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FOREWORD

Stochastic processes are utilized to represent many diverse

phenomena. This report describes a stochastic process generator

useful for simulation studies with the help of the computer.

This report has been reviewed by John H. Walker, Jr.

Released by:

R. I. Rossbacher, Head
Warfare Analysis Department



ABSTRACT

A method has been derived to simulate a one-dimensional stationary

stochastic process with a given autocorrelation function by a finite

trigonometric sum. The coefficients of the latter are uncorrelated

random numbers. A rigorous estimate of the degree of approximation

to the autocorrelation function is given. The method is quite general

and does not require the power spectrum to be rational.
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1. INTRODUCTION

Stochastic processes (see Refs. 1, 2) are used to represent

phenomena in many diverse fields.

It is of importance to possess numerical algorithms that

generate stochastic processes in order to conduct simulation

studies on a computer.

In this report we adhere to the convention of underlining all

random quantities.

The method to be outlined uses a sequence of independent

random variables to generate a stationary random process with a

specified autocorrelation. Thus we may simulate the

process on a computer with the aid of a "random number generator".

This report confines itself to discussing one-dimensional stochastic

processes.

2. Simulation of a one-dimensional weakly stationary stochastic

process with given autocorrelation.

Let the mean of a stationary process x(t) be zero and the

autocorrelation be Rx(T). The power spectrum (see ref. 1,

p. 338) is given by

00

=x ef e~RX(r)d-r (1)
00



The inverse relationship is

Rx(,") = f -• i Sx(w)dL(d (2)

We have here and forthwith assumed that there is no line spectrum.

We may now construct a stochastic process x(t) which has the

given mean, possesses approximately the given autocorrelation func-

tion and depends only on a discrete number of random variables.

We proceed by dividing the frequency range into discrete intervals.

Let us denote the size of the interval by tao. This increment is

to be small in some sense to be specified later. Define the

quantities

nW +

SSx(J)d (3)
nw -- i -- (~"n 7 °-r W

n io 2 0

n = 0, ±1,

These quantities are obviously non-negative and represent the

power in the frequency range of nwo - 1 t. o to no-o + t 0.

Now take a discrete set of complex random variables which satisfy

Sn= C-n (4)

E{fco } 0 (5)

E{cn} 1 0, n =+ ... (6)

E{cnc m} = 0, n 0 m (7)

E{I Cn 12 = on, n = 0, +±1 ... (8)
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Now, of course, these conditions do not determine the random

variables cn uniquely. However all the stochastic processes defined

by
A0 inw t ct

x(t) = .n e (9)
n = -_o

possess certain common properties. We have

E {(t)} = 0 = E {2(t)} (10)

E2 -(t)21cn1 2 } c 2
n = •n =-oo

cc

Sx (w) dW = E{x(t) 2 } (11)27r" _f

A
Thus the processes ?(t) have the same mean and total power as the

process x(t).

Now let us investigate the autocorrelation of xA(t). We have

from Eqs. 7, 8

R^(.-r) E{A(t + T7*)A(t)}

E{I 2 e ein nen0 (12)
n -oo

A

Thus the x(t) are stationary in the weak sense, but their auto-

correlation differs from Rx("r). Let us •estimate the difference.

How well does R&('r) approximate Rx(7')? We may write
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CO

Rx Qr= w e Sx7(W)e dWC2 7rf

nWo + W (13)2 0
00

2 ft Sx(W)eij d w
2 r

n= o

n ( 1° - 2 - 0o

Each term in Eq. 13 may be written

n to + 1 W

l'-1 Sx(w)e WT d t = 01nein °T

n wo -2 C o

no + 21-
n 0) 2 0

SI i-(w + nW°) [((+-nnW0 )° 1
+ iJ Sx()e 2. sin 2 d W

no - - W) (14)

Therefore we may write, for the difference of the desired auto-

correlation and the simulated one

4



Rx.r) - Rq(7) =

nw + ) 1
o0 2 0 1+ &Ti(w+ Wo) 0 (w-nw-o)r

= i Sx(W)e sin 0 dW)
7r n = -oo

no° - T W

n (° + i1C

if Sx(W) sin w(t+nW°o)" sin (w-n ]dw2
Y[n =' -o

0I ~ 2" 0(15)

The magnitude of the final expression may be estimated without

difficulty. When

ni&) 0 2 ( (16)0 2 0 0 2 WO

we have the inequality

sin (Wi - n wo)-r )0i -I (17)

Consequently by the first mean value theorem of the integral

calculus, we have the following inequality
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ni +o
* +1nb0  2 0

$ S (0w) sn[(w +n wo)'r] sin [(w~ nbj)-rT d t

ub) - I W 
2

0 2 0

0 2 o

C< I w -rI S(coj)dc) (18)
*~-4 0 J X

n.0 2 W o

Equation 15 thus yields the inequality,

Rx(Ir) - RS• (& •2--d -•

110

2J o'-r PR(0)

1f Wof I7 X Total Power of x(t) (19)

We see from this inequality that in order to approximate Rx (r)

over a range 11I - T, we must choose a frequency increment WW,

such that

<0 2 (20)

Furthermore we see that however small we choose wo, RxA(T) will

not approximate Rx(r) for all 7. This is connected with the

Afact the process xE(t) involves only a discrete set of frequencies.
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The inequality 19 gives us the effect of the frequency

discretization on the autocorrelation function. For the purpose

of numerical simulation we must also estimate the effect of trun-

cating the series in Eq. 9. In contrast to the frequency

discretization, the truncation affects the total power according

to Eq. 11. If we truncate after Inl = N-I, the power will be

reduced according to Eq. 11 by

i Sx (W)dwd (21)

InI / N N -f 1 W
0 2 0

3. An example

Suppose we wish to simulate a stochastic process with auto-

correlation function

Rx (-) = 02e-0 I- (22)

Its power spectrum is (see Ref. 1, p. 340)

2 PU2
S((L) - P2 + -W2 (23)

The total power Is

Rx(O) - (W)dw (24)
2 7r J x~WU. -oO

Sf7



We may define a correlation distance ,e by

(25)

Suppose we wish to represent the autocorrelation function

to within 100 % of the total power over a distance of m

correlation distances. The maximum lag is given by

I-rI = m (26)

The error in the autocorrelation function due to discretization

satisfies according to Eq. 19

eD m a 0 o 2 (27)eD•2 '3

The error due to truncation satisfies according to Eq. 21

T 7T + 292

NW° -~

o 22¢ 0 d

2o 2  dv (28)

7 +

Now

CO dV

f I + V2  (N-l) (do

-(N C () (29)'3 0 2 0
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and therefore

eT < 2 2 1 2 (30)

We require that

m 0 2 + (31)
7F Wo N-I

We would like to satisfy this equality with as small a value of

N as possible. Minimizing the expression on the left with

respect to -C yields

2 (32)

Virm(N-I)

Substituting this value in Eq. 31 yields

2 m, I = (33)

or

N-I = • (34)

or

N 1.27 m (35)
C2

If, for example, we wish a precision of 10% over 100 correlation

distances, the number of terms required is

N 1.27 100 = 12700 (36)
.01
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4. Does the process _(t) approximate the process x(t)?

We might be tempted to believe that a process _(t) constructed

in the aforementioned way, approximates in some sense the process

x(t). However that is only true if

00 ssin( i t) 0

Cn= f x(t) 2 0 einWot dt (37)
-00 7rt

(see Ref. 1, p. 461). These cn satisfy all the conditions expressed

Aby Eqs. 4-8 and the process 2_(t) then approximates x(t) in a mean

square sense as discussed in the reference.

5. Strict sense stationarity and normality

It may be useful for some applications to be able to generate

stochastic processes that are stationary in the strong sense. The

Astochastic processes x2(t) as defined by Eqs. 3-9 are in general

only stationary in the weak sense. We may show this by regarding

the following example: Write

. = -n e (38)

where

2n = -0 -n (39)

-@n= - I-n (40)

Let the n and kn be mutually independent random variables.

Let the In have the probability density function

ft (0) T (I + cos 30)

(41)
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Let the jn satisfy

E{.op} =0 (42)

E{fn } =0 n = 1, (43)

E{n2 } = C n = 0, 1, ... (44)
nn

and let

E{. } =P; (45)

where the on are any sequence of numbers not all zero. It

follows that the Eqs. 4-8 are satisfied and the process

A CO in&)t (46)
x(t) = E n en

n = -•

is weakly stationary. It is however not stationary in the strong

sense as may be shown by observing that

3

E {(t)3 =E{( _0 nie n einW ot

00 3 in (Jot
2 E •ne (47)

which is not constant.

It may be shown that if the -n and In are mutually

independent, the -In satisfying Eqs. 39, 42-44 and the -n are
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uniformly distributed in -7 to 7r and satisfying Eq. 40 the

A
process x(t) of Eq. 46 is stationary in the strict sense.

It is possible to generate a normal process by the method

described (for the existance of normal processes see Ref. 2, p. 72).

In this case weak stationarity implies strong stationarity.

Normality is often assumed if the process to be simulated is

imperfectly known. Various theoretical results concerning sample

distributions may be derived for normal process.

To generate a normal process let us write

cn = . (an - i-b_) (48)

an =-n, hn = - b-n (49)

We may rewrite Eq. 9 as

R(t) = 2 aO + fZ (2-n cos nwot + bn sin nwot) (50)
n= 1

Let us choose the An and bn as mutually independent normal random

variables satisfying

E{ f } = 0 (51)

E{an} = E{bn} = 0, n = 1, ... (52)

E {a2} 4n, n = 0, 1, ... (53)

E 2 40f n = 1, ... (54)
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These equations imply Eqs. 4-8. Now since x(t) is a linear

combination of normal random variables, it is a normal process

and stationary in the strict sense.

We may prove that the normal process we have just described

has the property of "random phase", namely the random variables 0-n

defined by

b

tg kn = a (55)

-7r < On < 7r (56)

are mutually independent and uniformly distributed. Indeed the

random variable

bn
z -- (57)

is distributed according to Student's distribution of one degree

of freedom (Ref. 3, p. 237).

Student's distribution reduces for one degree of freedom to

Cauchy's distribution (Ref. 3, p. 246). The probability density

function is

fz(Z) -(581S7l + z2 58

From this we easily derive that the probability density function

for On is

13



f =(0) 7 (59)
0, otherwise

Random phases are often made a requirement in representing various

phenomena in the time domain.

6. CONCLUSION

We have presented a method to simulate stationary stochastic

processes numerically. The method is quite general and does not

depend on the power spectrum being rational. It only requires a

random number generator and adequate computing power.
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