FLUX AND SPEED OBSERVERS IN MOTION SENSORLESS DRIVES

R. Datta, V.T. Ranganathan

Источник: "A simple position – sensorless algorithm for rotor-side field oriented control of wound rotor induction machine", IEEE-Trans. Vol. IE – 48, no. 4, 2001, pp. 786-793.

Sensorless drives are becoming predominant when up to 100 to 1 speed control range is required even in fast torque response applications (1-5 ms for step-rated torque response). There is a rich literature on the subject with quite a few solutions proposed and some are already on the markets worldwide. Essentially they are:

- Without signal injection;
- With signal injection

Performance criteria

To assess the performance of various flux and speed observers for sensorless drives, the following performance criteria have become widely accepted:

- steady-state error;
- torque response quickness;
- low speed behavior (speed range);
- sensitivity to noise and motor parameter detuning;
- dynamic robustness.
- complexity versus performance.

A classification of speed observers

The basic principles used for speed estimation (observation) may be classified as:

- Speed estimators
- odel reference adaptive systems
- uenberger speed observers
- Kalman filters
- Rotor slot ripple

With the exception of rotor slot ripple, all the other methods imply the presence of flux observers to calculate the motor speed.

SELECTED REFERENCES

 R. Datta, V.T. Ranganathan, "A simple position – sensorless algorithm for rotorside field oriented control of wound rotor induction machine", IEEE-Trans. Vol. IE – 48, no. 4, 2001, pp. 786-793.