1) shape
blending is similar to inbetweening | an important compo-
nent of the general problem of computer-assisted animation
[3]. The problem addressed in this paper, inbetweening of
polygonal shape outlines, is simpler than the more general
problem of inbetweening complete drawings.

1.2 Overview

Section 2 discusses geometric aspects of the shape blending
problem. The physical work model is discussed in section 3.
The minimum work solution is found by means of a directed
graph, as discussed in section 4. Section 5 presents several
examples and discusses the relative in
uence of stretching and
bending work.

2 Geometric preliminaries

Given two polygonsP0 and P1 with the same number of ver-
tices, shape blending is accomplished by performing a linear
interpolation between the corresponding vertices of the two
polygons. If

P
0 = [P0

0;P
0
1; . . . ;P

0
n]; P

1 = [P1
0;P

1
1; . . . ;P

1
n] (1)

where Pk
i denote vertices, intermediate polygons in the blend

can be de�ned

P(t) = uP0 + tP1

= [uP0
0 + tP1

0; uP
0
1 + tP1

1; . . . ; uP
0
n + tP1

n]

= [P0(t);P1(t); . . . ;Pn(t)] (2)

where u = 1� t. The motion of three adjacent vertices under-
going a shape blend is shown in Figure 7.

Pi-1
0=Pi-1(0)

Pi
0=Pi(0) Pi+1

0=Pi+1(0)

Pi-1
1=Pi-1(1)

Pi(1)

Pi+1
1=Pi+1(1)Pi-1(.5)

Pi(.5) Pi+1(.5)

θi(0)

θi(.5)

θi(1)

Bi
0

Fi
0

Bi
1

Fi
1

Figure 7: Blending of three adjacent vertices

0,6

1 2

3 4

5 0,6

1 2

3 4

5 0,6

1 2
3 4

5 0,6

1
2

3 4

5 0,6

1 2

3 4

5
P0 P1

Figure 8: Simple example, solution 1

Consider the simple example in Figure 8, where the vertex
numbers are labeled. Each intermediate shape is determined
by linearly interpolating each node as shown. The paths for
vertices 1 and 3 are shown in dotted lines.

If the vertices are renumbered, a shape blend such as in
Figure 9 can be obtained.

0,6

1
2

3 4

5
0,6
1 2

3 4

5

0,6
1 2 3 4

5

0,6
1

2 3
4

5

0,6 1

2
3

45
P0 P1

Figure 9: Simple example, solution 2

Di�erent blends can be achieved if we insert new vertices
in each polygon. In Figure 10, a vertex labeled \5" is inserted
in P0 and a vertex labeled \1" is inserted in P1 as shown.
Another variation is obtained by adding two new vertices at
the same point. In Figure 11, vertices labeled \5" and \6" are
inserted in P0 and vertices labeled \1" and \2" are inserted
in P1 as shown.

Typically, two polygons to be blended do not initially have
the same number of vertices, and even if they do, the corre-
spondence will not generally produce a pleasing blend. The
examples in Figures 8{11 suggest that the principle task in
shape blending is that of adding vertices to each polygon such
that each polygon ends up with the same number of vertices,
and the resulting vertex correspondences produce the desired
blend.

So, how can an algorithm automatically decide, with little
or no human intervention, where to add the vertices? Sec-
tion 2.1 shows two geometric conditions that an algorithm can
identify and try to avoid, and section 3 discusses a physical
model which can further guide an algorithm.

0,7

1 2

3
4

5

6 0,7

1 2

3
4

5

6 0,7

1
2

3
4

5

6 0,7

1
2

3

4
5

6 0,7

1

2 3

4 5

6
P0 P1

Figure 10: Simple example, solution 3

0,8

1 2

3 4

5,6

7 0,8

1 2

3 4

5 6

7 0,8

1 2

3 4

5 6

7 0,8

1 2

3 4

5 6

7 0,8

1,2

3 4

5 6

7
P0 P1

Figure 11: Simple example, solution 4

2.1 Angles

Consider the solution to the step problem shown in Figure 12.
This blend serves little useful purpose (except to illustrate
shape blending gone awry), because the angle at the circled

P0 P1

Figure 12: Simple example, \solution" 5

vertex goes to zero, so that the two edges meeting at that
vertex pass over one another. When this happens, at least
part of the shape is turning itself \inside out".
Another example of ill-behaved intermediate angles is

shown in Figure 13. Here, the terminal angles at vertices 4
and 6 are both 90�, yet those angles in the intermediate blends
exceed 130�. Also, vertex 5 begins and ends on a straight line,
yet that line becomes noticeably bent during the blend oper-
ation.
Figures 12 and 13 suggest two angle constraints that should

be imposed on blend solutions. First, if at all possible we
should avoid

�i(t) = 0 0 � t � 1 (3)

at each vertex, since that implies that an intermediate shape is
self-intersecting. Second, it seems preferable, when possible,
for each intermediate angle to be bounded by its terminal
angles. That is, �i(t) should change monotonically from �i(0)
to �i(1).
It happens that there is an unexpectedly simple representa-

tion for the angle �i(t) which greatly aids the understanding
and analysis of these two conditions. In the following,

Pi �Pj � (xi; yi)� (xj ; yj) � xiyj � xjyi;

Pi �Pj � (xi; yi) � (xj ; yj) � xixj + yiyj ;

and

jjPijj =

q
x2i + y2i :

Letting u = 1� t, the angle �(t) can be computed

�i(t) = 6 [(P0
i�1u +P

1
i�1t); (P

0
iu +P

1
i t); (P

0
i+1u +P

1
i+1t)]

= 6 [(B0
i u +B

1
i t); 0; (F

0
iu + F

1
i t)] (4)

0,7

1
2

3 4

5
6

0,7
1 2

3 4

5
6

0,7
1 2 3 4

56

0,71
2 3

4
56

0,7 1

2
3

456
P0 P1

Figure 13: Simple example, \solution" 6

where Bk
i = Pk

i�1 � Pk
i and Fki = Pk

i+1 � Pk
i as shown in

Figure 7. Recalling that

sin(6 P1;0;P2) =
P1 �P2

jjP1jj jjP2jj
;

cos(6 P1;0;P2) =
P1 �P2

jjP1jj jjP2jj
;

tan(6 P1;0;P2) =
P1 �P2

P1 �P2
; (5)

tan(�i(t)) =
(F0

i (1� t) +F1
i t)� (B0

i (1� t) +B1
i t)

(F0
i (1� t) + F1

i t) � (B
0
i (1� t) +B1

i t)

=
y0(1� t)2 + y12t(1� t) + y2t

2

x0(1� t)2 + x12t(1� t) + x2t2
(6)

where

x0 = F
0
i �B

0
i ; x1 =

F1
i �B

0
i +F0

i �B
1
i

2
; x2 = F

1
i �B

1
i ; (7)

y0 = F
0
i �B

0
i ; y1 =

F1
i �B0

i + F0
i �B1

i

2
; y2 = F

1
i �B

1
i :

(8)
Equation 6 can be interpreted as a degree two B�ezier curve

Q(t) = (x0; y0)(1� t)2 + (x1; y1)2t(1� t) + (x2; y2)t
2

= Q0(1� t)2 +Q12t(1� t) +Q2t
2: (9)

As illustrated in Figure 14, Q(t) has the important property
that �i(t) = 6 ((1; 0); (0; 0);Q(t)). Thus, �i(t) = 0 only if Q(t)

Pi

Pi-1

Pi+1

θi(0) = 30°

Pi

Pi-1
Pi+1

θi(0.25) = 45°
Pi

Pi-1

Pi+1

θi(0.5) = 60°

Pi

Pi-1

Pi+1θi(0.75) = 76°

Pi
Pi-1

Pi+1
θi(1) = 90°

Q1

Q0

Q2

90° 30°

Figure 14: Relationship between �i(t) and Q(t)

intersects the positive x axis (as shown in Figure 15).
Angle monotonicity is assured if no line through the origin

intersects Q(t) more than once (as shown in Figure 16). The

Pi

Pi-1

Pi+1

θi(0) = 30°

Pi

Pi-1

Pi+1

θi(0.25) = 5°

Pi

Pi-1

Pi+1

θi(0.5) = 337°

Pi

Pi-1

Pi+1

θi(0.75) = 311°

Pi

Pi-1

Pi+1

θi(1) = 290°

Q1

Q0

Q2290°

30°

Figure 15: �i(t) goes to zero

Pi

Pi-1

Pi+1

θi(0) = 30°

Pi

Pi-1
Pi+1

θi(0.25) = 16°
Pi

Pi-1
Pi+1

θi(0.5) = 16°

Pi

Pi-1

Pi+1

θi(0.75) = 26°

Pi
Pi-1

Pi+1
θi(1) = 45°

Q1

Q0

Q2

30° 45°

Figure 16: �i(t) is not monotonic

angle function �i(t) = 6 [(1; 0); (0; 0);Q(t)] has four possible
extrema: �i(0), �i(1), �i(t1), or �i(t2) where t1 and t2 satisfy
the equation

(Q(t)� 0)�Q
0(t) = 0:

This produces a cubic polynomial which always degree reduces
to a quadratic polynomial in Bernstein form:

d(t) = d0(1� t)2 + d12t(1� t) + d2t
2 = 0; (10)

where

d0 = Q0 �Q1;

d1 =
Q0 �Q2

2
;

d2 = Q1 �Q2:

�i(t) changes monotonically if and only if equation 10 has no
real roots in the unit interval.
The work model in section 3.2 requires us to compute the

angle change ��i. If triangle 4Q0Q1Q2 does not contain
the origin, then ��i = j�i(1) � �i(0)jmod 180�. If triangle
4Q0Q1Q2 does contain the origin, it's possible for ��i to
exceed 180� as illustrated in Figure 17. Necessary and su�-
cient conditions for ��i to exceed 180� is for 4Q0Q1Q2 to
contain the origin, and d21� d0d2 < 0 (the discriminant of the

Pi

Pi-1

Pi+1

θi(0) = 295°

Pi

Pi-1

Pi+1

θi(0.25) = 253°

PiPi-1

Pi+1

θi(0.5) = 140°

Pi

Pi-1

Pi+1

θi(0.75) = 70°

Pi

Pi-1

Pi+1
θi(1.0) = 40°

Q1

Q0

Q2

295°

40°

Figure 17: ��i exceeds 180
�

quadratic formula in equation 10). Thus,

��i =

(
360� � j6 (Q0; (0; 0);Q2)j if d21 � d0d2 < 0 and

4Q0Q1Q2 � (0; 0)
j6 (Q0; (0; 0);Q2)j otherwise

(11)
where 6 (Q0; (0; 0);Q2) � 180�.

If �i(t) is not monotonic, the development in section 3.2,
needs to know how far �i(t) deviates from monotonicity. This
deviation is a non-negative angle denoted by ���i as shown
in Figure 18(a) for a single deviation, and Figure 18(b) for a
double deviation.

Q1

Q0
Q2

∆θ*

∆θ

(a)

Q1

Q0

Q2

∆θ* = α+β

∆θα

β

(b)

Figure 18: Measurement of ���i for non-monotonic �i(t)

2.2 Coincident vertices

Coincident vertices are a commonoccurrencewhich invite spe-
cial attention. When n adjacent vertices on one polygon lie
at the same point, n� 1 edges on the other polygon collapse
to that point. Since 6 (Pi�1;Pi;Pi+1) is unde�ned if Pi is
coincident with either of its neighbors, the angle changewhen
such a case is involved in a shape blend is also unde�ned, as
is the bending work discussed in section 3.2. Our tests verify
that the following heuristic for assessing angle change when
vertices are coincident gives good results.

We imagine that coincident vertices actually lie evenly
spaced along the base of an in�nitesimal isosceles triangle,
as shown in Figure 19. In this case, �2 = �4 = 90� + �

2 and
�3 = 180� in radians. In general, if verticesPi; . . . ;Pj are co-

α=40° Close-up
1

2,3,4

51

2
3

4

5

110°

148°

2 3 4

2

3

4

Figure 19: Treatment of coincident vertices

incident, �i = �j = 90� + �
2 and �i+1 = �i+2 = � � � = �j�1 =

180�.

Pi

Pi-1 Pi+1

θi(0) = 100°

Pi

Pi-1 Pi+1

θi(0.25) = 103°
Pi

Pi-1 Pi+1

θi(0.5) = 108°

PiPi-1 Pi+1

θi(0.75) = 121°

Pi-1 Pi Pi+1

Q1
Q2

Q0

100°∆θ

Figure 20: Q curve for three coincident vertices

Pi

Pi-1

Pi+1

θi(0) = 148°

Pi

Pi-1

Pi+1

θi(0.25) = 145°
Pi

Pi-1

Pi+1

θi(0.5) = 139°

Pi

Pi-1

Pi+1

θi(0.75) = 129°

Pi

Pi-1

Pi+1

θi(1) = 110°

Q1
Q2

Q0

∆θ
148°
110°

Figure 21: Q curve for two coincident vertices

In Figure 20, all three vertices of one polygon are coincident.
However, as portrayed in Figure 19, those vertices are treated
as though they are in�nitesimally spaced along a line segment.
Thus, in such cases, control point Q2 (or Q0) of the Q curve

Pi

Pi-1

Pi+1

θi(0) = 63°

Pi

Pi-1

Pi+1

θi(0.25) = 29°

Pi

Pi-1
Pi+1

θi(0.5) = 360°

Pi

Pi-1

Pi+1

θi(0.75) = 342° Pi-1 = Pi

Pi+1

Q1

Q2

Q0

Figure 22: Coincident vertices with �(:5) = 0

will always be located an in�nitesimal distance from the origin
along the �x axis. Figure 21 shows the Q curve for vertex
i = 2 in Figure 19. In this case, Q2 lies an in�nitesimal
distance from the origin along a ray 110� from the +x axis
as shown, and �� = 38�. Figure 22 shows an example of
coincident vertices in which an intermediateangle goes to zero.

3 Physically based model

Section 2 de�ned the shape blending problem to be one of de-
ciding where to add vertices to two polygons so that interme-
diate polygons in the blend could be de�ned by interpolating
corresponding vertices on the given polygons. The decision
on where to add vertices must be guided by some heuristic.
The heuristic we propose is to model polygon P0 as a piece of
wire made of some idealized metal. The \best" shape blend is
the one which requires the least work to deform P0 into P1

through bending and stretching.
This section discusses a simpli�ed model for assessing the

work involved in moving each vertex and line segment through
the shape blend. Section 4 shows how to compute a globally
optimal least work solution for all possible vertex correspon-
dences.

We distinguish between work which causes bending, and
work which causes stretching. Stretching work is computed
for each line segment (that is, each adjacent pair of vertices)
whereas bending work is computed for each adjacent pair of
line segments (that is, for each set of three adjacent vertices).

3.1 Stretching work

A force P will stretch an actual wire of length L0 [12] an
amount

� =
PL0

AE
(12)

where A is the cross sectional area and E is the modulus of
elasticity, a constant of the material (for example, E for steel
is 29; 000; 000 psi). The work expended in stretching a real
piece of wire an amount � is [12]

W =
�2AE

2L0
: (13)

SinceAE is a constant for the wire, for our purposeswe replace
it with a single user-de�nable \stretching sti�ness constant"
ks. If L0 is the initial length of a section of wire, and if L1
is its �nal length, equation 13 will compute di�erent values

if the initial and �nal shapes are swapped (�
2AE
2L0

in one case

and �2AE
2L1

in the other). Furthermore, if an edge collapses to a

single vertex (i.e., L0 = 0), equation 13 requires in�nite work.
These two considerations motivate the following modi�cation
to equation 13:

Ws = ks
(L1 � L0)

2

(1� cs)min(L0; L1) + csmax(L0; L1)
(14)

where � = L1 � L0 and cs is a user de�nable constant which
controls the penalty for edges collapsing to points.
The exponent 2 in equations 13 and 14 assumes the wire is

linearly elastic, which is the case if the wire has not stretched
very much. If excessive stretching occurs, less work is required
to elongate the wire because it undergoes plastic deformation
[12]. In this case, an exponent of 1 more closely expresses the
work expended. Thus, we make one �nal modi�cation to our
stretching work equation:

Ws = ks
jL1 � L0j

es

(1� cs)min(L0; L1) + csmax(L0; L1)
; (15)

where ks, cs, and es are user de�nable constants.
In physical reality, these work equations only make sense if

the wire is getting longer (L1 > L0), not if it is getting shorter
(L1 < L0). For our purposes, we compute both stretching and
compressing work using equation 15.
Section 4 calls for notation which expresses which segment

of wire is being stretched. Letting L0 = jjPi1 � Pi0 jj and
L1 = jjPj1 �Pj0 jj, we denote by

Ws([i0; j0]; [i1; j1]) =
ksjL1 � L0j

es

(1� cs)min(L0; L1) + csmax(L0; L1)
(16)

the stretching work required to map Pi0|Pi1 to Pj0|Pj1 ,
where i1 = i0 or i1 = i0 + 1 and j1 = j0 or j1 = j0 + 1.

3.2 Bending work

Analogous to the equation for stretching work developed
in section 3.1, work which causes bending is de�ned in
equation 18 for angle 6 (P0

i0
;P0

i1
;P0

i2
) bending into angle

6 (P1
j0
;P1

j1
;P1

j2
):

Wb([i0; j0]; [i1; j1]; [i2; j2]) = (17)n
kb(�� +mb��

�)eb if �(t) never goes to zero
kb(�� +mb��

�)eb + pb if �(t) does go to zero

where �� and ��� are measured in radians and are de�ned
in sections 2.1 and 2.2. kb, mb, eb, and pb are user de�nable
constants. The constant kb indicates bending sti�ness, mb
penalizes angles which are not monotonic, eb is an exponent
which plays a role similar to es, and pb penalizes angles from
going to zero.

3.3 Normalization

Notice that the work due to bending is independent of the size
of the shapes. Thus, if the two shapes are scaled uniformly,
the bending work computation does not change. However,
the stretching work varies with the scale of the shapes. To
make the constants ks and es independent of scale, it is a
good idea to map each shape to a unit rectangle, scaling the
same amount in x and y, so that the largest dimension of
the bounding box is one. It is important to scale uniformly,
or else the angles will change, along with the bending work
computation.
It is noteworthy that uniform scaling of the shapes does

a�ect theQ(t) curves, but not the bending work computation.

If P1 is scaled by a constant c, then Q0 is unchanged, Q1 is
scaled by c, and Q2 is scaled by c2. This creates a di�erent
Q(t) curve, but the angle function 6 ((0; 1); (0; 0);Q(t)) = �(t)
does not change.

3.4 Numerical examples

This section provides two numerical examples of the work re-
quired to transform a unit isosceles right triangle into a unit
square. In Figure 23, there is no stretching work in line seg-
ments 0{1 and 3{4 and no bending work in angle 0. The

stretching work in legs 1{2 and 2{3 is each ks
j1�

p
2

2
jes

p
2

2
�(1�cs)+1�cs

.

The bending work in angles 1 and 3 is each kb(
�
4)

eb and in
vertex 2 is kb(

�
2)

eb . Thus, the total work is

W1 = 2ks
:293es

:707 + :293cs
+ 2kb:785

eb + kb1:571
eb : (18)

0,4

1

2

3 0,4

1

2

3 0,4

1

2

3 0,4

1
2

3 0,4

1 2

3
P0 P1

Figure 23: Work computation example, blend 1

In Figure 24, there is also no stretching work in line seg-
ments 0{1 and 3{4 and no bending work in angle 0. The

stretching work in line segment 1{2 is ks
j1�0jes

0�(1�cs)+1�cs = ks
cs

and in line 2{3 is ks
j1�p2jes

1(1�cs)+
p
2cs

. The bending work in an-

gles 1 and 2, based on section 2.2, is kb
��

1
2
�
4 + �

2

�
� �

2

�eb
=

kb
�
�
8

�eb
. Angle 3 has a �� of �=4 and hence a bending work

of kb
�
4
eb . Thus, the total work to perform the transformation

in Figure 24 is

W2 = ks

�
1

cs
+

:414es

1 + :414cs

�
+ kb[2(:393)

eb + :785eb]: (19)

0,4

1,2

3 0,4

1 2

3 0,4

1 2

3 0,4

1 2

3 0,4

1 2

3
P0 P1

Figure 24: Work computation example, blend 2

By selecting di�erent coe�cients ks, kb, es, eb, and cs, we
can coerce either blend to have a smaller work requirement.
For example if ks = kb = :5, es = eb = 1 and cs = 0:5,
W1 = 1:91 and W2 = 1:96. However, if we change ks = 0:4
and kb = 0:6, then W1 = 2:16 and W2 = 1:88. So, if the wire
stretches more easily than it bends, blend 2 uses less work.

4 Least work solution

This section presents a method for determiningwhere to insert
vertices so that the shape transformation is accomplished with

the least work.
This method determines a globally optimal least work so-

lution for all possible correspondences of existing vertices, so
vertices can only be inserted at existing vertices. As a prepro-
cessing step, additional vertices can be added to break up long
line segments. The reason the optimization search is restricted
to existing vertices is that otherwise it becomes a non-linear
constrained optimization problem whose solution is very ex-
pensive and whose global optimality is di�cult to verify. By
contrast, the discrete solution presented here can be solved in
O(mn) time in the number of respective vertices, and global
optimality is assured.
One of the �rst papers written on contour triangulation,

[15], employs a directed graph to compute an optimal trian-
gulation between a pair of contour lines. [8] further re�ned the
use of the directed graph for that problem. Our least work so-
lution is primarily based on those two excellent papers. This
section brie
y reviews the use of directed graphs, giving only
enough detail to explain how the ideas in [8] are adapted.

Given two polygons P0 = [P0
0;P

0
1; . . . ;P

0
m] and P1 =

[P1
0;P

1
1; . . . ;P

1
n], all vertex correspondences can be repre-

sented in an m � n rectangular matrix, or \graph". The
columns of the graph represent vertices on P0 and the rows
of the graph represent vertices on P1. The point at which
column i meets row j signi�es a correspondence between P0

i

and P1
j .

Denote by [i; j] a correspondence between P0
i and P1

j ,
which can be represented on the graph as a dot at the junction
of column i and row j. A complete shape transformation re-
quires every vertex in P0 to correspond to at least one vertex
in P1 and vice versa. Furthermore, we only allow [i; j] to be
a correspondence if [i� 1; j], [i; j � 1], or [i � 1; j � 1] is also
a correspondence | else intermediate polygons in the shape
transformation would split apart. Given that [0; 0] = [m; n]
is a correspondence, a complete solution can be represented
on the graph as a string of dots starting at [0; 0] and ending
at [m; n], with each subsequent dot positioned one step East,
South, or Southeast from the preceding dot. This is illus-
trated in Figure 25, where the dots are connected by arrows.
We will refer to such a sequence of dots as a path, denoted by

P0

P1

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

P0

P1

0
1 2

3

4

5
678

9

0 1 2 3

456

7
8 9

Figure 25: Graph representation of a shape transformation

fc0; c1; . . . ; ckg. In Figure 25, c0 = [0; 0], c3 = [2; 3], etc. Note
that k is the number of vertices in each intermediate polygon
in the blend, with max(m;n) � k � m + n.
We do not allow a South step to be immediately followed

by an East step, or an East step to be followed by a South
step, because such a combination is more expensive than a
single Southeast step, except possibly under unusual work co-
e�cients. The main reason for this rule is to save some com-
putation. Thus, we may say that a path must travel in a
Southeasterly direction, and make no 90� turns.
Consider how to evaluate the bending and stretching work

for the example in Figure 25. Stretching work is computed

for each pair of neighboring dots on the path (cl�1; cl), since
each such pair of dots on the path represents two points on P0

transformingto two points onP1. Bending workmust be com-
puted using three neighboring dots on the path (cl�1; cl; cl+1),

since an angle change involves three points on P0 moving to
three points on P1.

For large m = n, there are O
�
mm

m!

�
= O

�
�mp
m

�
legal

paths. However, using a graph, the least work solution can
be determined by visiting each junction only once (O(m2)
computation expense). The basic strategy proceeds by con-

sidering polygon fragments consisting of vertices 0; . . . ; i of P0

and vertices 0; . . . ; j of P1. Denote these polygon fragments
P0(i) and P1(j). We wish to compute the minimum work

required to transformP0(i) into P1(j), according to the work
equations in section 3. In graph theory language, we want to
�nd the path which connects [0; 0] to [i; j] using the minimum
amount of work, denotedW (i; j). This is easily accomplished
using the simple observation that if we know the minimum
work valuesW (i� 1; j), W (i; j� 1), andW (i� 1; j� 1), then
W (i; j) must equal one of those three predecessors plus the in-
cremental work involved in connecting that predecessor with
[i; j].

To accomplish this, we must actually concern ourselves with
three values of W (i; j), denoted by W"(i; j), W-(i; j), and
W (i; j), which indicate theminimumwork required to trans-

form P0(i) into P1(j) if [i; j � 1], [i � 1; j � 1], or [i � 1; j]
respectively is the preceding dot on the path. These three
values are required because each bending work computation
relies on three dots on the path. We thus proceed by assign-
ing W"(0; 0) = W (0; 0) = W-(0; 0) = 0 and computing for
j = 0; . . . ; n and for i = 0; . . . ; m (i and j not both = 0):

W (i; j) = Ws([i� 1; j]; [i; j]) + (20)

minfW (i� 1; j) +Wb([i� 2; j]; [i� 1; j]; [i; j]);

W-(i� 1; j) +Wb([i� 2; j � 1]; [i� 1; j]; [i; j])g

W"(i; j) = Ws([i; j � 1]; [i; j]) + (21)

minfW"(i; j � 1) +Wb([i; j � 2]; [i; j � 1]; [i; j]);

W-(i; j � 1) +Wb([i� 1; j � 2]; [i; j � 1]; [i; j])g

W-(i; j) = Ws([i� 1; j � 1]; [i; j]) + (22)

minfW"(i� 1; j � 1) +Wb([i� 1; j � 2]; [i� 1; j � 1]; [i; j]);

W-(i� 1; j � 1) +Wb([i� 2; j � 2]; [i� 1; j � 1]; [i; j]);

W (i� 1; j � 1) +Wb([i� 2; j � 1]; [i� 1; j � 1]; [i; j])g

where Wb([i1; j1]; [i2; j2]; [i3; j3]) =1 for i1 < 0 or j1 < 0.
The value min(W (m;n); W-(m;n);W"(m;n)) is the

global least work. This is of secondary interest; what we re-
ally want to know is what path results in this minimumwork.
The path is determined by backtracking through the graph, a
process discussed in [8]. Actually, our backtracking is slightly
more complicated because each graph node must keep track
of three backpointers, one for each direction from which the
node can be approached in the backtrack.

4.1 Implementation

There is no need to store more than two rows of W (i; j),
W-(i; j), W"(i; j) information. Once a complete row of work
values has been computed, the previous row can be discarded.

The algorithm as stated goes to a lot of e�ort to assure
that it has found a path of globally minimal work. In par-
ticular, the bending work costs much more to compute than
does the stretching work, since each node in the graph can
represent the middle vertex of seven di�erent angle changes.

A muchmore economical (three times faster!) implementation
is possible, which no longer assures a global minimum work
solution, but which provides virtually identical results to the
rigorous algorithm dicussed above. The simpli�ed algorithm
uses only one value of W (i; j) (instead of calculatingW"(i; j),
W-(i; j), and W (i; j)) as follows.
For purposes of discussion, if point [i; j] lies on a path, the

preceding point on the path is indicated using the functions
west(i; j) and north(i; j). If the preceding point is directly
West of [i; j], then west(i; j) = 1 and north(i; j) = 0. If the
preceding point is straight up from [i; j], then west(i; j) = 0
and north(i; j) = 1. If the preceding point is North-West of
[i; j], then west(i; j) = 1 and north(i; j) = 1. De�ne

w0 = W (i�1; j) +Ws([i� 1; j]; [i; j]) + (23)

Wb([i� 1�west(i�1; j); j�north(i�1; j)];

[i�1; j]; [i; j])

w1 = W (i; j�1) +Ws([i; j � 1]; [i; j]) + (24)

Wb([i�west(i; j�1); j�1�north(i; j�1)];

[i; j�1]; [i; j])

w2 = W (i�1; j�1) +Ws([i�1; j�1]; [i; j]) + (25)

Wb([i�1�west(i�1; j�1); j�1�north(i�1; j�1)];

[i�1; j�1]; [i; j])

where w0 is unde�ned for i = 0, w1 is unde�ned for j = 0,
and w2 is unde�ned for i = 0 or j = 0. Then

if w0 � w1; w2 : W (i; j) = w0; west(i; j) = 1;

north(i; j) = 0 (26)

if w1 � w0; w2 : W (i; j) = w1; west(i; j) = 0;

north(i; j) = 1 (27)

if w2 � w0; w1 : W (i; j) = w2; west(i; j) = 1;

north(i; j) = 1 (28)

The algorithm for computing the approximate least work solu-
tion amounts to settingW (0; 0) = 0 and from equations 23 |
28 computing W (i; j); i = 0; . . . ; m; j = 0; . . . ; n. W (m; n)
is then the approximate least work, and the north and west
information can be used to backtrace the path which leads to
this solution.
We recommend using this simpli�ed algorithm, because it

is easier to implement, it runs three times faster than the
theoretically precise algorithm, and the results are visually
similar.

4.2 Starting points

The above discussion assumes that point P0
0 corresponds to

point P1
0. A globally minimum work solution for any initial

correspondence can be computed in O(mn lnn) time (see [8]).
The example in Figure 9 shows a zero work solution which was
found by considering all possible starting correspondences. All
the other Figures in the paper had the initial correspondence
speci�ed.

5 Examples and discussion

The work equations in section 3 contain seven user de�nable
constants: ks, kb, es, eb, pb, mb, and cs. ks and kb can be
restricted to the unit interval. Table 1 shows the coe�cients
used by our algorithm to blend the �gures in this paper. The
meaning of diagonal deviation dd is discussed in section 5.2.
Figures 8{11 underscore the inherent ambiguity of the

shape blending problem. Without human guidance, no al-
gorithm could discern which of these four solutions is ap-
propriate, since one can think of speci�c instances in which

Figure dd ks kb es eb pb mb cs
1 .06 1 .2 2 2 1000 10 .5
2 .09 0 1 2 2 1000 10 .5
3 .09 1 1 2 .5 1000 10 .5
8 0 0 1 2 .8 1000 10 .5
10 0 1 0 2 1 1000 10 .5
11 .125 0 1 2 1 1000 10 .5
27 .245 .3 1 2 .3 1000 10 .5
28 .04 1 .1 2 .1 1000 10 .5

Table 1: Coe�cients for various example �gures

each of them might be preferred. Note that for these shape
pairs, parameter adjustment can achieve the di�erent desired
results. As mentioned, the only user intervention for the ex-
amples in this paper is the speci�cation of starting points and
of the seven constants. However, it is easy to contrive exam-
ples where no set of seven constants will produce a prescribed
blend (such as in Figure 26, which consists of a combination
of Figures 8 and 11). In some cases, it may be needful for the

P0 P1

Figure 26: Unattainable example

user to specify a few other correspondences as well.
Figure 27 shows a blend from a cow to a deer. Notice

that some of the antlers cross each other in the intermediate
shapes. A high value of pb prevents local self-intersections
(angles going to zero) but not global self intersections.

1 2 3

4
5 6

Figure 27: Cow to deer

Figure 28 involves excessive movement of the dancer's arm.
Due to the linear motion between corresponding vertices, the
arm shortens as it moves.

5.1 Preprocessing

The heuristic described in this paper relies on a reasonable
initial distribution of polygon vertices. For example, Figure 2
requires additional vertices to be inserted along some of the
straight segments of the F shape in order to provide a pleasing
correspondence with the base of the E. Figure 28: Dancer

Since the work equations are more realistic for distinct ver-
tices than for coincident vertices, the algorithm tends to work
best if the two polygons have roughly the same number of ver-
tices. This tends to reduce the number of coincident vertices
in the �nal solution, since there must be a minimum of jm�nj
coincident vertices.

5.2 Speedups

We timed an example in which each polygon has 100 vertices,
and the execution time on an IBM RS6000Model 530 worksta-
tion is 8 seconds using unoptimized code. Using the simpli�ed
alorithm in section 4.1, the execution time is 3 seconds.

In most cases, the graph of the least work solution has a
path (see Figure 25) which does not deviate very far from

the diagonal of the graph. Recall that a polygon P0 with m
vertices and a polygonP1 with n vertices create a graph with
m columns and n rows. The amount which graph point c[i; j]
deviates from the graph diagonal is��� i

m
�

j

n

��� : (29)

The diagonal deviation of an entire path is

dd = max
[i;j]2path

��� i
m
�

j

n

��� : (30)

The cow-to-deer blend path (see Figure 27) is shown in Fig-
ure 29. Its diagonal deviation of :245 is the largest of any
of the examples in this paper (see Table 1). Thus, instead of

P0

P1
.25 .25

Figure 29: Cow to deer least work path; diagonal deviation

searching the entire rectangular graph, the least work solution
can generally be determined by visiting only those elements
of the graph within a distance dd from the diagonal.

6 Future Work

This research seems to have generated more questions than it
has answered. The authors are currently looking at several
follow-up problems. For example, to make this process useful
for keyframe animation and morphing, an interior preserving
map is needed for interpolating raster images which are en-
closed by the terminal polygons. We are currently studying
how well Schwartz-Christo�el transformations solve this prob-
lem.

How do we deal with cases where a scene composed of m
number of polygons blends into a scene composed of n poly-
gons, perhaps including holes? Ideas from [5] may help decide.

What about using periodic B-splines instead of polygons?
An easy answer is to simply polygonize the curves and ap-
ply the current algorithm, but a more satisfying answer is to
develop energy minimization methods which work directly on
the curves. The calculus of variations may provide help here.

All the blends in this paper involve moving corresponding
vertices along linear paths. This can create some undesirable
e�ects, such as the withering arm in blend 4 of Figure 28. Q
curves are easily extended to express angle change and seg-
ment length when vertices travel along B�ezier curves of any
degree. Study is underway in identifying curved paths which
relieve the withering arm problem.
The work model assumes that each wire has uniform sti�-

ness. There may be merit to specifying that some portions of
the wire are more sti� than others, suggesting a relative dis-
couragement towards altering those portions. For example, in
the cow-to-deer blend, it may be helpful to assign a smaller
sti�ness to the antlers than to the rest of the deer.
Of course, extending this algorithm to polygonal surfaces

in 3-D is a worthwhile goal.
Applications to other �elds such as pattern and signature

recognition are also being studied.
More detail on the material in this paper can be found in

[11].

Acknowledgements
PeishengGao sketched several of the illustrations in the paper.
Thanks to Andrew Glassner for motivating discussions and for
the initial shapes in Figure 3. Bruce Brereton provided valu-
able assistance in evaluating commercial illustration software
that supports blending. This work was supported under NSF
grant DMC-8657057, and under a grant from IBM.

References

[1] Adobe Systems, Inc. Adobe Illustrator 88.

[2] Bruce G. Baumgart. Geometric Modeling for Computer
Vision. Phd thesis, Stanford University, Computer Sci-
ence Department, 1974.

[3] Edwin Catmull. The problems of computer-assisted ani-
mation. Computer Graphics, 12(3):348{353, 1978.

[4] Shenchang Eric Chen and Richard Parent. Shape av-
eraging and its applications to industrial design. IEEE
CG&A, 9(1):47{54, 1989.

[5] Henry N. Christiansen and Thomas W. Sederberg. Con-
version of complex contour line de�nitions into polygo-
nal element mosaics. Computer Graphics (Proc. SIG-
GRAPH), 12(3):187{192, 1978.

[6] Computer Support Corporation. Arts & Letters 3.01,
1991.

[7] Corel Systems Corporation, Ottawa, Canada. Corel-
Draw! 2.0, 1990.

[8] Henry Fuchs, Z. M. Kedem, and S. P. Uselton. Opti-
mal surface reconstruction from planar contours. Comm.
ACM, 20(10):693{702, 1977.

[9] S. Ganapathy and T. G. Dennehy. A new general triangu-
lation method for planar contours. Computer Graphics
(Proc. SIGGRAPH), 16(3):69{75, 1982.

[10] Andrew Glassner. Metamorphosis. preprint, 1991.

[11] Eugene Greenwood. A physically based approach to 2{
d shape interpolation. Master's thesis, Brigham Young
University, Department of Mechanical Engineering, 1992.

[12] Archie Higdon, Edward H. Ohlsen, William B. Stiles,
John A. Weese, and William F. Riley. Mechanics of Ma-
terials. John Wiley & Sons, Inc., New York, 1976.

[13] Michael Kass, AndrewWitkin, and DemetriTerzopoulos.
Snakes: Active contour models. International Journal of
Computer Vision, 1(3):321{331, 1988.

[14] Anil Kaul and Jarek Rossignac. Solid-interpolating de-
formations: Construction and animation of PIPs. In
F.H. Post andW. Barth, editors, Proc. Eurographics '91,
pages 493|505. Elsevier Science Publishers B.V, 1991.

[15] E. Keppel. Approximating complex surfaces by triangu-
lation of contour lines. IBM Journal of Research and
Development, 19:2{11, 1975.

[16] David Kurlander and Eric A. Bier. Graphical search and
replace. Computer Graphics, 22(4):113{120, 1988.

[17] Micrografx, Inc., Richardson, TX. Designer 3.1.

[18] Software Publishing Corp., Sunnyvale, CA. Harvard
Graphics 3.0, 1991.

[19] Naonori Ueda and Satoshi Suzuki. Automatic shape
model acquisition using multiscale segment matching. In
Proc. 10th ICPR, pages 897|902. IEEE, 1990.

