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SPECIAL FUNCTIONS IN FUZZY ANALYSIS

Abstract. In the treatment of Fuzzy Logic an useful tool appears: the membership func-
tion, with the information about the degree of completion of a condition which defines the
respective Fuzzy Set or Fuzzy Relation. With their introduction, it is possible to prove some
results on the foundations of Fuzzy Logic and open new ways in Fuzzy Analysis.
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1. INTRODUCTION TO FUZZY THEORY

When we solve problems in A. I., their representation will be through the Fuzzy Logic
techniques, a very useful procedure. For instance, in the problems related to the “real
world”. As you know, it is one of the “possible worlds” only. We define the “world”
as “a complete and consistent description of how the things are or how they could
have been”.

In solving questions of this type the Monotonic Logic often does not work, whereas
such type of Logic, is classical in formal worlds, such as Mathematics.

Other Non-Monotonic Logics must also be introduced, where now the extension
of the set of sentences can modify the conclusion. This happens frequently in the real
world: for instance, in the medical sciences, or in the common sense reasoning, with
partial information, giving temporal, revisable and provisional conclusions.

For their part, we need Fuzzy Sets, Fuzzy Relations and so on, to describe the
gradation of certainty in our world. It is shown through a new function, the afore-
mentioned membership function µ, which describes the degree of fulfillment for each
element of the property defining the set. Or the “degree of relation” between two
determined elements. Such “membership degree” value can be assigned by the corre-
sponding µ, the “membership function”, whose range is the closed unit interval [0, 1].
Thus

µ : C → [0, 1] .
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According to this, a fuzzy set can be defined as:

C = {x | µ (x) ,∀x ∈ U}

where the vertical symbol | does not mean “such that”, but it adjoins the information
on the “membership degree” of such element to the set C.

Given {Ui}n
i=1, n universes of discourse, we define a fuzzy relation R through a

membership function that to each n-tuple, (xi)
n
i=1, where xi ∈ Ui, i = 1, 2, . . . , n,

associates a value in the closed unit interval [0, 1]:

(xi)
n
i=1 ∈

n∏
i=1

Ui → r ∈ [0, 1] ,

(x1, x2, . . . , xn) → µ (x1, x2, . . . , xn) = r : 0 ≤ r ≤ 1.

The fuzzy relation R can be defined through such “membership function”, µ. In
this manner, we will have gradation of the relationship:

eR, . . . ,
1
3
R, . . . ,

1
2
R, . . . ,

2
3
R, . . . , R.

The Cartesian product of two fuzzy sets, F (in the universe U1) and G (in the
universe U2), is the following fuzzy binary relation:

F ×G =
{
(x, y) | µF × G (x, y) = min [µF (x) , µG (y)] ,∀x ∈ U1,∀y ∈ U2

}
.

As you know, we can consider this fuzzy relation as a subset of the adequate
Cartesian product: R ⊂ F ×G.

The composition of fuzzy relations can be defined by:

R1 (U1, U2) ◦R2 (U2, U3) = R3 (U1, U3)

where:

R3 (U1, U3) =
{
(x, z) | µR1◦R2

(x, z) ,∀x ∈ U1,∀z ∈ U3

}
,

being:

µR1◦R2
(x, z) = max

{
∀y ∈ U2 : min

(
µR1

(x, y) , µR2
(y, z)

)}
=

= max
y∈U2

{
min

(
µR1

(x, y) , µR2
(y, z)

)}
.

There exists a clear analogy between the composition of fuzzy relations and the
matricial product. For this reason, the composition (◦) of fuzzy relations can be
also denominated as the: “max-min matricial product”. As a particular case of the
composition of fuzzy relations, we can introduce the composition of a fuzzy set with
a fuzzy relation. Obviously, in such case, the fuzzy set may be represented by a row
or column matrix. These can be very useful in “Fuzzy Inference”.
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2. THE NON-BOOLEAN ALGEBRA OF FUZZY SETS

We can introduce new generalized versions of the Classical Logic: the Modus Ponens
Generalized, or the Modus Tollens Generalized, and also the Hypothetic Syllogism.

To each Fuzzy Predicate, we can associate a Fuzzy Set, defined by such property,
that is, composed of the such elements of the universe of discourse which totally or
partially verify such condition.

So, we can prove that the class of Fuzzy Sets with the operations: ∪, ∩ and c
(c being passing to the complement) does not constitute a Boolean Algebra, because
neither the Contradiction Law nor the Third Excluded Principle work in it. Both
proofs can be expressed easily, in algebraic or geometrical way.

In the first case, the algebraic proof consists in seeing how the equality:

X ∪ c (X) = U

may not hold. Because, if we restate the problem by means of membership functions:

µX ∪ c(X) = µU ,

we see that:

µX ∪ c(X) (x) = µU (x) , ∀x ∈ U

is wrong, for some x ∈ U.
We know that

µU (x) = 1,∀x

because x ∈ U necessarily: all our elements are in the Universe.

In the first member:

µX∪c(X) =
(
max

{
µX , µc (X)

})
(x) = (max {µX , 1− µX}) (x)

through the definition of the membership function for the union of fuzzy sets.
But if we take: x | µX (x) , such that: 0 < µX (x) < 1, strictly into the unit

interval, it fails clearly.
Because, if for instance: µX (x) = 0.2, then µc(X) (x) = 0.8, and we will obtain:

µX ∪ c(X) (x) = max {0.2, 0.8} = 0.8 6= 1 = µU (x) .

This clearly fails too.
Therefore, the family of Fuzzy Sets does not verify the Third Excluded Law.

Through a geometrical procedure, it can be shown with an easy diagram.
For the Contradiction Law, in Fuzzy Sets, we must prove the possibility of:

F ∩ c (F ) 6= ∅
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or equivalently, the existence of an x ∈ U such that:

µF ∩ c(F ) (x) = min
(
µF (x) , µc(F ) (x)

)
= min (µF (x) , 1− µF (x)) 6= 0 = µ∅ (x) .

As in the previous case, it is enough to take x with membership degree between 0
and 1, both excluded.

For instance, if: µF (x) = 0.3, then µc(F ) (x) = 0.7. So:

µF ∩ c(F ) (x) = min
(
µF (x) , µc(F ) (x)

)
= min (0.3, 0.7) = 0.3 6= 0 = µ∅ (x) .

Also here, through geometrical procedures, it can be shown with an diagram
(Fig. 1).

Therefore, we conclude that, in general, the Contradiction Law does not work in
the class of Fuzzy Sets.

1 1

0 0
1 1

0 0

µX

µc(X)

µX∪c(X)

µX∩c(X)

x x

6= 1

6= 0

Fig. 1

Note that, for the union and intersection of fuzzy sets, the membership function
can be defined by:

µF∪G (x) = max {µF (x) , µG (x)} ,

µF∩G (x) = min {µF (x) , µG (x)} .

The fuzzy relations can be composed in this way: Let R1 and R2 be two fuzzy
relations. Then, their composition R3 is defined by: R3 = R2 ◦R1, where

R3 (i, j) = max [min {R1 (i, k) , R2 (k, j)}] .

Observe the possibility of immediate translation into matricial language.
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3. DIFFERENCE OF FUZZY SETS

If we take two sets, A and B, the difference is given by:

A−B = A ∩ c (B) .

There exist two means of obtaining the difference between fuzzy sets:

Simple method: For instance, if we take:

A = {a | 0.1, b | 0.3, c | 0.6, d | 0.9} ,

B = {a | 0.2, b | 0.5, c | 0.8, d | 1} ,

then:
c (B) = {a | 0.8, b | 0.5, c | 0.2, d | 0} .

Therefore:
A−B = A ∩ c (B) = {a | 0.1, b | 0.3, c | 0.2, d | 0} .

Bounded Difference is defined through a new operator θ, by means of the mem-
bership function:

µA θ B (x) = max {µA (x)− µB (x) , 0} .

It is clear that it does not verify the commutative property, because:

B θ A = {a | 0.1, b | 0.2, c | 0.2, d | 0.1} 6= A θ B.

To introduce the distance between fuzzy sets A and B, we can consider different
possibilities, now based in the values of the membership functions at the point x ∈ U :

i) the well known Euclidean distance:

e (A, B) =
[∑

{µA (x)− µB (x)}2
]1/2

;

ii) the Hamming distance:

d (A, B) =
∑

|µA (xi)− µB (xi)|

with i ∈ {1, 2, . . . n} and xi ∈ U, universe of discourse.
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We can easily prove the four conditions required of any distance.
One can also define the relative Hamming distance (δ), when the universal set U

is finite, for instance, with n elements:

if ] (U) = n ⇒ δ (A,B) =
1
n

d (A,B) .

For instance, let A and B as in the aforementioned example. Then:

e (A,B) = 0.316,

d (A,B) = 0.6,

δ (A,B) =
1
n

d (A,B) .

So, if n = 4, then:

δ (A,B) =
1
4

d (A,B) = 0.15.

And generalizing, we can also define the Minkowskian distance:

dw (A,B) =
[∑

|µA (x)− µB (x)|w
]1/w

where w ∈ [1,+∞] .

Observe that when w = 1, we obtain the Hamming distance.
And when w = 2, we find the Euclidean distance.
Both are therefore, particular cases of Minkowskian distances.

4. FUZZY DISTANCE BETWEEN FUZZY SETS

We need to introduce the Extension Principle, according to which: If we start from
the Cartesian product of universal sets:

U =
∏

Ui, i = 1, 2, . . . , r

and a collection of fuzzy sets, each one in the corresponding universal set:

Ai ⊆ Ui, i = 1, 2, . . . r,

then we define the cartesian product of fuzzy sets:∏
Ai, i = 1, 2, . . . r

through their membership function:

µ∏
Ai

(x1, x2, . . . , xr) ≡ min
{
µA1

(x1) , µA2
(x2) , . . . , µAr

(xr)
}

.
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Let F be the function from the universe U to the universe V. Then the fuzzy set:

B ⊆ V

can be obtained using F and the collection of fuzzy sets, {Ai}r
i=1 , in the following

way:
µB (y) = 0, if F−1 (y) = ∅

and

µB (y) = max
y=F (x1,x2,...,xr)

[
min

{
µA1

(x1) , µA2
(x2) , . . . , µAr

(xr)
}]

, if F−1 (y) 6= ∅.

If the function F is one-to-one, then:

µB (y) = µA

(
F−1 [y]

)
, when F−1 (y) 6= ∅.

Let (U, d) be a pseudometric space. Therefore, with:

d : U2 → R+ ∪ {0}

such that verifies:

1) d (x, x) = 0, ∀x ∈ U ;

2) d (x, y) = d (y, x) ,∀x, y ∈ U ;

3) d (x, z) ≤ d (x, y) + d (y, z) ,∀x, y, z ∈ U .

Remember also that the additional condition:
4) if d (x, y) = 0, then x = y

converts d in a distance, and then (U, d) is a metric space.

In our pseudometric space (U, d), if we take two fuzzy subsets A and B, it is
possible by the extension principle to introduce the pseudometric distance between A
and B:

∀ρ ∈ R+, µd(A,B) (ρ) = max
ρ=d(a,b)

[min {µA (a) , µB (b)}] .

And it is also a fuzzy set.

5. FINAL REMARK

The considerations above, concerning some special functions in A. I., allow us to
approach various problems in A. I.

Obviously, it will be necessary to examine which results remain true and which
fail in the Fuzzy Analysis, in comparison with the Classical Analysis results.
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