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Abstract

This paper is concentrated on an accurate and effi-
cient fingerprint indexing algorithm, which efficiently re-
trieves the top N possibly matched candidates from a huge
database. In order to have ability of coping with distorted
fingerprints, the proposed algorithm uses novel features,
which are insensitive to distortion, formed by the Delau-
nay triangulation of minutiae set as the representation unit.
These features include minutia detail and Delaunay trian-
gle (its handedness, angles, maximum edge, and related an-
gle between orientation field and edges). Experiments on
database FVC 2000 and scanned fingerprints with heavy
distortion show our algorithm considerably narrows down
the search space in fingerprint databases and is also avail-
able for distorted fingerprints. We also compared with other
indexing approaches, and results show our algorithm has a
better performance, especially on fingerprints with heavy
distortion. This algorithm has another significant advan-
tage that is it provides the control points for fingerprint dis-
tortion compensation.
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1 Introduction

A fingerprint recognition system is essentially a pattern
recognition system that recognizes a person by determin-
ing the authenticity of a fingerprint characteristic possessed
by that person. An important issue in designing a practical
fingerprint recognition system is to determine how an indi-
vidual is recognized. Depending on the application context,
a fingerprint recognition system may be called either a ver-
ification system or an identification system.

• A verification system authenticates a person’s iden-
tity by comparing the captured fingerprint character-
istic with his/her own fingerprint template pre-stored

in the system [6]. It conducts one-to-one comparison
to determine whether the identity claimed by the indi-
vidual is true. A verification system either rejects or
accepts the submitted claim of identity, in other words,
it answers the question: Am I whom I claim I am ?

• An identification system recognizes an individual by
searching the entire template database for a match.
It conducts one-to-many comparison to establish the
identity of the individual [7]. In an identification sys-
tem, the system establishes a subject’s identity (or fails
if the subject is not enrolled in the system database)
without the subject having to claim an identity. It an-
swers the question: Who am I ?

A naive identification system would just compare the
given fingerprint with all entries in the database. However,
for modern databases containing more than several million
prints, penetration rate P1 and false acceptance rate FAR
are not accepted by any identification system when using
this approach. Since all matches are performed, the required
processing will have unacceptably long response time and
the identification performance will be far too low.

To reduce these problems, fingerprint classification is
employed. All fingerprints in the database are classified
into five classes (Right Loop, Left Loop, Whorl, Arch, and
Tented Arch) and stored in partial databases per class. The
input fingerprint is also classified, and only matched to the
fingerprints with corresponding class in partial database. If
fingerprints were equally distributed into these five classes,
the penetration rate would be reduced to P = 0.2. There-
fore, the processing time and FAR are greatly reduced.
However, the number of classes is small and real finger-
prints are unequally distributed among them: more than
90% of the fingerprints belong to only three classes (Loops
and Whorl). Furthermore, classification error and rejected
fingerprint must be considered when classification is per-
formed automatically. These lead to classification ap-

1Penetration rate measures the expected number of comparisons to be

made. P =
E[number of comparisons]

n



proaches do not narrow down the search space enough in
the database for an efficient identification of a fingerprint.

Another approach, called indexing, is employed to over-
come this problem. Fingerprint indexing can significantly
reduce the number of possibly matched candidates to be
considered by verification step. Thus, fingerprint identi-
fication can be divided into following sequential steps: 1.
fingerprint indexing; 2. fingerprint verification.

There have been several attempts to account for finger-
print indexing. R. Cappelli et al. proposed an indexing ap-
proach which gets a reasonable performance and identifi-
cation time [4]. R.S. Germain et al. used the triplets of
minutiae in their indexing procedure [5]. J.D. Boer et al.
improved them by combining of multiple features (orienta-
tion field, FingerCode, and minutiae triplets) [3]. B. Bhanu
and X. Tan did a improvement work on minutiae triplets
[2]. In their work, they replaced the features by some novel
ones. And experiments showed the improved approach had
a better performance.

To make indexing algorithm more robust, fingerprint dis-
tortion must be considered. In this paper, we follow above
works but use two more invariant features: minutia detail
and Delaunay triangle of minutiae. As minutia detail rep-
resents not only the type but also the shape, it decreases
the possibility of finding a wrong correspondence during
indexing; Delaunay triangulation of a set of minutiae only
creates O(n) triangles. They both further reduce the search
space in database. Moreover, Delaunay triangulation has
an ability of describing local similarity of fingerprint. It is
more reliable to the distortion than other triangulation algo-
rithms. Experiments on database FVC 2000 and scanned
fingerprints with heavy distortion show our indexing ap-
proach has a better performance.

The rest of this paper is organized as follows: Section
2 describes the definition of minutia detail and features of
Delaunay triangle for indexing. Section 3 gives out the in-
dexing score and algorithm. Experimental results and anal-
ysis are represented in Section 4. Finally, we conclude in
Section 5.

2 Features for indexing

Due to cross correlation changing of minutiae under
elastic distortion, it is better to choose features that are more
invariant to distortion as index. How to choose the best fea-
tures greatly affects the accuracy and response time of an
identification system. Therefore, a good feature should be
invariant for rigid and nonrigid transformation, lower com-
puting cost, available for most fingerprints, and so on. As
property of finger tips, there is an observation: even if an
elastic distortion is applied to a fingerprint image, every
minutiae always keeps its own shape and the same neighbor
structure. With above requirement and observation, minutia

detail and Delaunay triangle are employed to describe the
local structure.

2.1 Minutia detail

2.1.1 Definition

Let p be a bifurcation minutia with three ridges incident
upon it, namely, where r is the ridge before bifurcation, r1

and r2 are the two ridges after bifurcation. For each of r, r1

and r2, consider a line segment, which has length λ and is
tangent to the corresponding ridge at p. Let these three line
segments be b1p, b2p and ap corresponding to r1, r2 and r,
respectively (see Fig. 1). Let θ be the angle made by ap,
measured in counterclockwise direction with regard to x-
axis. We call the group of the three line segments b2p, b1p
and ap as the bifurcation detail B(p, a, b1, b2) for minutia p.
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Figure 1. Minutia detail of bifurcation minutia
at p.
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Figure 2. Bifurcation detail (case 1).

The Bifurcation detail B can have different shapes, de-
pending on the mutual orientations of b1p, b2p and ap. The



region around p can be divided into 4 quadrants, which are
named as SLL (lower left region), SUL (upper left region),
SUR (upper right region), and SLR (lower right region), as
shown in Fig. 2. Each of b1 and b2 can lie in any one of these
4 regions, thereby making 4 × 4 = 16 possibilities. Out of
these 16 possibilities, however, there will be 10 cases hav-
ing distinct mutual positions of b1 and b2, considering the
inter-changeability of b1 and b2. That is, for example, the
case of b1 ∈ SLR and b2 ∈ SUR, and the case of b2 ∈ SLR

and b1 ∈ RUR, which are 2 different cases in 16 possi-
bilities, are the same in the later 10 cases. These 10 cases
are enumerated in Table 1. Cases 2, 6 and 9 can have two
subcases each, depending on the relative x-axis (or, y-axis)
coordinates of b1 and b2, which will have differently shaped
B. Therefore, we get 7 + 6 = 13 different bifurcation de-
tails, which are shown in Fig. 2 and Fig. 3.

Table 1. Different cases for bifurcation detail
Case b1 ∈ b2 ∈ Condition
1 SLL SLL

2 (a) SLL SUL x[b1] ≤ x[b2]
2 (b) SLL SUL x[b1] > x[b2]
3 SLL SUR

4 SLL SLR

5 SUL SUL

6 (a) SUL SUR y[b1] ≤ y[b2]
6 (b) SLL SUR y[b1] > y[b2]
7 SUL SLR

8 SUR SUR

9 (a) SUR SLR x[b1] ≤ x[b2]
9 (b) SUR SLR x[b1] > x[b2]
10 SLR SLR

For a valid bifurcation minutia p, the angle 6 (b1, p, b2)
should be less than both 6 (b1, p, a) and 6 (b2, p, a), which
helps us to distinguish r form r1 and r2. Keeping this point
in consideration, out of the above 10 cases, cases 3, 4 and 7
are not possible for a valid bifurcation minutia. Hence we
have only 13− 3 = 10 possible differently shaped bifurca-
tion details.

As there is only one ridge r incident upon ridge ending
p. A ridge ending detail T (p, a) has just one line segment
ap corresponding to r, which is defined as the same as bi-
furcation detail. So, only the line segment ap contributes to
ridge ending detail, and its shape is unique. Thus, we take
no account of it in indexing procedure.

2.1.2 Algorithm

The theoretical definition of line segments b1p, b2p and ap
defines that they are tangent to the corresponding ridges at
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Figure 3. Bifurcation details (case 2 – 10).

minutia point p. But in discrete domain, it is a bit compli-
cate in practice. An alternative approach simply connects
the fifth skeleton point with minutia point as a line segment
on each ridge. The algorithm of line segment generation is
given out as follows:

First, three basic definitions are illustrated below.

1. Start point: The start point is one on the boundary of
minutiae region (please refer Chapter 6 of [9]). The
start points are considered as sources or elementary
cells of the skeleton which grows up emitting from
it. The boldfaced Euclidean distance transform (EDT)
values in Fig. 4 are start points. Their non-minutia
neighbors, which have a 9 EDT circle covering two
background components, are italic.

2. Branch generation: The set of points {pi} is called
the directional-neighborhood of p, denoted by Dp, if
they are in the 8-neighborhood of p and located within
±45◦ slope changes from the current medial axis ori-
entation of p. For example, using the 8-neighbors la-
beled p1, p2, . . . , p8 counterclockwise from the posi-
tive x axis of p, if p7 and p are the skeleton points, the
points p2, p3, p4 are the directional neighbors of p, i.e.
Dp = {p2, p3, p4}. Several cases are illustrated below:

p4 p3 p2 . . p2

. p . p5 p p1

. p7 . . . p8



p4 p3 . . p3 p2

p5 p . . p p1

. . p8 p6 . .

Note that the set of directional-neighborhood contains
always three elements. The branch generation is to
add the point which is the maximum of p’s directional-
neighborhood. That is to say:

pnext = max
pi∈Dp

{pi}

3. Minutia point: The minutia point is the one being the
maximum (i.e. the largest EDT value locally) in ex-
tracted minutiae region. Occasionally, there would ex-
ist more than one maximum points in one minutiae re-
gion. In this case, the midpoint among them is chosen
as the minutia point.

Input: Fingerprint image IEDT represented by EDT valu-
es and minutiae regions (please refer Chapters 4
and 6 in [9]).

Output: Line segments incident upon the minutia p.

1. Pick up a start point from minutiae region as initial
skeleton point.

2. Choose its non-minutia neighbor that has a 9 EDT
circle covering two background components as next
skeleton point. If number of eligible neighbors is more
than one, choose the midpoint of them.

3. Starting from start points and its chosen neighbor, the
branch generation is used to add more skeleton points.
For each branch, the branch generation halts at the
fifth skeleton point.

4. Connect minutia point with the fifth skeleton point on
each ridge to generate the corresponding line segment.

Fig. 4 shows a instance of the skeleton of bifurcation
minutia. Where the EDT values with underline construct
the skeleton.

As minutia details can be obtained in minutiae extraction
step, our indexing step does not cost additional computing
time for them [9].

2.2 Delaunay triangle

To make identification system robust and efficient, we
address ourselves to following points:

1. Distortion: There is the observation that, even if an
elastic distortion is applied to a fingerprint image, ev-
ery minutia always keeps the same neighbor structure.

Figure 4. Skelton of bifurcation.

In other words, distortion does not change local sim-
ilarity much. Some triangles that are used in [5, 2]
may almost cover entire fingerprint region in an image.
Obversely, they are greatly changed under heavy dis-
tortion. On the contrary, Delaunay triangulation par-
titions a whole fingerprint region into many smaller
pieces and exactly describes the closest neighbor struc-
tures of minutiae. So, Delaunay triangle is more insen-
sitive to distortion.

2. Computing cost: Fingerprint identification is a real-
time application. Thus, a fast response is necessary.
The approaches in [5, 2] exhaust all of possible trian-
gles of minutia set in an image to ensure the maximal
possible correspondences. Therefore, O(n3) triangles
have to be compared during indexing (n is the number
of minutiae). It is well-known, Delaunay triangulation
creates O(n) triangles. Therefore, The computing cost
greatly decreases using Delaunay triangle when n > 9.

With the properties of Delaunay triangulation [1], there
are some other advantages: 1. Insertion of a new point in a
Delaunay triangulation affects only the triangles whose cir-
cum circles contain that point. As a result, noise affects the
Delaunay triangulation only locally. 2. Delaunay triangles
are not skinny. This is also very desirable in our applica-
tion since the computation of the geometric transformations
between fingerprints is based on corresponding minutiae tri-
angles. Using skinny triangles can lead to instabilities and
errors [8].

Minutia detail and the features derived from Delaunay
triangle of minutiae form the index, and are ordered by fun-
damentality.

(Mj
i ,H, αmin, αmed, Lmax, φi)2

i=1,2,3;j=1,2,...,10

• Mj
i is the minutia detail of each vertex of triangle. If

the vertex is a bifurcation, it is identified as the cor-
responding bifurcation detail case Bj

i . If it is a ridge
ending, Ti is marked.

2H, αmin, αmed, Lmax have same definitions in [2].



• αmin and αmed are the minimal and medial angles
in the triangle respectively. According to angles, the
vertexes of angle αmax, αmin, αmed are labeled as
P1, P2, P3 (See Fig. 5 for illustration).

αmin

αmed

P1

P2

P3

αmax

Figure 5. Definition of triangle labels.

• H is the triangle handedness. Let Zi = xi + jyi be the
complex number corresponding to the location (xi, yi)
of point Pi. Define Z21 = Z2 − Z1, Z32 = Z3 − Z2

and Z13 = Z1 − Z3. Let triangle handedness H =
sign(Z21 × Z32).

• Lmax is the length of the longest edge in the triangle.

• φi is the difference between angles of two edges of
Pi and orientation field at Pi. For instance, let θr

1 is
the angle between edge P1P2 and orientation field at
P1; similarly, θl

1 is the angle between edge P3P1 and
orientation field at P1. φ1 is the difference between θr

1

and θl
1 in clockwise direction.

φi = θr
i − θl

i

where −180◦ < φi < 180◦, 0◦ < θr
i < 180◦, and

0◦ < θl
i < 180◦.

2.3 Conditions of triangles match

To find the correct corresponding Delaunay triangles
among the input fingerprint and fingerprints in the database,
following conditions are given out:

Mi = M′
i

H = H ′

|αmin − α′min| < Tα; |αmed − α′med| < Tα

|Lmax − L′max| < TL

|φi − φ′i| < Tφ

where Tα, TL, Tφ are the thresholds.

3 Indexing score and algorithm

I and Ii are input fingerprint and fingerprint in database
respectively, i = 1, 2, . . . , N , where N is the number of
fingerprints in the database. Suppose that there are n poten-
tial corresponding minutiae mj (j = 1, 2, . . . , n) in each
fingerprint. rj is the number of matched triangles, which
include mj , in I and Ii. We define the index score of image
Ii as:

Si = c
n∑

j=1

rj

where c is a constant.
Indexing algorithm is given out as follows:
For each triangle in Ii, compute (Mj

i ,H, αmin,
αmed, Lmax, φi), and use them to construct hash tables for
fast indexing in a database.

1. Apply Delaunay triangulation on minutiae set in input
fingerprint I .

2. For each triangle in I , do 3 and 4.

3. Compute (Mj
i ,H, αmin, αmed, Lmax, φi) for the tri-

angle.

4. Search the index space using (Mj
i ,H, αmin,

αmed, Lmax, φi) under conditions given out in sec-
tion 2.3. If the triangle satisfies the conditions, then
take it as successful correspondence of the triangle in
database.

5. Suppose that Mi corresponding triangles, which be-
long to the fingerprint Ii, are found. Let Mmax =
max{Mi}. If Mmax < TM , then reject the input fin-
gerprint, where TM is a threshold. Otherwise, do 6
and 7.

6. Compute indexing score Si based on Mi for Ii.

7. Sort Si in a descending order, output top N possible
matched prints.

4 Experimental results

We evaluated our method by testing it on Database
FVC2000 which consists of 880 fingerprints, 8 prints each
of 110 distinct fingers. These images are captured by a
capacitive sensor with a resolution of 500dpi, resulting in
images of 364 × 256 pixels in 8 bit gray scale. The first
of these prints is used to construct the database, while the
other seven prints are used to test the indexing performance.
In addition, we also scanned 180 fingerprints with heavy
distortion from a FUJITSU Fingerprint Sensor (model: FS-
210u), 3 prints each of 60 distinct fingers. Size and res-
olution are 300 × 300 and 500dpi respectively. Similarly,



the first of these prints is used to construct the database, the
others are used to test. Thresholds are different for the two
data sets: for database FVC 2000, Tα = 5◦, TL = 10 pix-
els, Tφ = 5◦; for scanned fingerprints with heavy distortion,
Tα = 8◦, TL = 20 pixels, Tφ = 10◦.

Indexing performance curves plotting the correct index
against the penetration rate at various thresholds are pre-
sented in Fig. 6, 7, 8. Where correct index is defined as the
percentage of correct fingerprints are selected.

First, a experiment has been performed to investigate the
effect of using minutia detail against minutia type for index-
ing the database.
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Figure 6. Comparison of indexing algorithms
with minutia detail and without minutia detail.

Fig. 6 indicates the size of the part of the database that
has to be searched in order to achieve a fixed probability
that the corresponding fingerprint is found.

Although, real data prove that more than 70% bifurca-
tion minutiae belong to bifurcation detail cases 5, 6, and
8. Minutia detail provides more classes than simple minu-
tia types, and narrows down the search space in a database.
Fig. 6 shows that the search space of indexing algorithm
using minutia detail is around 10% less than the space of al-
gorithm using minutia type when they achieve 100% correct
index rate.

Second, two experiments have been carried out to eval-
uate the performances of our algorithm and the algorithm
based on triplets on database FVC 2000 and scanned fin-
gerprints.

On database FVC 2000, Fig. 7 shows our algorithm gets
a smaller search space when two algorithms achieve the
same correct index rate. This might be explained by the fact
that the algorithm based triplets creates O(n3) triangles.
This number is much greater than O(n), which is the num-
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Figure 7. Comparison of our algorithm and
the algorithm based on triplets on database
FVC 2000.

ber of triangles in our algorithm, when n > 9. Obviously,
triplets based algorithm could find more matched triangles
between two possible matched fingerprints and has more
computing cost. Therefore, its search space in database is
larger than ours when using a same TM .
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Figure 8. Comparison of our algorithm and
the algorithm based on triplets on scanned
fingerprints with heavy distortion.

On the scanned fingerprints with heavy distortion, Fig.
8 shows a similar conclusion as above. Since elastic dis-
tortion changes the geometric relationship among minutiae,
we decrease TM in algorithm. As the same reason in previ-
ous paragraph, triplets based algorithm finds more matched



triangles even they are not real corresponding between two
fingerprints.

5 Conclusions

In this paper, an indexing algorithm using minutia detail
and Delaunay triangle is proposed. It has been shown that
this algorithm is able to search a fingerprint database more
efficiently. The reasons are follows:

• Minutia detail provides more minutiae classes than
minutia types, and further reduce search space. As
they can be obtained in minutiae extraction step, our
indexing algorithm does not cost additional computing
time.

• Delaunay triangle has an ability of description of lo-
cal similarity. Thus, our algorithm is more insensitive
to elastic distortion. Since Delaunay triangulation cre-
ates O(n) triangles, it is much less than the number of
triangles created by algorithm based on triplets. More
redundant or wrong matched triangles are avoided. Si-
multaneously, the search space in a database is reduced
when using a same TM .

The experiments on database FVC 2000 and scanned fin-
gerprints with heavy distortion also prove our algorithm
has a better ability of reducing the number of possible
matched prints for next step. A further improvement might
be achieved by combining other features of fingerprint, suit-
able combination rule and class rank method.

This indexing algorithm has another significant advan-
tage. All of correspondences found in indexing can work
as the control points for estimating the nonlinear mapping
function between two fingerprints during distortion com-
pensation.
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