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Economics of Network Pricing with Multiple ISPs
Srinivas Shakkottai R. Srikant

Abstract—In this paper we examine how transit and cus-
tomer prices are set in a network consisting of multiple
ISPs. Some ISPs may be geographically co-located so that
they compete for the same set of end users. We examine
the existence of equilibrium price strategies in this situation
and show how positive profit can be achieved using threat
strategies. It is shown that if the number of ISPs compet-
ing for the same customers is large then it can lead to price
wars. ISPs that are not geographically co-located may not
directly compete for users, but are nevertheless involved in a
non-cooperative game of setting access and transit prices for
each other. We study how such ISPs are linked economically
through transit ISPs by considering a multi-stage game. We
also consider the economics of private exchange points and
show that they could become far more wide spread then
they currently are.

I. INTRODUCTION

Index Terms— Internet economics, pricing, repeated
games, Nash equilibrium.

The Internet is a heterogeneous body of privately
owned infrastructure. Roughly speaking, it consists of
two types of networks: (i) densely meshed networks in
geographically localized regions which specialize in pro-
viding consumers with connection points to the network
and (ii) networks traversing large geographical distances
which provide connectivity between the local networks
[1]. All the networks are connected by means of an identi-
cal (or at least inter-operable) protocol stack agreed upon
by the Internet Engineering Task Force (IETF). Figure 1
illustrates the Internet as it looks like today. There are
local Internet Service Providers (ISPs) providing services
in small regions and transit ISPs which transfer data be-
tween local groups. The groups exchange data with each
other at Network Access Points (NAPs). Each transit ISP
would have a point of presence in each of the regions that
it is interested in providing transit service. A NAP may be
provided as a public resource or may be privately funded,
with each constituent paying some charge to the NAP for
traffic exchange [2]. In the figure, the small “clouds” show
local ISPs as well as the points of presence of transit ISPs.
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The large transit clouds represent multiple transit (either
in parallel or in series) ISPs linking the regions. The NAPs
are shown as routers linked by a common media.
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Fig. 1. The structure of the Internet today consisting of local and
transit ISPs.

A topic of current interest is the development of good
pricing models for the Internet. Most ISPs currently em-
ploy flat rate pricing, i.e., end-users pay a fixed sum of
money every month for unlimited access (most broadband
providers and dial-up services use this scheme). Others,
following the telephony model, price the time spent con-
nected to the Internet (some dial-up services are priced
this way). They charge an hourly rate to end-users. Still
others charge based on actual bytes transferred (many
Australia/New Zealand ISPs use this scheme [3]). Pricing
models for Internet economics have been discussed in [1],
[4], [5]. The authors discuss how pricing may be used to
provide different qualities of service and argue that differ-
entiated pricing for different types of data transfers might
be a good approach.

While some aspects of the traditional telephony model
[6] may provide a starting point for economic analysis
of the Internet, one must keep in mind that flows on the
Internet are usually biased very heavily in one direction,
whereas telephone calls impose equal loads in both direc-
tions. The transfer of data in the Internet may be assumed
to be unidirectional in most cases. We assume that traffic
originates at websites and terminates at end-users. In [7]
this model is used to find a Nash equilibrium solution for
prices charged to websites and end-users.
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There is also another difference in economic interaction
between players on the Internet as compared to the tele-
phony model. In the telephony model a single party, usu-
ally the origin, funds the transport of traffic on the com-
plete path from sender to receiver. Thus, each receiving
ISP in the path of the flow charges each transmitting ISP
a termination charge. This is called bilateral settlement.
A bilateral settlement in which two ISPs reciprocally set
their termination charges to zero is called a peering ar-
rangement.

In the Internet, there is also a hierarchy of providers
[1]. The sender does not fund the end-to-end transport
of traffic, only a part of the path is sender funded. Once
the traffic passes beyond the sending ISP’s service funded
domain, the receiver implicitly assumes funding respon-
sibility for the traffic and the second part of the complete
transport path is funded by the receiver. Thus, the set of
connectivity paths within the Internet can be seen as a col-
lection of path pairs, where the sender funds the initial
path component and the receiver funds the second termi-
nating path component. The hierarchical model of eco-
nomic interaction is illustrated in Figure 2 for a particular
direction of traffic. It is seen that higher tiers charge re-
gardless of traffic direction. The higher level ISP is said to
provide a transit service to the lower levels. However, the
hierarchy is not rigid. Traffic could be exchanged within
local groups within a region. ISPs in different regions
could also exchange traffic at private exchanges. Com-
panies such as Equinix [8] provide the infrastructure for
the establishment of such exchanges. These are indicated
in Figure 2 by a circle containing a ‘P’. Thus, traffic need
not traverse the whole of the hierarchy. It is for this reason
that only the Tier-I ISPs (which do not pay transit charges
to any other ISPs) and the local groups (which potentially
have to pay for all traffic to and from their infrastructure
and compete for the same customers) are well defined.
Understanding economic interactions between the differ-
ent groups is the main focus of the paper.

Several models have been proposed to study peering
versus transit relations [9], [10], [11], [12], [2]. A problem
with some of these models is that they do not take into ac-
count the fact that the Internet is separated into local and
transit ISPs with different economic interests. In this pa-
per we divide ISPs into local ISPs which are co-located
in a small geographical region (for example Region 1 in
Figure 2) and compete for the same customers and transit
ISPs (shown as Tier-I and Tier-II in the economic hierar-
chy) which transfer traffic between local ISPs. We then
study the economic interaction of different groups assum-
ing a variable demand for traffic by the websites and end-
users. We illustrate our ideas using a byte-wise pricing
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Fig. 2. Illustrating the economic hierarchy in the current Internet for
traffic from Region 1 to Region 2. The solid arrows indicate monetary
transfers. The arrows pointing upwards indicate the fact that the higher
tiers charge regardless of traffic direction. Bilateral settlement may be
accomplished at private exchanges as shown.

model. However, our results apply to flat rate pricing as
well.

Local ISPs

In our first model, we study the economic interactions
of local ISPs of a region with each other, which we model
as a repeated game with discount factor α ∈ (0, 1). The
discount factor is the number by which a payoff at the next
step must be multiplied in order to obtain its value at the
current step. For instance, a discount factor of 1

2 would
mean that the same payoff would be worth half as much
in the next step, one quarter as much two steps later and
so on.

We show that for local ISP interaction that there exists
an optimal scenario where all ISPs peer with each other
and jointly maximize their profits. In a non-cooperative
game situation, we show that this optimal price can be en-
forced by the threat of lowering prices to a minimal value.
We show that the discount factor at which the threat fails
to work scales with the number of ISPs N , as N−1

N
and

converges to unity as N gets large. This means that ISPs
could co-exist in two possible ways:

1) There could either be a small number of ISPs in-
terested in a short term profit or a large number
which are all interested in long term profits (dis-
count factor close to unity). They would be con-
tent to peer with each other and split the customer
revenues amongst themselves.

2) Some or all of a large number of ISPs could be inter-
ested in short term gains and try to set prices below
others to make quick profits by getting a larger cus-
tomer share. We show that the natural outcome of
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the low discount factor scenario is that prices fall to
the bare minimum and all profits to go to zero, the
equivalent of a price war.

In the current Internet, the number of data carriers in a
local region is small, usually limited to a couple of DSL,
cable based providers and some Tier-II web hosts, which
means that N−1

N
is not too large. This corresponds to the

first case above and is what is happening today [13] in
this segment. However, the Voice over IP (VoIP) market
is very different. Customers are very mobile as they can
choose any long-distance provider available with access
through 1-800 numbers. This implies that there are a very
large number of providers, most of whom are interested
in quick gains (low discount factor). The model predicts
a price-war in such a scenario, and indeed this is exactly
what is happening [14].

Local and Transit ISPs

We next expand the model to include interactions be-
tween local groups and transit providers, which we study
as a multi-stage game. Our model now takes into ac-
count the hierarchy of providers. The main result of
this section is that in economic terms, Tier-II providers
can be considered to be price transfer agents, transferring
prices between two levels in the hierarchy. Any charges
of the Tier-I ISPs would get transferred to the ISP orig-
inating/terminating the traffic along with an additional
charge which is the Tier-II’s profit. This means that Tier-II
ISPs are “middlemen” between the local groups and Tier-
I providers. This is the reason why no ISP wants to be
seen as Tier-II [13]. The objectives of the two groups (lo-
cal and transit ISPs) are entirely different and the division
of ISPs into local and transit is thus the basis for peering.
Any sort of peering or mutual-benefit traffic arrangement
can be made only between entities of the same class, i.e.,
local ISP with local ISP or transit with transit. The model
is extended to the case when there exist multiple transit
providers between two geographical regions. We show
that the game here is very similar to that of local ISP in-
teraction and has the same potential for price wars.

Private exchanges

As indicated in Figure 2, ISPs have the option of ex-
changing traffic at private exchange points. This provides
a new dimension to the problem. There has been some
interest in the question of when it is economically viable
to establish private exchange points. The marginal cost
of traffic transfer for a Tier-II ISP is fairly low due to the
large volumes of traffic generated by an aggregate of local
ISPs. If local ISPs were to establish a private exchange,

the marginal cost of transfer would depend on the vol-
ume of traffic exchanged. A study of the cost tradeoffs
involved in such exchange is present in [8], where it is as-
sumed that such ISPs at such exchange points would have
similar amounts of traffic destined for each other and have
a peering agreement.

We show that the above scenario is a special case of a
more general multi-stage game where the players could
have any bilateral settlement, rather than having to peer.
Our results show that in the general case, the decision of
whether or not to go in for private exchange is decided
by fundamental limitations on the cost function and can
be taken unilaterally by any ISP. There is no requirement
for ISPs to sign a cooperative contract and reach a peering
agreement. So asymmetric traffic cases (where there is a
difference in amounts of traffic exchanged) are possible,
as well as cases where one ISP uses a private exchange
and the other uses a transit provider, with both making
higher profits than using the transit provider alone. This
suggests that private exchanges could become far more
widespread than they currently are.

Organization of the paper

In Section II we discuss the game theoretic concepts
used in the paper. Then in Section III, we discuss the the-
ory of repeated games and how it applies to the case of in-
teraction of local ISPs. The main idea used here is that of
Nash-reversion being used as a threat strategy. We show
how this could be used to enforce the optimal prices for
high enough discount factors. In Section IV, we consider
an extended model with a transit provider and show how
there is a natural Stackelberg solution. We also study the
case of multiple transit providers. The next logical exten-
sion of private exchange is then studied in Section V, with
the conditions for private exchange being derived.

The objective of this paper is to understand and formal-
ize some of the “Folk-Theorem” like results on Internet
economics prevalent today. Our contribution is to show
how these results naturally arise using surprisingly simple
models.

II. BASIC NOTIONS

We first introduce the game theoretic concepts1 that are
used in this paper using a simple matrix game, which we
call Gs. Consider Figure 3. There are two players who
have identical strategy spaces S1 = S2, with elements
High and Low called pure strategies. These can be thought
of as the actions that they could possibly take. A strat-
egy profile is an element of the product-space of strategy

1A good reference for this is [15].
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Fig. 3. An example game illustrating Nash-reversion.

spaces of each player and is denoted by S . An exam-
ple of a strategy profile would be for Player 1 to play
s1 = High and for Player 2 to play s2 = Low, denoted
by s = (s1, s2) = (H, L). The payoffs that each strategy
profile yields to each player are the elements of the matrix.
The objective of each player is to maximize his individual
payoff.

Definition A pure strategy Nash equilibrium is a strategy
profile from which no player has a unilateral incentive to
change his strategy.

The only pure strategy Nash equilibrium for this game
(easily verified) is the strategy profile (L, L), which yields
a payoff of zero to both players.

Suppose now that the game Gs above is repeated in-
finitely many times. We then obtain a new game which
we denote by Gr. The payoff that the players receive in
this game is the sum of (discounted) payoffs in each step.
Formally, if the payoff in step k to player i be denoted by
πi(k), then each player now has to maximize

Πi(0,∞)
4
=

∞
∑

k=0

αk πi(k), (1)

where α ∈ (0, 1). Also, each player is aware of all the
actions taken by both players up to the previous step. Let
us denote the set of all possible histories of the game from
step 0 to k − 1 by Hk. A particular history hk ∈ Hk con-
stitutes the information available to each player in step k.
The concept of a pure strategy has to be extended a little
in this setting. A pure strategy is now a contingent plan on
how to play in each step k for a possible history hk, mak-
ing it a map from Hk to the set of possible actions. For
example, in Gs a strategy could be “Play Low”, whereas
in Gr a strategy could be “Play High until the other player
plays Low, and then play Low for ever”. The concept of a
Nash equilibrium remains unchanged.

We next consider the concept of subgame perfection.
Since the players both know hk, we can view the game

from step k onwards with history hk, as a game in its
own right, which we denote as Gr(h

k). This new game
is called a subgame of the game Gr. Suppose there were
some Nash equilibrium strategy profile s for the game Gr.
Then, given some history hk, s would recommend playing
an action suggested by s|hk at step k. If the same strat-
egy profile s|hk were a Nash equilibrium for the game
Gr(h

k), the strategy profile s is called subgame perfect.
One way of thinking about this is to suppose that at step k

all the players payoffs upto that step vanish. Then if s|hk

is still the best thing to do, s is subgame perfect.

Definition A game is continuous at infinity if for each
player i the payoff πi satisfies

sup
h,h̃ s.t. hk=h̃k

|πi(h) − πi(h̃)| → 0 as k → ∞

The condition says that events in the distant future are rel-
atively unimportant. It is obvious that the discounted pay-
off function in our example is continuous at infinity since
the payoff in any step is uniformly bounded by 10.

One-step deviation principle: In an infinite-horizon
multi-step game which is continuous at infinity, profile s

is subgame perfect iff there is no player i and no strategy
ŝi that agrees with si except at a single step k and hk, and
such that a unilateral deviation by player i to ŝi gives him
a better payoff conditional on history hk being reached.

In our example game, using the one-step deviation prin-
ciple, it is straightforward to show that if the discount fac-
tor α > 1

2 , then the strategy profile “Play High until the
other player plays Low, and then play Low for ever” (for
both players) is a sub-game-perfect Nash equilibrium. We
make the following observations about the strategy pro-
file:

• The strategy profile being used when everything is
“going fine” is (H, H), the best possible outcome in
Gs if both players were to cooperate.

• The strategy used when any player deviates is L, the
Nash equilibrium of the single step game Gs.

Such a threat strategy is called Nash-reversion [16]. It
may sometimes be possible that a sub-game perfect threat
exists which is “harsher” than Nash-reversion. Such a
threat could work for lower discount factors. Abreu [17]
calls such a strategy as an optimal penal code, which is
optimal in the sense that it causes a deviating player to
suffer the worst possible penalty. Of course, this penalty
cannot be greater than the minimum guaranteed payoff
that a player receives, no matter what the other players
do. In the example given, the minimum guaranteed pay-
off is zero and hence Nash-reversion is also the optimal
penal code.
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III. INTERACTION BETWEEN LOCAL ISPS

In this section, we consider the dynamics of pricing
among local ISPs considered as a Bertrand game. In our
model, the number of customers (end-users and websites)
varies with prices set by ISPs. We first find the optimum
price, which would maximize the profit of individually ra-
tional ISPs. We then show that this price can be enforced
by threat in a repeated Bertrand game for a suitably high
discount factor.

Consider the scenario illustrated in Figure 4. This
shows a small section of the Internet. ISPs 1, 2 and 3
are localized in a small geographical location, while the
Tier-II ISP is involved in transit services. They are in-
terconnected at a NAP where routing of traffic between
ISPs is accomplished. We will consider bilateral interac-
tions of ISPs 1, 2 and 3 in this section. As in [7] con-

ISP 1

ISP 3

Tier II ISP

End User

ISP 2

NAP

Fig. 4. A local ISP structure which shows how policy decisions can
be implemented at NAPs.

sumers are divided into websites, which originate traffic
and end-users who request the traffic. ISP i charges prices
p̃i and pi per unit traffic to websites and end-users respec-
tively. Consumers are free to choose between the differ-
ent local ISPs due to the geographical localization. Both
websites’ and end-users’ demand (in terms of the num-
ber of consumers) vary with respect to the prices charged.
Since the consumers are free to move, the demand de-
pends on the lowest of the prices charged by the ISPs. We
denote the demand functions of websites and end-users
by ñ(p̃) and n(p) respectively, where p̃ = mini(p̃i) and
p = mini(pi). We assume that each website and each
end-user have one unit of traffic between them. Thus the
total traffic in the region is n(p)ñ(p̃). This is just a re-
statement of Metcalfe’s law, which states that the utility
of a network is proportional to the square of the number
of users present. An ISP incurs a marginal cost co per
unit of traffic originating in a website subscribing to its
services. Similarly, a marginal cost ct is incurred by an
ISP for terminating traffic at an end-user. The sum total
of these costs is denoted by co + ct = c. The costs for
all ISPs in the region is assumed to be identical. All ISPs

have identical fixed costs, which (since it makes no differ-
ence to any of the results) we take to be equal to zero.

Each ISP must provide a guarantee of connectivity to all
other users. This means that ISPs have to exchange traf-
fic. At the local level being considered, they may do this in
one of two ways as shown in Figure 4. ISP i could charge
ISP j an access charge aji for termination of traffic, i.e.,
they could have a bilateral settlement. Note that the access
charge may be different for different ISPs. The other op-
tion is for both ISPs to pay a transit charge to a higher tier
ISP (such as the Tier-II ISP in Figure 4), which would pro-
vide connectivity. Let the charge that the transit ISP asks
for be κ. Then the ceiling on the access charge which
a terminating ISP can ask for in a bilateral settlement is
also κ as otherwise no ISP would want to directly inter-
act with it. We study the game that such local ISPs play
amongst themselves. At each step of the game ISPs must
declare their prices and access charges. Customers then
choose their service providers. Each step models tempo-
ral changes of prices, for example on a monthly basis. We
assume that customers are charged based on usage, i.e.,
the number of bytes transferred. The profit function of
ISP i in step k is given by (i, j ∈ {1, 2 · · ·N})

πi(k) = ni(pi)ñi(p̃i)(pi + p̃i − c)

+
∑

j 6=i

ni(pi)ñj(p̃j)(pi − (ct − aji))

+
∑

j 6=i

nj(pj)ñi(p̃i)(p̃i − (co + aij)). (2)

Here, the first term is for traffic which originates and ter-
minates in ISP i. The second is for traffic which originates
from another ISP and terminates in ISP i. The third term
is for traffic which originates in ISP i and terminates in
some other ISP. The objective of the ISPs is to maximize
the overall profit function (1) by setting appropriate prices
and access charges. Using the same notation as in the ex-
ample game in Section II, we will refer to the single step
game by Gs and the infinitely repeated game by Gr.

The above expression assumes usage based pricing. If
customers were charged a flat rate regardless of usage, the
profit function would look like

πi(k) = ni(pi)pi + ñi(p̃i)p̃i − ni(pi)ñi(p̃i)c

+
∑

j 6=i

ni(pi)ñj(p̃j)(−ct + aji)

+
∑

j 6=i

nj(pj)ñi(p̃i)(−co − aij). (3)

The analysis and conclusions are very similar for both
pricing schemes with some differences in the expression
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for the equilibrium prices. Therefore, we only present re-
sults for usage-based pricing (2).

A. Properties of the demand functions

We assume that the number of consumers is infinites-
imally divisible. This a reasonable assumption since the
number of customers is very large in practice. The de-
mand functions f(x) : R

+ → R
+, are assumed to belong

to a class of functions S , which satisfy the following con-
ditions:

1) They are continuous, twice differentiable and
strictly decreasing (f ′(x) < 0).

2) f(0) = 1 and limx→∞f(x) = 0. The first of these
implies that the population is finite and normalized
to be equal to one. The second implies that we have
no customers at infinite price.

3) limx→∞ xf(x) = 0. This means that revenue ob-
tained at infinite price is zero.

Now, let us define the cooperative profit function as

R(x, y)
4
= f(x)g(y)(x + y − c) where f, g ∈ S over the

set P = {(x, y) : x + y ≥ c and x > 0, y > 0}. We will
see later that when ISPs cooperate and set identical prices
and access charges the profit function (2) looks similar to
R(x, y). We note the following properties of the above
function:

• limx+y→c R(x, y) = 0. Follows immediately from
properties 1 and 2.

• lim(x,y)→∞ R(x, y) = 0. This follows from property
3.

• The function is positive everywhere except for x +
y = c and x = ∞ or y = ∞ .

• There exists (x∗, y∗) ∈ P (not necessarily unique)
which maximizes R(x, y), yielding a non-zero
maximum. This is seen as follows. Since
limx,y→∞f(x)g(y)(x + y − c) = 0, we have that
given any ε > 0 there exist finite p, q such that
f(x)g(y)(x + y − c) ≤ ε for all x > p or y > q.
Thus, we can approximate the set P over which we
maximize, infinitesimally closely by the set {(x, y) :
x + y ≥ c and 0 < x ≤ p, 0 < y ≤ q}. Now,
since this is a compact set and the function R(x, y)
is continuous over this set, there must exist a (finite)
maximum.

Example

An example of a function which satisfies the above con-
ditions is f(x) = 1

1+x2 , x ∈ R
+. Let us take c = 0

and also assume that f(x) = g(x) in the definition of
R(x, y). In this particular case, the cooperative profit
function R(x, y) = f(x)f(y)(x + y). This is plotted in
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Fig. 5. Cooperative profit function for the demand function 1
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Figure 5. We see that there exists a maximizing value of
(x∗, y∗) as expected.

B. Cooperative maxima between local ISPs for the single
step game Gs

Consider the single step game Gs. We would like to
know if there exists any cooperative maxima, i.e., is there
a set of prices and access charges whereby the all the ISPs
could maximize their joint profits? We will then show
how threat strategies may be used to enforce cooperation.

Theorem 1: Suppose there are N ISPs in the region.
Assuming that the ISPs cooperate and set equal access
charges and prices and that the demand functions ñ(p̃) and
n(p) belong to the class S , there exists a set of prices Popt

(consisting of pairs of form (popt, p̃opt)) which maximize
the profits.

Proof: The profit function of ISP i is given by (2),
repeated here for convenience.

πi(k) = ni(pi)ñi(p̃i)(pi + p̃i − c)

+
∑

j 6=i

ni(pi)ñj(p̃j)(pi − (ct − aji))

+
∑

j 6=i

nj(pj)ñi(p̃i)(p̃i − (co + aij)), (4)

where i, j ∈ {1, 2 · · ·N}. We may simplify the above
expression in the manner of [7] as follows:

πi(k) = ni(pi)ñi(p̃i)(pi + p̃i − co − ct − aii + aii)

+
∑

j 6=i

ni(pi)ñj(p̃j)(pi − (ct − aji))

+
∑

j 6=i

nj(pj)ñi(p̃i)(p̃i − (co + aij)). (5)
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Simplifying we obtain

πi(k) = ni(pi)





∑

j

ñj(p̃j)(pi − (ct − aji)





+ñi(p̃i)





∑

j

nj(pj)(p̃i − (co + aij)



 .(6)

By assumption since the ISPs cooperate (we assume that if
all ISPs charge identical prices, they have an equal number
of customers), we have that

pj = p ∀j and p̃j = p̃ ∀j
∑

j

nj(pj) = n(p) and
∑

j

ñj(p̃j) = ñ(p̃)

nj(p) =
1

N
n(p) and ñj(p̃) =

1

N
ñ(p̃)

aij = aji.

Also, pj + p̃j ≥ c as the ISPs are individually rational.
The individual profit functions are now

πi(k) =
1

N
n(p) ñ(p̃) (p + p̃ − c). (7)

The proof follows from the results on demand functions.

We will use scooperate to denote the strategy profile in
which all the ISPs play cooperative prices, and all set
the access charges to zero (peering). In general, however,
ISPs have no incentive to cooperate. Therefore a relevant
question is the following: is the cooperative maximum
found above enforceable by some means? We show the
existence a threat strategy Nash equilibrium which would
achieve the cooperative maximum. Our result is an exam-
ple of Friedman [16] type punishment, wherein players
revert to the single step Bertrand-Nash equilibrium if a
deviation occurs.

C. The threat: Nash Equilibrium for the single step game

In the illustrative example considered in Section II, we
saw that the single step Nash equilibrium could be used
to construct a sub-game perfect Nash equilibrium for the
infinitely repeated game. We find the single step Nash
equilibrium below. Suppose that the ISPs set prices and
access charges as follows:

p = ct − κ and p̃ = co + κ

a = κ

We refer to the strategy profile in which all players play
the above as sthreat. From (7), this means that all prof-
its are zero. We will show that the above is actually the

Nash equilibrium for the single step game Gs. First of all
note that any unilateral increase in p or p̃ would have the
effect of losing customers leading to a loss of revenue (a,
of course, cannot be raised beyond κ, as it is the maxi-
mum possible). Also note that reducing the termination
charge a has absolutely no effect on the number of cus-
tomers. Any reduction in a only causes loss of revenue.
So the only unilateral decision which has potential to in-
crease profits is to decrease one or both of p and p̃. We
then have the following three cases:
Case I: Set p = ct − κ − ε. An ISP doing this will get
all the end-users as customers. Its profit for each unit of
traffic can easily be shown to be −ε by considering two
cases:

• Traffic entirely within the ISP’s infrastructure yields
a profit of co + κ + ct − κ − ε − c = −ε.

• Traffic originating in another ISP and terminating
within the ISP which charges the reduced price yields
a profit of ct − κ − ε + κ − ct = −ε.

Case II: Set p̃ = co +κ− ε. An ISP doing this will get all
websites as customers. Again, we can show that the profit
per unit traffic is −ε.
Case III: Set p = ct−κ−ε and p̃ = co+κ−δ. An ISP do-
ing this would get all consumers as customers. However,
its profit would be −(ε + δ).

We see that a unilateral shift by any ISP from the above
prices would not yield a higher profit. Thus, the above set
of parameters, which gives zero profits, defines the Nash
equilibrium solution for the game. Noting that any ISP
can guarantee itself a profit of at least zero, we see that this
set of prices also yields the guaranteed minimum payoff
to any player. Thus, playing this threat is also the Optimal
Penal code. No ISP would play this threat unless its profits
are hurt by some other ISP’s choice of parameters. Thus,
the threat of playing this set of parameters can be used
to enforce that set of parameters which jointly imply a
maximization of profit.

D. Subgame-perfect Nash equilibrium for the repeated
game

We are now ready to address the question of whether
there exists a sub-game perfect Nash equilibrium which
ensures that the ISPs set prices according to Popt. We first
require the following lemma.

Lemma 2: (proof is trivial) The repeated game Gr is
continuous at infinity.
The lemma ensures that we can use the one-step deviation
principle to prove sub-game perfection.

Theorem 3: The strategy profile “Play scooperate until
any player deviates and then play sthreat for ever” (for all
players) is a sub-game perfect Nash equilibrium for the



8

repeated game Gr under the condition that the discount
factor

α >
πopt

N−1
N

+ δ

πopt + δ
,

where πopt denotes the optimal profit under cooperation
and δ = max(0, κ − p̃opt).

Proof: Consider the implications of a one-step de-
viation, i.e., suppose an ISP i sets the prices lower than
the others at some step k. Since the ISP must maximize
its profit it would do so by a reduction of p by ε for end-
users, thereby obtaining all end-users as customers. Also,
depending on the value of κ it would decide on whether it
would be more profitable decrease p̃ (to get all the web-
sites as customers) or increasing p̃ (thus ensuring that it
has no websites and making a profit κ by terminating all
the traffic). Thus, its profit for that one step is bounded in
the following manner:

πi(dev)(k) ≤ αk(n(popt)ñ(p̃opt)

× (popt + max(p̃opt, κ) − c))

= αkN (πopt + δ). (8)

The other ISPs would employ the threat strategy from the
next step onwards, causing all profits to go to zero. So the
above value is also the total profit Πi(dev)(k,∞) from step
k to ∞.

The profit from step k to ∞ if the ISP chooses not de-
viate from the cooperative values is

Πi(ndev)(k,∞) = αk
(

πopt + απopt + α2πopt + ...
)

= αk πopt

1 − α
(9)

By assumption, since

α >
πopt

N−1
N

+ δ

πopt + δ
,

we obtain from (8) and (9) that

Πi(dev)(k,∞) < Πi(ndev)(k,∞). (10)

Thus, by the one-step deviation principle the strategy pro-
file is a sub-game perfect Nash equilibrium.

The fact that the discount factor varies with the num-
ber of ISPs (N ) as N−1

N
for the threat to be credible is

worth noting. For large N the required discount factor
tends to unity. This has the implication that ISPs have to
be interested in long-term profits rather than quick gains
if cooperative prices are to be viable. In market termi-
nology the Bertrand-Nash equilibrium is the same as a
price-war. This means that if there are a large number of

ISPs in the market, price-wars are bound to follow since
some of them would be interested only in short term gains
resulting in a downward spiral of prices. The only so-
lution to this would be for larger players to buy up the
smaller ones. Then the threat strategy would be credible
and prices would be stable.

IV. INTERACTION BETWEEN LOCAL AND TRANSIT

SERVICE PROVIDERS

In this section we consider the role of the transit
provider. In general, transit providers are not concerned
with providing services to websites or end-users. In-
stead, they obtain revenue from access charges that the
local ISPs pay them. We have already seen in Figure 2
how transit providers between two locations connect two
groups of local ISPs. Consumers cannot move between
the two locations. This is a generalization of the scenario
presented in [18]. There is a pair of economic transfer seg-
ments associated with a data transfer. In each economic
segment each receiving ISP in the path of the flow charges
each transmitting ISP a termination charge.

We extend the game in this scenario to include multi-
ple regions connected by a hierarchy of ISPs. In Internet
pricing, consumers are charged the same price regardless
of how many transit hops that their traffic takes. However,
for ease of exposition, we assume that consumers can be
charged different prices for intra- and inter-regional traf-
fic. It can be easily shown that similar results also apply
for the case of constant price (irrespective of the number
of hops), but the resulting expressions for the equilibrium
prices are more complicated.

We use notation similar to the previous sections, with
an additional superscript to denote the region. There are
three types of players involved:

1) Local ISPs, which must set prices for intra and inter-
regional traffic. As before, let the intra-regional pa-
rameters be denoted by pr

i , p̃
r
i and ar

ij , where ISPs i

and j both belong to region r. Also, let the prices
charged by local ISP i to end-users and websites
in region r for inter-regional traffic be denoted by
(qr

i , q̃
r
i ). The costs of origination and termination

are taken to be cr
o and cr

t as before.
2) Tier-II providers, which charge the local ISPs for

transit. Let the transit charges for outgoing (for-
ward) and incoming (reverse) traffic in region r be
trf and trr. The cost incurred by the Tier-II provider
is denoted by trc .

3) The Tier-I provider, which charges the Tier II
provider (in region r) br

f and br
r for traffic from and

to region r. Its cost for the transfer is tc.
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The profit function of the local ISPs in region r connected
by transit providers to region s is now given by

πi(k) = nr(p
r
i )ñr(p̃

r
i )(p

r
i + p̃r

i − cr)

+
∑

j 6=i,j∈r

nr(p
r
i )ñ

r
j(p̃

r
j)(p

r
i − (cr

t − ar
ji))

+
∑

j 6=i,j∈r

nr(p
r
j)ñr(p̃

r
i )(p̃

r
i − (cr

o + ar
ij))

+
∑

l∈s

ns(q
s
l )ñr(q̃

r
i )(q̃

r − cr
o − trf )

+
∑

l∈s

ñs(q̃
s
l )nr(q

r
i )(q

r − cr
t − trr) (11)

The first three terms above are for intra-regional traffic
and the last two are for inter-regional traffic. The objective
is the maximization of the discounted sum of profits given
by (1). We make the following observations:

• Intra-regional and inter-regional traffic pricing can be
solved separately, as they do not share any terms.

• For inter-regional traffic, ISPs play two games:
(i) amongst themselves to obtain consumers, and
(ii) with the transit provider to maximize their profits.

Following the notation of the previous section we call the
single step game Gs and the repeated game Gr. We first
assume that the local ISPs in a region cooperate and study
their interaction with transit providers. We then construct
a threat strategy by which the cooperative prices may be
enforced in a group of local ISPs.

A. The single step Stackelberg game

We model the interaction of ISPs as a Stackelberg
game. In such a game players play in a definite sequence.
Each player plays knowing that the next player would op-
timize his play based on what he does currently. The equi-
librium in such a case is called a Stackelberg equilibrium.
We assume for now that the local ISPs in a region cooper-
ate and all them charge the same prices (in the next sub-
section, we will show how cooperation can be enforced
among the local ISPs). This means that the local ISPs in a
region can be grouped together as one player. The only
problem now is that of setting prices for inter-regional
traffic.

The Stackelberg solution, which we denote by
sstackelberg, for the single step game Gs is found as fol-
lows. Consider traffic which originates in Region1, trav-
els through the transit infrastructure and terminates in
Region2 (for traffic in the reverse direction, the roles of
the two regions are reversed). We refer to the collection of
local ISPs in a region as a group. Then the two economic
segments are Group1 → Tier-II (Region1) → Tier-I and

Group2 → Tier-II (Region2) → Tier-I. Consider Group1’s
problem:

max
q̃1

ñ1(q̃
1)n2(q

2)(q̃1 − c1
o − t1f ), (12)

where n1 and n2 are the demand functions for inter-
regional traffic in regions 1 and 2 respectively and we re-
quire that q̃1 ≥ c1

o + t1f (individual rationality). Note that
we have dropped the subscript identifying a particular lo-
cal ISP since the whole group of local ISPs in a region is
taken as a single player.

Lemma 4: The solution q̃1
opt to the maximization above

is a strictly increasing function of t1f .
Proof: Differentiating (12) and equating to zero we

have that q̃1
opt satisfies

ñ′
1(q̃

1
opt)

(

q̃1
opt − c1

o − t1f
)

+ ñ1(q̃
1
opt) = 0 (13)

where n′
1(q̃

1)
4
= d ñ1(q̃1)

d q̃1 if q̃1
opt lies in the interior of [c1

o +

t1f ,∞). Since q̃1
opt is a maximum, we also have

2ñ′
1(q̃

1
opt) + ñ′′

1(q̃
1
opt)

(

q̃1
opt − c1

o − t1f
)

< 0 (14)

Differentiating (13) with respect to t1f and rearranging, we
obtain

d q̃1
opt

d t1f
=

ñ′
1(q̃

1
opt)

2ñ′
1(q̃

1
opt) + ñ′′

1(q̃
1
opt)

(

q̃1
opt − c1

o − t1f

)

> 0.

The last inequality follows from the properties of the de-
mand function ñ1(q̃

1) and (14). Suppose q̃1 = c1
o + t1f

(boundary condition), then it is automatically increasing
in t1f . Hence the proof.

Corollary ñ1

(

q̃1
opt(t

1
f )

)

is a strictly decreasing function

of t1f . The proof follows trivially from the lemma and the
properties of ñ(q̃1).

Now consider the maximization problem faced by the
Tier-II (Region1) provider:

max
t1
f

ñ1

(

q̃1
opt(t

1
f )

)

n2(q
2)(t1f − t1c − b1

f ), (15)

where t1f ≥ t1c + b1
f .

Lemma 5: The solution t1fopt to the maximization
above is a strictly increasing function of b1

f .
Proof: From the corollary of lemma 4 we have that

ñ1

(

q̃1
opt(t

1
f )

)

is strictly decreasing in t1f . Then proceed-

ing as in the proof of Lemma 4, we obtain the result.
Theorem 6: q̃1

opt is a strictly increasing function of b1
f .
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Proof: The proof is a direct consequence of the
Lemmas 4 and 5.
The theorem defines the role of the Tier-II provider in the
Internet economy. It says that it acts as a middleman who
transfers the access charge b1

f from Tier-I to Group1 and
makes a profit in the bargain. If there are multiple Tier-
II providers in sequence then the entire sequence can be
condensed into a block whose input is the access charge
b1
f and whose output is the transit charge t1f > b1

f . Thus,
the role of the Tier-II provider in the network is that of a
price transfer agent between levels of the hierarchy.

Now, the theorems proved above hold for the other seg-
ment of the transfer as well. In this case price b2

r is trans-
ferred to Group2. Thus, the problem faced by Tier-I is as
follows:

max
b1
f
, b2r

ñ1(q̃
1
opt(b

1
f ))n2(q

2
opt(b

2
r)(b

2
f + b2

r − tc) (16)

We define n̂1(b
1
f )

4
= ñ1(q̃

1
opt(b

1
f )) and n̂2(b

2
r)

4
=

n2(q
2
opt(b

2
r). It is easy to show that both of these func-

tions belong to the class S . Then we have that the Tier-I
provider must solve

max
b1
f
, b2r

n̂1(b
1
f )n̂2(q

2)(b1
f + b2

r − tc). (17)

This looks identical in form to (7) and there exist values
of (b1

f , b2
r) which maximize it.

Example

We illustrate the Stackelberg game (for traffic from
Region1 to Region2) by taking the demand functions
ñ1(q̃

1) = e−q̃1

and n2(q
2) = e−q2

. We then have the
optimization problems as follows.

Group1’s problem is

maxq̃1 n2(q
2)e−q̃1

(q̃1 − c1
o − t1f )

⇒ q̃1
opt = 1 + c1

o + t1f , (18)

The Tier-II (Region1) ISP’s problem is

maxt1
f

n2(q
2)e−q̃1

opt(t
1
f
)(t1f − t1c − b1

f )

≡ maxt1
f

n2(q
2)e−(1+c1o+t1

f
)(t1f − t1c − b1

f )

⇒ t1fopt = 1 + t1c + b1
f , (19)

where the second line follows from (18). We see that
the transit provider has transferred the access charge b1

f

to Group1 along with its cost t1c and a profit of one unit.
Group2 and Tier-II (Region2) have similar problems to

the above. Their Stackelberg solutions are:

q2
opt = 1 + c2

t + t2r and (20)

t2ropt = 1 + t2c + b2
r (21)

Finally, the Tier-I provider’s problem (after substituting
the above parameters) is:

maxb1
f
,b2r

e
−(2+c1o+t1c+b1

f
)
e−(2+c2t +t2c+b2r)

× (b1
f + b2

r − tc)

⇒ b1
fopt + b2

ropt = 1 + tc (22)

The Stackelberg solution here is non unique. One would
expect that in this case, the Tier-I provider would charge
both sides equally, but this is not required.

B. A local threat to enforce the Stackelberg equilibrium

The Stackelberg solution found above applies to each
local ISP group as a whole. What would prevent a mem-
ber of a group from charging customers less than the opti-
mal, thus getting all the customers? The situation here is
similar to that of the local ISP game studied earlier in Sec-
tion III, and we construct a Nash reversion strategy for the
ISPs in a local group, which would ensure cooperation for
a sufficiently high discount factor. Suppose that the local
ISPs in a region r sets prices as follows:

pr = cr
t − κr

f and p̃r = cr
o + κr

f

ar = κr
f

qr = cr
t + trr and q̃r = cr

o + trf ,

Where, as in Section III, κr
f is charged by the Tier-II ISP

to the originator of traffic for traffic originating and ter-
minating in the same region, and would be determined by
using an expression similar to (16). It is easy to verify
the above is a Nash equilibrium for the single step game
played within the group and that no ISP in the group can
make a non-zero profit in such a regime. We note that
the threat strategy of Section III (sthreat) is a special case
of this Nash equilibrium. We denote this more general
threat strategy using the same notation sthreat. The threat
of playing this set of parameters can be used to enforce
that set of parameters which jointly imply a maximization
of profit.

Theorem 7: (Proof is identical to that of Section III)
The strategy profile “Play the scooperate for intra-regional
traffic and sstackelberg for inter-regional traffic until a
group member deviates and then play the single step Nash
equilibrium prices sthreat for ever” (for all players) is a
sub-game perfect Nash equilibrium for the infinitely re-
peated game if the discount factor

α >
πopt

N−1
N

+ δ

πopt + δ
,

where πopt denotes the optimal profit under cooperation,
N is the number of local ISPs in a group, scooperate is
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the cooperative strategy for intra-regional traffic (found in
Section III), and δ = max(0, κr

f − p̃r
opt).

Thus, the scaling law under which local ISPs can make
positive profits holds for the extended model as well.

C. Multiple Transit Providers

If there were multiple transit providers (either Tier-II
or Tier-I) spanning the same levels in Figure 2 , then how
would this affect the transit costs? This question is easily
answered in the framework of maxima enforced by threat
which we have developed.

Theorem 8: (Proof is obvious) If there exist N tran-
sit providers providing the same service, then they all
must charge identical transit charges (given by the rele-
vant Stackelberg solution). This can be enforced by Nash-
reversion threat strategy for α > N−1

N
.

In the case of VoIP providers, the case is that of transit
providers directly offering long-distance services to cus-
tomers, who naturally pick the cheapest option. It has al-
ready been discussed how this leads to price wars.

V. THE CASE FOR PRIVATE INTERNET EXCHANGES

Suppose that an ISP in each local group in Figure 2
wishes to establish a private exchange point, bypassing the
transit infrastructure. Norton [8] discusses the economic
tradeoffs involved in this. According to [8], the cost per
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Fig. 6. Illustrating the cost tradeoffs in private exchanges.

unit traffic passing through a private exchange point is in-
versely proportional to the amount of traffic carried on it,
as shown in Figure 6. By assumption, the traffic between
two ISPs is equal to the product of the websites and the
end-users each of them have. If the two ISPs have an iden-
tical number of websites and end-users, it makes sense for
them to peer. The notation used in this section is similar
to that of the previous section, except that we study the
interaction of single ISPs in each region. Consider two

ISPs 1 and 2 in regions 1 and 2 respectively. ISP1’s profit
is given by,

π1 = ñ1(q̃1)n2(q2)

(

q̃1 − co1 −
k

ñ1(q̃1)n2(q2)

)

+ñ2(q̃2)n1(q1)(q1 − ct1), (23)

where, by assumption, ñ1(q̃1)n2(q2) = ñ2(q̃2)n1(q1) and
k is a proportionality constant. ISP2’s profit function is
the dual of the above. Then comparing with (12), it is
obvious that for

k

ñ1(q̃1)n2(q2)
< t1fopt and

k

ñ2(q̃2)n1(q1)
< t2fopt, (24)

it increases profits if a private peering point were estab-
lished. This is exactly what Norton requires in [8] and the
break-even condition is shown in Figure 6.

The above is a specific case of a more general prob-
lem. Suppose that the two ISPs are not constrained to peer
(i.e., they can charge each other termination costs b1 and
b2 respectively). We then have a new Stackelberg game,
very similar in form to the one studied earlier. There are
only two players now, since there is no transit provider in-
volved. Each member of the group would establish a pri-
vate exchange point (if it were profitable to do so), since
all of them have an incentive to make higher profits. We
first consider the asymmetric case where it is profitable
for one group to use a private exchange, while the other
uses the transit provider. As before, consider traffic from
Region1 to Region2. Now, ISP1’s problem is

max
q̃1

ñ1(q̃1)n2(q2)

(

q̃1 − co1 −
k

ñ1(q̃1)n2(q2)
− b2

)

= max
q̃1

ñ1(q̃1)n2(q2) (q̃1 − co1 − b2) − k (25)

and ISP2’s problem is

max
q2, b2

ñ1(q̃1opt(b2))n2(q2)(q2 − ct2 + b2). (26)

It is easy to show that ñ1(q̃1opt(b2)) is monotone decreas-
ing in b2 and we have a very similar set of optimization
problems as before. Then, if it turns out that there exists
(q1opt, b2opt, q2opt) such that

k

ñ1(q̃1opt)n2(q2opt)
+ b2opt < tf1opt (27)

it would make sense for ISP1 to ask for private exchange
of traffic with ISP2. For ISP2 since from (15) we know
that t2ropt > 0, it is simple to see that the profit when the
transit provider is eliminated is always higher. For the
reverse problem of traffic from Region2 to Region1 the
required condition is similar to (27).
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Example

Similar to the example considered before, let the de-
mand functions be exponentially decreasing i.e., ñ1(q̃1) =
e−q̃1 and n2(q2) = e−q2 . Then from (25) we have that
ISP1 maximizes

maxq̃1
e−q2e−q̃1 (q̃1 − co1 − b2) − k (28)

⇒ q̃1opt = 1 + co1 + b2. (29)

From (26) we have that ISP2’s problem is

maxq2,b2 e−q2e−(1+co1+b2)(q2 − ct2 + b2) (30)

⇒ q2opt + b2opt = 1 + ct2 (31)

Then we have from (27), (29), (31) and (22) (assuming
that the Tier-I provider charges both halves equally) that
the condition for which private exchange is better for ISP1

is

ke2+co1+ct2 + b2opt ≤
3

2
+ ct1 +

ct

2
, (32)

where b2opt satisfies (31). The case where both providers
use private exchange can be looked upon as two optimiza-
tion problems similar to that considered above, only the
providers maximize over the sum of revenues obtained
from origination and termination of traffic. Thus, the deci-
sion as whether or not to establish a private exchange point
depends on fundamental limitations on demand functions
and costs. Note that the ISP in which the traffic is termi-
nated always makes a higher profit by private exchange.
The decision can be taken unilaterally by any of the ISPs
in a group and all of the members of the group would take
the same decision. Asymmetric cases where one group
could go in for private point, while the other could stay
with the transit provider are also possible. The conclusion
is that when the requirement that the two groups must peer
is relaxed, it increases the space where private exchange
is possible.

VI. CONCLUSION

In this paper we have studied many facets of interac-
tion between ISPs: both local service providers as well as
large scale transit providers. We first studied interactions
of ISPs in a geographically localized region and showed
that as the number of ISPs increases, price wars would be
the natural outcome due to Nash reversion. We predict
that the outcome of this would be coalescing of ISPs into
a small number of players interested in long term profits,
who would then set prices which the market would natu-
rally support.

We then tried to understand the role of transit ISPs
and by finding the Stackelberg solution, showed how

they act as price transfer agents between economic lev-
els. We showed how interactions between different transit
providers could be modeled as a repeated game. We also
studied the effect of introducing the further option of pri-
vate exchange and showed when it would be viable for
ISPs to do so.
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