Advanced Concepts in Large-Scale Network Simulation

MICHAEL GOCHFELD

Municipal solid waste


Source of information: http://www.answers.com/topic/municipal-solid-waste



    The estimates of North American garbage production are staggering: The average American disposes of over 3.5 kilograms of trash each day, up more than 50 percent since 1970
     There are many ways to collect garbage, and many ways to process it.
     A comprehensive waste management program must combine a variety of social, transportation, and treatment technologies. Social issues involve the acceptability of particular programs such as mandatory recycling. Components, in order of desirability, include prevention of wastes at the source; reuse, recycling, or composting; energy recovery; and putting in a landfill only those materials not amenable to other strategies. The plan should consider impacts on air quality, water quality, traffic, noise, odor, socioeconomic effects, and community acceptance.
     Developing and evaluating a comprehensive waste management system requires confidence that existing health standards are adequately protective, that all components are maintained and operated according to specifications, and that monitoring and enforcement will work.

Energy Generation

     Municipal solid waste can be used to generate energy. Several technologies have been developed that make the processing of MSW for energy generation cleaner and more economical than ever before, including landfill gas capture, combustion, pyrolysis, gasification, and plasma arc gasification. While older waste incineration plants emitted high levels of pollutants, recent regulatory changes and new technologies have significantly reduced this concern. EPA regulations in 1995 and 2000 under the Clean Air Act have succeeded in reducing emissions of dioxins from waste-to-energy facilities by more than 99 percent below 1990 levels, while mercury emissions have been reduced by over 90 percent. The EPA noted these improvements in 2003, citing waste-to-energy as a power source “with less environmental impact than almost any other source of electricity.”

Waste Treatment

     There are more than thirty technological approaches to managing solid waste. One of the most common is incineration, which requires a burner and often a supplemental source of fuel. The temperature and the residence time of the waste in the burner determine the efficiency with which organic matter is converted to carbon. Noncombustible material, particularly metals, accumulate in the ash and must be removed—either to landfills or for incorporation into concrete and other construction products.
     Composting allows organic material to undergo biodegradation and photodegradation, resulting in simple organic molecules that can actually be beneficial to the environment.
     Recycling and reuse are likely to be effective for those materials that find a ready market. In both the public and private sector, procurement practices can be controlled by fiat or by incentives to minimize waste. Consumer education programs play a large role in reducing waste, particularly in conjunction with community recycling programs.

Health Risks

     Health risks involve contamination of soil and water by leachate from landfills and by emissions of toxic materials from incinerators. The latter include particulates; sulfur dioxide and oxides of nitrogen; hydrogen chloride and hydrogen fluoride; carbon monoxide; chlorinated products, including dioxins and furans; metal residues in ash; and volatile organic compounds, including acrolein and phosgene.

Pollution Control Devices

     Standards governing emissions can be health based, but they are often based on technological considerations including the best available control technology (BACT) and the lowest achievable emission rate (LAER). Filters (e.g., baghouses), electrostatic precipitators, scrubbers, and other devices are used to remove metals and volatile material from the stack prior to emission into the environment. Unfortunately, there are very few published data on emissions from which the efficiency of pollution control devices can be documented.