
Evolutionary Computation on MulticriteriaProduction Process Planning ProblemGengui Zhou Mitsuo GenDepartment of Industrial and Systems EngineeringAshikaga Institute of Technology, Ashikaga 326, JapanEmail: fzhou geng@genlab.ashitech.ac.jpAbstract| Production Process Planning (PPP)problem is abundant among manufacturing sys-tems. In general the problem can be approachedby the network analysis or dynamic programming.But in the case of the multicriteria ProductionProcess Planning (mPPP for short) problem, itis di�cult for those traditional optimization tech-niques to cope with. In this paper, a new Evolu-tionary Computation (EC) approach is developedto deal with the PPP problems with both sin-gle or multiple objective criteria. The proposedEC approach adopts a new simple state permu-tation encoding and combines with the neighbor-hood search technique in mutation operation toimprove the evolutionary process in �nding theoptimal solution of the PPP problems. The nu-merical analysis shows that the proposed EC isboth e�ective and e�cient to the PPP problems.Keywords| Production Process Planning, Multi-criteria Optimization, Evolutionary Computation.I. INTRODUCTIONProduction Process Planning (PPP) problem is abundantamong manufacturing systems. The problem, in general,provides a detailed description of manufacturing capabil-ities and requirements for transforming a raw stock ofmaterials into a completed product through multi-stageprocess. The PPP problem lends itself, in a natural man-ner, to optimization techniques in order to �nd the bestproduction process plan amongst numerous alternativesgiven a certain criterion such as minimum cost, minimumtime, maximum quality or with multiple these criteria.The implicit enumeration of all these alternatives can beformulated as network 
ow. In the case of single objectivecriterion, the problem is equivalent to solving the ShortestPath problem which can be e�ciently dealt with by somealgorithms such as Dijkstra's and Floyed's [11]. However,in the case of multiple objective criteria (i.e. the mPPPproblem), some techniques based on Goal Programmingwere developed but only illustrated with small networks[14] [15].

Recently a Genetic Algorithm (GA) approach for thePPP problem has been reported in [1] where binarystrings encoding was adopted for chromosome represen-tation. The binary strings have been proved e�ective tosome problems[5] [6][10], but they do not always work sowell. In [1] a complicated modi�cation has to be adoptedfor the genetic operation as the initial population or o�-spring generated by crossover and mutation operationsmay be illegal at most cases, which greatly a�ects the ef-�ciency of the evolutionary process of the GA approach.Evolutionary Computation (EC), developed on the baseof GA, adopts natural coding such as 
oat point or per-mutation naturally to represent the real-world problemsand evolves them towards the optimal solution combinedwith the genetic operations [3][7][13]. This new approachhas been widely and successfully applied in variety of re-search areas [8] [9] [12]. In this paper, a new encoding forthe PPP or mPPP problem is developed. The new encod-ing directly encodes the chosen state at each stage by themeans of permutation, which is only with the length of n- 1 for an n-stage PPP problem, therefore to save muchmemory and raise the computation e�ciency. The meritof the new encoding is that any common genetic opera-tions on this encoding will not generate illegal o�springso that it need not any modi�cation both for the initialpopulation and for the o�spring generated in the evolu-tionary process. Moreover, It is easy to hybrid this newencoding with some heuristic mutation operation such asthe neighborhood search technique to e�ciently evolvetowards the optimal solution. The experiment on severaltest problems shows that the proposed method is bothe�cient and e�ective to the PPP problems with singleobjective and multiple objectives.The mPPP problem and its mathematical model aredescribed in Section II. Section III gives out our new en-coding for the mPPP problem. The whole EC approachis discussed in Section IV. In Section V the test problemson the new encoding and EC approach are analyzed andconclusion follows in Section VI.II. mPPP PROBLEM DESCRIPTION



The PPP system usually consists of a series of machin-ing operations, such as turning, drilling, grinding, �nish-ing and so on, to transform a part into its �nal shape orproduct. The whole process can be divided into severalstages. At each stage, there are a set of similar man-ufacturing operations. The PPP problem is to �nd theoptimal process planning among all possible alternativesgiven a certain criteria such as minimum cost, minimumtime, maximum quality or under multiple of these criteriawhich are de�ned on the operations to be chosen. As anexample, Figure 1 shows a simple PPP problem by themeans of network 
ow.
turning drilling grinding finishing
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Figure 1: Flow network for a simple PPP problemFor an n-stage PPP problem, let sk be some state atstage k, Dk(sk) be the set of possible states to be chosenat stage k, k = 1; 2; � � � ; n, and let xk be the decisionvariable to determine which state to choose at stage k,obviously xk 2 Dk(sk), k = 1; 2; � � � ; n. Then the PPPproblem can be formulated as follows:PPP: minxk2Dk(sk)k=1;2;���;n V (x1; x2; � � � ; xn) = nXk=1 vk(sk; xk) (1)where vk(sk; xk) represents the criterion to determine xkunder state sk at stage k, usually de�ned as real numbersuch as cost, time or distance etc.The problem (1) can be rewritten as an dynamic re-currence expression as Figure 1 shows that it can be ap-proached by the method of the Shortest Path method orDynamic Programming. However, in the case of multipleobjective criteria, the problem (1) takes the following for-mulation:mPPP:minV1(x1; x2; � � � ; xn) =Pnk=1 vk(sk; xk)minV2(x1; x2; � � � ; xn) =Pnk=1 vk(sk; xk)� � �minVp(x1; x2; � � � ; xn) =Pnk=1 vk(sk; xk)s: t: xk 2 Dk(sk); k = 1; 2; � � � ; n (2)where p is the number of the objectives. The problem (2)is denoted as the mPPP problem.Obviously it is di�cult to transform the problem (2)into its equivalent dynamic recurrence expression to be

solved by the Shortest Path method or Dynamic Program-ming. As to small scale problem, the problem (2) can beapproached by some traditional multiple criteria decisionmaking techniques such as goal programming. However, ifthe problem scale increases, it becomes di�cult to be dealtwith even in the case of single objective criteria becauseof the rapid expansion of the number of the states to beconsidered, not mansion of the case of multiple objectivecriteria. So it is much necessary to develop new approachto solve this mPPP problem. In the following section wediscuss our Evolutionary Computation approach.III. STATE PERMUTATION ENCODINGWhen considering the network 
ow of problem (1) shownin Figure 1, it is intuitive to describe the process planningby indicating which node or state is chosen for a particularoperation at each stage. If the node or state is chosen,then denoted as "1", if not, denoted as "0". In such way,the PPP solution can be encoded in a binary string formatby concatenating all the set states of the stages as shownin Figure 2.
001 000,000,101 100,000,100 binary string
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50Figure 2: Binary string encoding for the PPP problemAs there is always only one state to be chosen at the laststage, it need not indicate in the encoding. Though thisbinary string encoding can be operated within a GA envi-ronment, it is inevitable that there will be more than twopossible process plannings encoded simultaneously by oneencoding or no possible process planning encoded in theinitial population and the o�spring generated in the evo-lutionary process. Therefore, there needs a more compli-cated modi�cation for the GA operations involving both"Path Identi�er" and "Multiple Path Corrector" [1].Actually, as to the PPP problems shown in Figure 1,the alternative states at each stage can be expressed by aseries of integers to indicate the node or state. If a statefor an operation is chosen at some stage for the processplanning, then its corresponding integer for that node orstate can be assigned whereas the integer is within thenumber of possible states at that stage. Therefore, thePPP solution can be concisely encoded in a state permu-tation format by concatenating all the set states of thestages as shown in Figure 3.This state permutation encoding is one-to-one mappingfor the PPP problem, so it is easy to decode and evalu-ate. Compared with the binary string encoding, this statepermutation encoding has three valuable advantages:
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50Figure 3: State permutation for the PPP problem(1) the encoding length is only n - 1 for an n-stage PPPproblem, which is to save much more computationmemory while the problem scale gets larger;(2) the encoding need not any modi�cation in geneticoperations such as crossover or mutation, which isalso to raise the computation e�ciency;(3) the encoding is easy to be hybridized with someheuristic genetic operations to improve the evolution-ary process.IV. EVOLUTIONARY COMPUTATIONAPPROACHA. Genetic RepresentationAs it has been well discussed in the previous section, thestate permutation encoding is more suitable for the PPPproblem. Those three advantages guarantee the state per-mutation encoding adaptable to the genetic operation inEC approach. As to the initial population for an n-stagePPP problem, each individual is a permutation with n-1integers whereas the each integer is generated randomlywithin the number of all possible states at the correspond-ing stage.B. Genetic OperationThough any common genetic operation on the statepermutation encoding will not result in illegal o�spring,simply we only adopt mutation operation in the EC ap-proach as the crossover operation has no great e�ect onthe PPP problem, which will be demonstrated by the ex-periment analysis in Section V. On the other hand, forthis state permutation encoding, it is easy to hybrid theneighborhood search technique in mutation operation toproduce an improved o�spring. Figure 4 shows an exam-ple for this mutation operation with neighborhood searchtechnique, supposed that the mutated gene is at stage 3and the number of possible states to be chosen is 4.C. EvaluationIn the case of the PPP problem with single objectivecriterion, we can directly calculate the �tness value ofeach individual according to the objective function of theproblem (1). However, as to the mPPP problem, we can
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neighbor individualsFigure 4: Mutation with neighborhood searchonly calculate each objective value of the problem (2) butcan not simply evaluate its �tness value as these multipleobjectives usually con
ict with each other in practice. Inother words, we can not obtain the absolute optimal so-lution, but we can only get the Pareto optimal solutions.Here, we adopt some multiple criteria decision makingtechniques [4] to evaluate the �tness for the mPPP prob-lem.De�nition 1: Given a set of feasible solution X for theproblem (2), solution x0 2 X is denoted as the Paretooptimal solution (or nondominated solution) for theproblem (2) if and only if there is no any other solutionx 2 X, satisfying the following conditions:Vq(x) < Vq(x0) for some q 2 f1; 2; � � � ; pgVk(x) � Vk(x0) for all k 6= qDe�nition 2: As to the problem (2), in optimizingeach objective: minx2X Vk(x); k = 1; 2; � � � ; p, there arerespectively p optimal solution xj ; j = 1; 2; � � � ; p, and cor-responding objective value:V jk = Vk(xj); k = 1; 2; � � � ; p; j = 1; 2; � � � ; pIn objective space, through these p points Vk =(V 1k ; V 2k ; � � � ; V pk ) (k = 1; 2; � � � ; p), there is a hyperplanewhich satis�es:pXk=1�k Vk = �where � and �k (k = 1; 2; � � � ; p) are the solution of thefollowing equations:Ppk=1 �k = 1Ppk=1 V jk �k � � = 0; j = 1; 2; � � � ; p (3)This hyperplane is denoted as the adaptive objectiveevaluation hyperplane for the problem (2).The above equations (3) have (p+1) variables and (p+1) linear equations. It is not di�cult to verify that there isan unique solution if there does not exist absolute optimalsolution for the problem (2).Using this adaptive objective evaluation hyperplane, wecan evaluate the �tness value of the problem (2) in thesense of multicriteria and enforce its Pareto optimal solu-tions to get close to the ideal point as much as possible.The evaluation process can be operated as follows:



procedure: evaluation for the mPPPstep 1: Decode all individuals and calculate their objec-tive values in each objective.step 2: Determine �k(k = 1; 2; � � � ; p) according to theDe�nition 2.step 3: Determine the �tness value eval(x) of all indi-viduals according to the following formula:eval(x) = pXk=1�k Vk (4)As to the mPPP problem with two objectives, themechanism of evaluation in evolutionary process can beillustrated by Figure 5. The adaptive objective evalua-tion hyperplane divides the search space into two parts.One contains Pareto optimal solutions and the ideal pointwhich is unreachable, and the other only contains domi-nated solutions. With the evolutionary process and underthe pressure of selection operation, the adaptive objectiveevaluation hyperplane is updated again and again, andmoved toward the ideal point to enforce all Pareto so-lutions get close to the ideal point as much as possible.Finally all Pareto solutions get to its Pareto frontier.
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ideal pointFigure 5: Illustration of the evaluationD. SelectionHere we adopt the (�+ �) - selection strategy [2]. Butin order to avoid the premature convergence of the evo-lutionary process, our selection strategy only selects �di�erent best individuals from � parents and � o�spring.If there are no � di�erent individuals available, the va-cant pool of population is �lled with renewal individualsgenerated randomly.V. NUMERICAL ANALYSISFirstly we make some numerical experiments on the PPPproblem. The numerical example with single objective,presented by B. Awadh et al., has been in detail studiedin[1]. The problem comprises 7 stages, 24 nodes, 80 arcsand the total number of 1440 possible production processplannings. It is given out as shown in Figure 6For this simpler example, by using the binary string andsetting the population size as pop size: 200, in the bestcase the optimal solution can be found at the 5th genera-tion and on average the performance of the evolutionary

process has a leveling o� starting only after the 21th gen-eration in 20 trials [1]. However, by using the state per-mutation encoding and the proposed EC approach, theoptimal solution can be averagely obtained at the 4thgeneration for a smaller population size as pop size: 5 andthe 3rd generation for a larger population size as pop size:50. Since the state permutation encoding is much simplerthan the binary string encoding for this problem, it reallytakes no much more e�ort in the evolutionary process toevolve to the optimal solution. Figure 7 clearly illustratesthe evolutionary process of the state permutation encod-ing under the action of the proposed EC approach, whichis plotted according to the average results in 20 trials.As to the analysis for the setting of the genetic opera-tion parameters, we �gure out a larger scale PPP prob-lem which consists of 15 stages, 89 nodes, 562 arcs onwhich the weights are integers generated randomly anduniformly distributed over [1; 50]. According to the exper-iment results, the crossover operation really has no muche�ect on the evolutionary process for the EC approach onthis problem. If only crossover operation is adopted, nooptimal solution can be obtained in 20 trials. As to themutation operation, it provides with great probability toobtain the optimal solution whether the crossover oper-ation is simultaneously adopted or not. Figure 8 clearlyillustrates the sensitivity of crossover and mutation opera-tions on the proposed EC approach and indicates that themutation rate within 0.6 to 0.9 has the best mechanismfor the evolutionary process.
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ation hyperplance as the �tness function, the results bythe proposed EC approach are plotted as shown in Figure9.
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Table 1: Comparison among di�erent approaches to the PPP problemsNumber Number CPU time CPU time(sec.) CPU time(sec.)No. of of OK1 BS1 SP 2stages nodes (sec.) Min Ave Min Ave %1 7 24 3.01 0.08 0.03 0.04 1002 7 27 2.84 0.04 0.03 0.04 1003 8 38 4.31 0.40 0.06 0.09 1004 9 37 4.25 0.1 0.57 0.06 0.12 1005 10 47 4.48 0.1 0.63 0.09 0.27 1006 11 53 4.58 0.2 0.75 0.34 0.45 1007 12 63 4.69 0.15 0.36 0.32 0.48 1008 13 72 5.08 0.8 1.30 0.61 1.03 1009 14 79 5.19 0.5 1.75 0.49 1.01 9010 15 89 5.35 0.4 1.53 0.97 1.28 80OK1: Out-of-Kilter algorithm using SAS/OR program operated on SUN workstation[1];BS1: Binary String encoding by GAs operated on SUN workstation, pop size: 200[1];SP 2: State Permutation encoding by EC operated on EWS4800/360PX workstation,pop size: 100;Min: the minimal CPU time in all 20 runs; Ave: the average CPU time in all 20 runs;%: the frequency to obtain the optimal solution in all 20 runs.This paper presents a new approach to the PPP prob-lem by using the EC technique. The proposed EC ap-proach adopts a new state permutation encoding to makethe evolutionary process even more simpler in �nding theoptimal solution, and combines with the neighborhoodsearch technique to have the great probability to evolveto the optimal solution. The numerical analysis showsthat the proposed EC approach is competitive to the tra-ditional network analysis techniques in solving this kindof problem. Compared with the other genetic algorithmsapproach, the proposed EC approach is both e�ective ande�cient to deal with this kind of problem with single ormultiple objectives.ACKNOWLEDGMENTThis researchwork was partially supported by the Interna-tional Scienti�c Research Program (No. 07045032: 1995.4{ 1998.3) Grant-in-Aid for Scienti�c Research by the Min-istry of Education, Science and Culture of the JapaneseGovernment.References[1] B. Awadh, N. Sepehri and O. Hawaleshka, "Acomputer-aided process planning model based on ge-netic algorithms," Computers & Ops. Res., Vol. 22,pp. 841-856, 1995.[2] T. B�ack, "Selective pressure in evolutionary algo-rithms: a characterization of selection mechanisms,"Proceedings of the First IEEE Conference on Evo-lutionary Computation, D. Fogel (ed), IEEE Press,Florida, pp. 57-62, 1994.
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