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Abstract  Production Process Planning (PPP)
problem is abundant among manufacturing sys-
tems. In general the problem can be approached
by the network analysis or dynamic programming.
But in the case of the multicriteria Production
Process Planning (mPPP for short) problem, it
is difficult for those traditional optimization tech-
niques to cope with. In this paper, a new Evolu-
tionary Computation (EC) approach is developed
to deal with the PPP problems with both sin-
gle or multiple objective criteria. The proposed
EC approach adopts a new simple state permu-
tation encoding and combines with the neighbor-
hood search technique in mutation operation to
improve the evolutionary process in finding the
optimal solution of the PPP problems. The nu-
merical analysis shows that the proposed EC is
both effective and efficient to the PPP problems.

Keywords Production Process Planning, Multi-
criteria Optimization, Evolutionary Computation.

I. INTRODUCTION

Production Process Planning (PPP) problem is abundant
among manufacturing systems. The problem, in general,
provides a detailed description of manufacturing capabil-
ities and requirements for transforming a raw stock of
materials into a completed product through multi-stage
process. The PPP problem lends itself, in a natural man-
ner, to optimization techniques in order to find the best
production process plan amongst numerous alternatives
given a certain criterion such as minimum cost, minimum
time, maximum quality or with multiple these criteria.
The implicit enumeration of all these alternatives can be
formulated as network flow. In the case of single objective
criterion, the problem is equivalent to solving the Shortest
Path problem which can be efficiently dealt with by some
algorithms such as Dijkstra’s and Floyed’s [11]. However,
in the case of multiple objective criteria (i.e. the mPPP
problem), some techniques based on Goal Programming
were developed but only illustrated with small networks
[14] [15].

Recently a Genetic Algorithm (GA) approach for the
PPP problem has been reported in [1] where binary
strings encoding was adopted for chromosome represen-
tation. The binary strings have been proved effective to
some problems[5] [6][10], but they do not always work so
well. In [1] a complicated modification has to be adopted
for the genetic operation as the initial population or off-
spring generated by crossover and mutation operations
may be illegal at most cases, which greatly affects the ef-
ficiency of the evolutionary process of the GA approach.

Evolutionary Computation (EC), developed on the base
of GA, adopts natural coding such as float point or per-
mutation naturally to represent the real-world problems
and evolves them towards the optimal solution combined
with the genetic operations [3][7][13]. This new approach
has been widely and successfully applied in variety of re-
search areas [8] [9] [12]. In this paper, a new encoding for
the PPP or mPPP problem is developed. The new encod-
ing directly encodes the chosen state at each stage by the
means of permutation, which is only with the length of n
- 1 for an n-stage PPP problem, therefore to save much
memory and raise the computation efficiency. The merit
of the new encoding is that any common genetic opera-
tions on this encoding will not generate illegal offspring
so that it need not any modification both for the initial
population and for the offspring generated in the evolu-
tionary process. Moreover, It is easy to hybrid this new
encoding with some heuristic mutation operation such as
the neighborhood search technique to efficiently evolve
towards the optimal solution. The experiment on several
test problems shows that the proposed method is both
efficient and effective to the PPP problems with single
objective and multiple objectives.

The mPPP problem and its mathematical model are
described in Section II. Section III gives out our new en-
coding for the mPPP problem. The whole EC approach
is discussed in Section IV. In Section V the test problems
on the new encoding and EC approach are analyzed and
conclusion follows in Section VI.

II. mPPP PROBLEM DESCRIPTION



The PPP system usually consists of a series of machin-
ing operations, such as turning, drilling, grinding, finish-
ing and so on, to transform a part into its final shape or
product. The whole process can be divided into several
stages. At each stage, there are a set of similar man-
ufacturing operations. The PPP problem is to find the
optimal process planning among all possible alternatives
given a certain criteria such as minimum cost, minimum
time, maximum quality or under multiple of these criteria
which are defined on the operations to be chosen. As an
example, Figure 1 shows a simple PPP problem by the
means of network flow.
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Figure 1: Flow network for a simple PPP problem

For an n-stage PPP problem, let s; be some state at
stage k, Dy (sy) be the set of possible states to be chosen
at stage k., kK = 1,2,---.n, and let z; be the decision
variable to determine which state to choose at stage k,
obviously zp € Dy(sr), k = 1,2,---.n. Then the PPP
problem can be formulated as follows:

PPP:
n
min  V(z1, 29, -, 2,) = Z i (Sky 1) (1)
o €DR(sy) 1
k=1,2,---.n =

where vy (Sk, z1) represents the criterion to determine z;,
under state s;, at stage k, usually defined as real number
such as cost, time or distance etc.

The problem (1) can be rewritten as an dynamic re-
currence expression as Figure 1 shows that it can be ap-
proached by the method of the Shortest Path method or
Dynamic Programming. However, in the case of multiple
objective criteria, the problem (1) takes the following for-
mulation:
mPPP:

min Vi(z1, za, -, 3y) = EZ:l g (S, T1)
mill%(f[?l,TQ, T -,'7771,) = Z’kb:1 ’Uk(Sk.,.”[?]\,)

(2)

min Vy(z1, 29, , 2n) = Zzzl g (S, 1)

b mp € Dp(sg), k=1,2,---,n

w

where p is the number of the objectives. The problem (2)
is denoted as the mPPP problem.

Obviously it is difficult to transform the problem (2)
into its equivalent dynamic recurrence expression to be

solved by the Shortest Path method or Dynamic Program-
ming. As to small scale problem, the problem (2) can be
approached by some traditional multiple criteria decision
making techniques such as goal programming. However, if
the problem scale increases, it becomes difficult to be dealt
with even in the case of single objective criteria because
of the rapid expansion of the number of the states to be
considered, not mansion of the case of multiple objective
criteria. So it is much necessary to develop new approach
to solve this mPPP problem. In the following section we
discuss our Evolutionary Computation approach.

III. STATE PERMUTATION ENCODING

When considering the network flow of problem (1) shown
in Figure 1, it is intuitive to describe the process planning
by indicating which node or state is chosen for a particular
operation at each stage. If the node or state is chosen,
then denoted as ”17, if not, denoted as "0”. In such way,
the PPP solution can be encoded in a binary string format
by concatenating all the set states of the stages as shown
in Figure 2.

001' 000,000,101' 100,000,100 hinary string
Figure 2: Binary string encoding for the PPP problem

As thereis always only one state to be chosen at the last
stage, it need not indicate in the encoding. Though this
binary string encoding can be operated within a GA envi-
ronment, it is inevitable that there will be more than two
possible process plannings encoded simultaneously by one
encoding or no possible process planning encoded in the
initial population and the offspring generated in the evo-
lutionary process. Therefore, there needs a more compli-
cated modification for the GA operations involving both
"Path Identifier” and ”Multiple Path Corrector” [1].

Actually, as to the PPP problems shown in Figure 1,
the alternative states at each stage can be expressed by a
series of integers to indicate the node or state. If a state
for an operation is chosen at some stage for the process
planning, then its corresponding integer for that node or
state can be assigned whereas the integer is within the
number of possible states at that stage. Therefore, the
PPP solution can be concisely encoded in a state permu-
tation format by concatenating all the set states of the
stages as shown in Figure 3.

This state permutation encoding is one-to-one mapping
for the PPP problem, so it is easy to decode and evalu-
ate. Compared with the binary string encoding, this state
permutation encoding has three valuable advantages:



state permutation

Figure 3: State permutation for the PPP problem

(1) the encoding length is only n - 1 for an n-stage PPP
problem, which is to save much more computation

memory while the problem scale gets larger;
(2) the encoding need not any modification in genetic

operations such as crossover or mutation, which is

also to raise the computation efficiency;
(3) the encoding is easy to be hybridized with some

heuristic genetic operations to improve the evolution-
ary process.

IV. EVOLUTIONARY COMPUTATION
APPROACH

A. Genetic Representation

As it has been well discussed in the previous section, the
state permutation encoding is more suitable for the PPP
problem. Those three advantages guarantee the state per-
mutation encoding adaptable to the genetic operation in
EC approach. As to the initial population for an n-stage
PPP problem, each individual is a permutation with n-1
integers whereas the each integer is generated randomly
within the number of all possible states at the correspond-
ing stage.

B. Genetic Operation

Though any common genetic operation on the state
permutation encoding will not result in illegal offspring,
simply we only adopt mutation operation in the EC ap-
proach as the crossover operation has no great effect on
the PPP problem, which will be demonstrated by the ex-
periment analysis in Section V. On the other hand, for
this state permutation encoding, it is easy to hybrid the
neighborhood search technique in mutation operation to
produce an improved offspring. Figure 4 shows an exam-
ple for this mutation operation with neighborhood search
technique, supposed that the mutated gene is at stage 3
and the number of possible states to be chosen is 4.

C. Evaluation

In the case of the PPP problem with single objective
criterion, we can directly calculate the fitness value of
each individual according to the objective function of the
problem (1). However, as to the mPPP problem, we can
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Figure 4: Mutation with neighborhood search

only calculate each objective value of the problem (2) but
can not simply evaluate its fitness value as these multiple
objectives usually conflict with each other in practice. In
other words, we can not obtain the absolute optimal so-
lution, but we can only get the Pareto optimal solutions.
Here, we adopt some multiple criteria decision making
techniques [4] to evaluate the fitness for the mPPP prob-
lem.

Definition 1: Given a set of feasible solution X for the
problem (2), solution &’ € X is denoted as the Pareto
optimal solution (or nondominated solution) for the
problem (2) if and only if there is no any other solution
x € X, satistfying the following conditions:

Vo) < V(')
Vie(2) < Vi (')

for some g€ {1,2,---,p}
for all k#gq

Definition 2: As to the problem (2), in optimizing
each objective: mingex Vi(x),k = 1,2,--,p, there are
respectively p optimal solution 27, = 1,2,-- -, p, and cor-
responding objective value:

V]g:‘/k(a’])* k:1*2*p 7:12p

In objective space, through these p points Vi, =
(VEVE - V) (k=1,2,---,p), there is a hyperplane
which satisfies:

p
> B Vi=a

k=1

where o and 85, (k= 1,2,---,p) are the solution of the
following equations:

Z:lﬁka =1
Ef:l‘-/kj ﬁk_{‘y = 0* ]:1,2[)

This hyperplane is denoted as the adaptive objective
evaluation hyperplane for the problem (2).

The above equations (3) have (p+ 1) variables and (p+
1) linear equations. It is not difficult to verify that thereis

(3)

an unique solution if there does not exist absolute optimal
solution for the problem (2).

Using this adaptive objective evaluation hyperplane, we
can evaluate the fitness value of the problem (2) in the
sense of multicriteria and enforce its Pareto optimal solu-
tions to get close to the ideal point as much as possible.
The evaluation process can be operated as follows:



procedure: evaluation for the mPPP

step 1: Decode all individuals and calculate their objec-
tive values in each objective.

step 2: Determine G;(k = 1,2,---,p) according to the
Definition 2.

step 3: Determine the fitness value eval(z) of all indi-
viduals according to the following formula:

eval(x) = Zﬁk Vi (4)
k=1

As to the mPPP problem with two objectives, the
mechanism of evaluation in evolutionary process can be
illustrated by Figure 5. The adaptive objective evalua-
tion hyperplane divides the search space into two parts.
One contains Pareto optimal solutions and the ideal point
which is unreachable, and the other only contains domi-
nated solutions. With the evolutionary process and under
the pressure of selection operation, the adaptive objective
evaluation hyperplane is updated again and again, and
moved toward the ideal point to enforce all Pareto so-
lutions get close to the ideal point as much as possible.
Finally all Pareto solutions get to its Pareto frontier.
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Figure 5: Illustration of the evaluation

D. Selection

Here we adopt the (1 + A) - selection strategy [2]. But
in order to avoid the premature convergence of the evo-
lutionary process, our selection strategy only selects p
different best individuals from g parents and A offspring.
If there are no p different individuals available, the va-
cant, pool of population is filled with renewal individuals
generated randomly.

V. NUMERICAL ANALYSIS

Firstly we make some numerical experiments on the PPP
problem. The numerical example with single objective,
presented by B. Awadh et al., has been in detail studied
in[1]. The problem comprises 7 stages, 24 nodes, 80 arcs
and the total number of 1440 possible production process
plannings. It is given out as shown in Figure 6

For this simpler example, by using the binary string and
setting the population size as pop_size: 200, in the best
case the optimal solution can be found at the 5th genera-
tion and on average the performance of the evolutionary

process has a leveling off starting only after the 21th gen-
eration in 20 trials [1]. However, by using the state per-
mutation encoding and the proposed EC approach, the
optimal solution can be averagely obtained at the 4th
generation for a smaller population size as pop_size: 5 and
the 3rd generation for a larger population size as pop_size:
50. Since the state permutation encoding is much simpler
than the binary string encoding for this problem, it really
takes no much more effort in the evolutionary process to
evolve to the optimal solution. Figure 7 clearly illustrates
the evolutionary process of the state permutation encod-
ing under the action of the proposed EC approach, which
is plotted according to the average results in 20 trials.

As to the analysis for the setting of the genetic opera-
tion parameters, we figure out a larger scale PPP prob-
lem which consists of 15 stages, 89 nodes, 562 arcs on
which the weights are integers generated randomly and
uniformly distributed over [1,50]. According to the exper-
iment results, the crossover operation really has no much
effect on the evolutionary process for the EC approach on
this problem. If only crossover operation is adopted, no
optimal solution can be obtained in 20 trials. As to the
mutation operation, it provides with great probability to
obtain the optimal solution whether the crossover oper-
ation is simultaneously adopted or not. Figure 8 clearly
illustrates the sensitivity of crossover and mutation opera-
tions on the proposed EC approach and indicates that the
mutation rate within 0.6 to 0.9 has the best mechanism
for the evolutionary process.
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Figure 8: Illustration of the sensitivity on crossover and
mutation

The experiment results show that in the EC approach
on this PPP problem, the crossover operation (uniform
crossover or cut-point crossover) does not bring about
enough new genes for the evolutionary process to evolve
towards the optimal solution. Only the mutation opera-
tion generates series of new genes necessary in the evolu-
tionary process and guarantee to evolve to the optimal so-
lution while being combined with the neighborhood search
technique. Moreover, too low mutation rate is unable to
make enough mutation on some genes for evolution; while
too high mutation rate results in too much random per-
turbation on individuals so that the offspring have more
chance to lose their resemblance to the parents and the
algorithm loses the ability to learn from the history of the
search. When the mutation rate is equal to 0.7 ~ 0.8, the
EC approach has the great probability to evolve to the
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Figure 7: Illustration of the evolutionary process by the EC approach

optimal solution for this problem.

In order to further demonstrate the effectiveness and
efficiency of the proposed EC approach on the PPP prob-
lem, we generate 10 different PPP problems which have
the same scale as those in [1]. All results are given out
in Table 1. In order to compare with two different EC
approaches on a same problem, there are several factors
which have to be taken into consideration. Besides the
different setting of parameters such as crossover rate, mu-
tation rate, population size, total generation and total
runs, different soft and computational means are also very
important for the computational comparison. However,
compared with the experiment results in [1], Table 1 still
clearly shows that our EC approach is both effective and
efficient to the PPP problem.

Finally, let us discuss the mPPP problem. Based on the
numerical analysis of the PPP problem with single objec-
tive, an larger scale mPPP problem with 15 stages and 89
nodes are designed. Two attributes are defined on each
arc whose weights are integers generated randomly and
uniformly distributed over [1,50] and [1. 100] respectively.
The ideal point is (91, 159) and other two extreme points
(Pareto optimal solutions) are (91, 686) and (402,159).
Because there are different attributes defined on each arc,
it is impossible to get the ideal point as the optimal solu-
tion. We can only get the Pareto optimal solution of the
mPPP problem. By using the adaptive objective evalu-

ation hyperplance as the fitness function, the results by
the proposed EC approach are plotted as shown in Figure

9.
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Figure 9: Tllustration of the mPPP problem

Figure 9 clearly illustrates that the adaptive objective
evaluation hyperplane plays an very important role in
guiding the search towards the ideal point in the evolu-
tionary process for the case of multiple objective criteria,
and really enforces all Pareto optimal solutions got to the
ideal point as close as possible and focused on the Pareto
frontier near the ideal point. This is usually the results
some decision makers hope in multicriteria decision mak-
ing.

VI. CONCLUSION



Table 1: Comparison among different approaches to the PPP problems

Number Number CPU time  CPU time(sec.) CPU time(sec.)

No. of of OK! BS! sp?
stages nodes (sec.) Min Ave Min Ave %
1 7 24 3.01 0.08 0.03 0.04 100
2 7 27 2.84 0.04 0.03 0.04 100
3 8 38 4.31 0.40 0.06 0.09 100
4 9 37 4.25 0.1 0.57 0.06 0.12 100
5 10 47 4.48 0.1 0.63 0.09 0.27 100
6 11 53 4.58 0.2 0.75 0.34 0.45 100
7 12 63 4.69 0.15 0.36 0.32 0.48 100
8 13 72 5.08 0.8 1.30 0.61 1.03 100
9 14 79 5.19 0.5 1.75 0.49 1.01 90
10 15 89 5.35 0.4 1.53 0.97 1.28 80

OK': Out-of-Kilter algorithmn using SAS/OR program operated on SUN workstation[1];
BS*: Binary String encoding by GAs operated on SUN workstation, pop_size: 200[1];
SP?: State Permutation encoding by EC operated on EWS4800/360PX workstation,

pop-size: 100;

Min: the minimal CPU time in all 20 runs; Ave: the average CPU time in all 20 runs;

%: the frequency to obtain the optimal solution in all 20 runs.

This paper presents a new approach to the PPP prob-
lem by using the EC technique. The proposed EC ap-
proach adopts a new state permutation encoding to make
the evolutionary process even more simpler in finding the
optimal solution, and combines with the neighborhood
search technique to have the great probability to evolve
to the optimal solution. The numerical analysis shows
that the proposed EC approach is competitive to the tra-
ditional network analysis techniques in solving this kind
of problem. Compared with the other genetic algorithms
approach, the proposed EC approach is both effective and
efficient to deal with this kind of problem with single or
multiple objectives.
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