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Abstract

Mesh restorable networks based on SONET (Synchronous Optical Network, standard optical transmission technol-
ogy widely accepted and implemented in North America) or SDH (Synchronous Digital Hierarchy, the European
standard currently adopted by the major European telecom operators) are an economically attractive solution in
areas where high demand and high connectivity are involved (Wu, 1995). In these networks, the reconfiguration
capability of the digital cross connect systems (DCS) allows to reroute the demand affected by network failures.
The degree of sharing of spare capacity in networks based on this architecture is high.

This paper presents a heuristic algorithm for solving the near-optimal design of SDH mesh-type link restorable
networks, i.e. determining the network topology and assigning the capacity to transport the demand in normal
situations and to allow full link restorability in case of single link failures. The algorithm is based on a Zoom-
In technique, a novel approach which forms a compromise between sequential and integrated techniques. The
different building blocks of the algorithm are tested extensively and compared with other results mentioned in
literature. Comparison of the simulation results for the overall design problem with other solution techniques
indicates that the Zoom-In method is a quite promising approach, able to combine the accuracy of integrated
approaches with the calculation speed of sequential approaches.
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1. Introduction

The problem studied in this paper is the design of SDH mesh restorable networks.1 Given
is a set of node locations and a VC-4 node-to-node demand (1 VC-4 corresponds to a bit
rate of 155 Mbit/s). Asked is to determine between which nodes a link must be installed
(topology design), how to route the demand (routing design) and which capacity should be
assigned to each link (capacity design). The installed capacity must be sufficient to carry
the demand, not only when all network components are functioning properly, but also in
case of a single link failure. The mechanism used to reroute the demand affected by a link
failure is link restoration: the affected connections are rerouted between the endpoints of
the failing link (see (Wu, 1992; Sato, 1996)).

Installing a link with a certain VC-4 capacity between two nodes comprises the installa-
tion of a cable between those nodes and a sufficient number of fiber systems. A fiber system
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consists of a line system and eventually regenerators at regular distances along the cable
to upgrade the attenuated and distorted signal. Accordingly, three cost components were
considered (including equipment cost as well as installation cost): the cable cost, the line
system cost and the regenerator cost. The cable cost is roughly proportional to the dis-
tance between the nodes. With respect to the cost of the line systems and regenerators,
we considered STM-1 (155 Mbit/s), STM-4 (622 Mbit/s) and STM-16 (2.5 Gbit/s) fiber
systems. Economies of scale play a role in the selection of line systems. For instance, an
STM-4 offers a capacity which is four times as high as that of an STM-1 at less than double
the cost (a similar relationship holds between STM-16 and STM-4). As a result, when
the VC-4 demand offered to the network is relatively high, one may expect a predominant
use of STM-16 line systems, STM-4’s and STM-1’s only being installed where STM-16’s
would be severely underused. The cost of the regenerators depends on the type of used
fiber system, but also shows a stepwise dependence on the length of the cable.

To measure the performance of a potential solution method for the complex network
design problem described above, several aspects must be taken into account. The most
important element is, of course, the quality of the found solutions (i.e., a low cost). How-
ever, also other features, that are related to the available computing resources such as the
calculation time and the memory requirements, turn out to be indispensable to make a
correct comparison between different algorithms. Despite the off-line nature of a network
design process, the calculation speed is important because it restricts the size of problem
instances that can be solved within a “reasonable” time. Also the memory requirements of
an algorithm might pose a restriction on the size of problems that can be solved in practice.
Depending on the particular algorithm and the available resources, either the calculation
time or the memory usage can be the most limiting factor.

A number of related network design problems has been considered in literature. On
one hand, the spare capacity assignment problem in mesh restorable networks has been
treated by many authors, see for instance Grover, Bilodeau, and Venables (1991), Herzberg
(1993), Herzberg, Bye, and Utano (1995), and Poppe and Demeester (1998). Starting from
a given network topology and a given routing in the failureless state, these papers describe
algorithms to allocate spare capacity for different failure types and restoration mechanisms.
On the other hand, our problem is also related to the design of multi-commodity survivable
networks, studied for instance in Minoux (1981), Gavish et al. (1989), and Stoer and Dahl
(1994). These papers assume that there is no relationship between the routing of the demand
in the failureless state and the routing of the demand in case of a failure. The formulations
they studied impose the feasibility of a multi-commodity flow in each of the network states
(the failureless state and each of the failure states), which is valid under the assumption
that there is no restriction on the way the network may be reconfigured after a failure has
occurred. This rerouting strategy contrasts with the link restoration situation, where a clear
relationship is noticed between the routing in the failureless state and the routing in each of
the failure states: the traffic which is not affected by the (link) failure cannot be rerouted
and the affected traffic can only be rerouted between the endpoints of the failing link.

This paper presents a novel algorithm that combines the topology design and capac-
ity assignment in case of a strict relationship between the routing in the failureless state
and the failure states, based on the link restoration paradigm. In Poppe and Demeester
(1997) a similar problem is described and an Integer Linear Programming based algorithm
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is presented. Further on, we will compare the results of the two approaches whenever
possible.

The paper is structured as follows. The two main building blocks of the algorithm are
a type of Genetic Algorithm which solves a more abstract capacitated survivable network
design problem and an algorithm to allocate the spare capacity, described in Sections 2
and 3, respectively. The overall algorithm (Section 4) is based on a Zoom-In strategy,
a technique that forms a compromise between a sequential approach and an integrated
approach. In Section 5 some numerical examples are described and attention is paid to
the relative importance of the different phases of the algorithm. The major building blocks
of the algorithm are tested in Section 6 and the main assumptions on which the Zoom-In
algorithm is based are highlighted. The quality of the overall solution is compared with the
results of other techniques. Section 7 concludes the paper.

2. Abstract Capacitated Survivable Network Design (ACSND)

One of the modules used in the overall algorithm (described in Section 4) is an algorithm
to solve a more abstract network design problem ACSND. The original problem stated in
Section 1 is therefore slightly adapted to speed up the algorithm.

Firstly, a linearized cost model is used. This leads to a representation of the cost of a
network as a sum of link costs that are bilinear functions of the length and the capacity of
the link:

c(N) =
∑

e∈E(N)

[c1 · l (e)+ c2 · u(e)+ c3 · l (e) · u(e)]

whereN is a network,c(N) is the cost of the networkN, E(N) is the set of links of the
network N, l (e) is the length of the linke, u(e) is the capacity provided on linke, c1, c2

andc3 represent cable, line system and regenerator cost, respectively.
Secondly, a more abstract routing strategy is used, which does only indirectly incorporate

the spare capacity needed for link restoration. The link capacities are calculated by rescaling
the demand matrix (e.g. multiplying all node-to-node demands by a factorη = 1.2) and
dividing the traffic along the two shortest link-disjoint paths. The philosophy behind this
bi-routing strategy is that in case of a single link failure at least a fractionη/2 will not be
affected, while the remaining fraction 1− η/2 can be (partly or entirely) restored using
some spare capacity available in the network ifη > 1.

These assumptions lead us to a straightforward optimal capacity assignment procedure
for a fixed topology:2 using a minimum cost flow algorithm (Ahuja, 1993) each demandd is
routed through the network with link costsc2 + c3 · l (e) (these are the only cost components
which depend on the capacity assignment and hence on the routing of the traffic) and link
capacitiesd/2 (to ensure bi-routing along link-disjoint paths). This allows a fast evaluation
of the total network costc(N) for a certain topology, so that we can concentrate on the
choice of a good topology.

To solve the ACSND problem, a Genetic Algorithm enhanced with some deterministic
optimization routines is used. We refer to Pickavet et al. (1997) for a detailed description
of the algorithm. The main building blocks of the ACSND algorithm are shown in figure 1.
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Figure 1. Abstract capacitated survivable network design (ACSND) algorithm.
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A Genetic Algorithm (Holland, 1975) is a general optimization technique which mimics
the genetic evolution of species. The main difference with other A. I. approaches, as for
instance Simulated Annealing or Tabu Search, is that a Genetic Algorithm deals with a
‘population’ of solutions (a solution is called a ‘chromosome’) rather than with a single
solution. In case of the ACSND problem, a chromosome is in fact a network topology. The
objective is to create topologies with a minimal overall network costc(N) (and with at least
link-connectivity 2).

The network topologies in the initial population are created by randomly selecting some
links. Some chromosomes are added to this population by applying some crossover and
mutation operations. A crossover operation combines two existing chromosomes to create
a new (and hopefully better) one, whereas a mutation operation creates a new chromosome
by modifying an existing one. Out of this extended population, consisting of so-called
parents, children and mutants, a new population is selected according to the ‘survival of the
fittest’ principle: high quality chromosomes (i.e., topologies with at least link-connectivity
2 and a low network costc(N)) have a higher probability of being chosen for the next
generation. This sequence of crossover operations, mutation operations and selection of a
new generation is repeated until no better solutions are found during a number of generations.
Out of all the generations, the best solution is retained as the final solution of the ACSND
problem.

It is important to recognize the building blocks (Holland, 1975) of a high quality solution,
in order to define a crossover operation that combines the good characteristics of the parents
and removes the bad characteristics. We finally opted for a sort of cut-and-paste operation
on the network topologies: we replace a ‘bad’ part3 of one topology by the corresponding
‘good’ part of another topology. This is illustrated on a 8-node example problem in figure 2.
The ‘weakness’ of the basic parent network is the single link between nodes v4 and v5 leading
to a low reliability: if that link fails, the network will be divided in two not-connected parts.
By replacing a part of the network around that weakness (all the links that are incident to
the nodes v4 and/or v5, dashed lines in basic parent network) by the corresponding part of
another network (all the links that are incident to the nodes v4 and/or v5, full lines in auxiliary
parent network), we create a child network which is hopefully more reliable than both of its
parents. To decide which crossovers will take place in a population, we first check which
parent chromosomes are complementary, i.e., the bad parts of the two topologies should be
non-overlapping. From these candidate pairs of complementary parents, a fixed number of
pairs is randomly selected, for each pair a basic parent network is randomly assigned and
one child chromosome is created per pair.

When defining a suitable mutation operation, it is important to introduce some drastic
adaptations to the parent network that allow the Genetic Algorithm to escape from any local
minima. The quality of the mutant network is hereby only of secondary importance. We
opted for a type of rotation operation. First, the centre of gravity of all nodes is calculated
and the nodes of the network are ordered (in a circular way) according to their polar angle
from the centre of gravity. The links in the mutant network are then obtained by rotating
the node numbering over one position and redrawing the parent network links between
the same node numbers in the mutant network. This is illustrated in figure 3 on a 8-node
problem.
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Figure 2. Example of crossover operation.

Figure 3. Example of mutation operation.

The parent networks that will be used for a mutation operation are randomly chosen.
Usually the mutant chromosomes in a population form only a small fraction of the total
population.

The Genetic Algorithm described above enables us to explore the ACSND search space
in a thorough and efficient way, but lacks some strong directives towards link-connectivity
2 of the created topologies. For instance, the link-connectivity of children networks created
with the crossover operation is often lower than 2. Therefore, in contrast with the standard
Genetic Algorithm paradigm, some deterministic routines were introduced to optimize
the chromosomes individually (see figure 1). The most important optimization routines
are:

1. On one hand, to ensure a link-connectivity of at least 2, each node of the network should
have at least degree 2. Hence, links will be added to interconnect nearby nodes with
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Table 1. Typical values for the Genetic Algorithm
parameters.

Number of parents per population 20–40

Number of children per population 20–40

Number of mutants per population 5–10

Number of generations 5–20

a low degree. On the other hand very high node degrees usually lead to high network
costs, so (long) links between two nodes with a high node degree may be removed.

2. Topologies containing traversing links—i.e. links that are crossing each other—usually
lead to a higher network cost than topologies without traversing links, without providing
extra connectivity. Hence, two traversing links are omitted and replaced by non-
traversing links (if these links are not present yet).

3. If the line system costs (c2) are high when compared to the cable cost (c1), introducing
additional links in a network with link-connectivity 2 may decrease the overall network
cost (due to shorter routing paths).

4. After the calculation of the link-connectivity matrix of the topology, links may be added
between nodes with a mutual connectivity below 2. On the other hand, long links that
interconnect nodes with a very high mutual connectivity may be removed to reduce the
network cost. If needed, this process of evaluating the connectivity of the network and
adding/removing some links can be repeated.

The routines 1, 2 and 3 are rather rough heuristics to correct some major shortcomings of
a chromosome quickly, while routine 4 is a refined method using more CPU time. The
influence of these 4 routines on the quality of the final solution was tested extensively and
turned out to be quite significant. The importance of including problem specific methods
in a Genetic Algorithm to increase the search efficiency has also been observed for a wide
range of other optimization problems (Michalewicz, 1997).

Some typical values for the most important Genetic Algorithm parameters are shown in
table 1. In general, the algorithm turns out to be very robust and not very sensitive to the
exact parameter values, so fine tuning of the values is not very useful.

3. Spare Capacity Allocation (SCA)

The SCA algorithm starts from a fixed topology and a fixed working capacity assignment.
The objective is to allocate enough spare capacity to allow full link restorability of single
link failures at minimum cost (using one modularitym, e.g. m = 16 if we use STM-16
fiber systems). Moreover, to be suited for use in the Zoom-In approach (see Section 4), the
algorithm should be able to provide rather good solutions quickly and very good solutions
during a long run.

The algorithm consists of three phases: a minimal spare capacity allocation procedure,
a rough spare capacity addition and a tightening phase (see figure 4).
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Figure 4. Spare capacity allocation (SCA) algorithm.
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3.1. Phase I: minimal spare capacity allocation

Starting from the working capacity assignment on each link, a simple and extremely fast
method can be used to assign some initial spare capacity on the links. Indeed, if several
links l1, l2, . . . , l i form a chain,4 the spare capacitys(l x), 1≤ x ≤ i , on the linkl x must be
at least as big as the working capacityw(l y) on any other linkl y of the chain (due to the
principle of link restoration):

s(l x) ≥ max
1≤y≤i,y6=x

w(l y) 1≤ x ≤ i

Furthermore the spare capacity on each linkl x can be augmented without any additional
cost as long as no additional line system is needed:

s(l x) := m

⌈
s(l x)+ w(l x)

m

⌉
− w(l x)

After these spare capacity additions, we check whether all single link failures are fully link
restorable (using a maximum flow algorithm (Goldberg, 1988)). If so, the found spare
capacity allocation is optimal. If not, some spare capacity will be added in phase II.

3.2. Phase II: spare capacity addition

If the spare capacity allocation found in phase I turns out to be insufficient, we define an
initial threshold t on the spare capacitys(l x) on each linkl x. If s(l x) ≤ t , we add one or
morem-units5 of spare capacity on each link until the threshold is reached:

s(l x) := s(l x)+m ·max

(⌈
t − s(l x)

m

⌉
, 0

)
If not all single link failures are fully link restorable, we define new thresholds 2t, 3t, . . .
until full restorability is reached. Usually the initial thresholdt is chosen rather large (e.g.
20% of the average working capacity on a link), resulting in a second phase which is quite
fast (only a few threshold adaptations are needed) but inaccurate (inefficient usage of spare
capacity).

3.3. Phase III: spare capacity tightening

This last and most time-consuming phase starts from the solution found in the second phase
and tries to remove somem-units of spare capacity from the links. We repeatedly search
for the link (or one of the links) with most redundant units of spare capacity, by changing
the rerouting patterns in such a way that the considered link is avoided as much as possible,
while honoring the spare capacity restrictions on the other links. We then remove onem-
unit of spare capacity from the link with most redundant units. This procedure is repeated
until no redundantm-units of spare capacity are left. The philosophy behind removing only
onem-unit on a link at a time instead of removing as muchm-units as possible is based on
the intuitive notion that, by acting in a less greedy fashion, the final result will generally
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show a more uniform distribution of the spare resources throughout the network, leading
to a more efficient sharing of spare resources.

To speed up the tightening phase, we allow a rough, approximate search for the link with
most redundant spare units. For instance, in order to decide from which link anm-unit of
spare capacity should be removed, we can compare the links with respect to the number of
sparem-units orm/2-units on a link that are completely redundant (granularitym or m/2
instead of 1). This rough SCA algorithm is much faster and does usually not effect the
solution quality significantly.6

Remark: The extension of the algorithm towards multiple facility types is straightforward.
For instance, let us assume that the three facility types STM-16, STM-4 and STM-1 are
considered and that the cost of an STM-16 is twice the cost of an STM-4 and four times
the cost of an STM-1 (economy of scale principle). Then, since the STM-16 fiber systems
are the most cost-effective option (lowest cost per capacity unit), we first execute the three
phases of the SCA algorithm form= 16, resulting in a capacity allocation with only STM-
16 line systems. Then the tightening phase III is executed again, to replace some STM-16
systems by STM-4 and/or STM-1 systems, by adapting the rerouting pattern if necessary.
Since the removal of an STM-16 by one STM-1 provides now the highest cost saving per
removed capacity unit, we start by repeatedly searching for a link with 15 redundant units of
capacity and replacing one of the STM-16s on this link by an STM-1, leading to a cost saving
corresponding to 0.75 STM-16s. If no links with 15 redundant units are left, we repeatedly
search for links with 12 redundant units (replacing an STM-16 by an STM-4, cost saving
0.5 STM-16s) and finally we check the links with redundancy 11 (replacing an STM-16
by an STM-4 and an STM-1, cost saving 0.25 STM-16s). It must be stressed that this
multi-facility extension of the SCA algorithm is not a simple link-by-link optimization of
the single-facility STM-16 solution, since an adaptation of the rerouting pattern is possible
at each facility replacement.

4. Zoom-In algorithm

A sequential three-phase approach to handle the SDH mesh restorable network design
problem (defined in Section 1) seems natural. One could start by designing a suitable
link topology, connecting all the nodes while satisfying certain connectivity constraints to
ensure some reliability (see for instance Monma and Shallcross (1989)). Once the topology
is fixed, one could design the routing pattern and assign sufficient working capacity on each
link. In the third phase, one starts from a given topology and working capacity assignment
to calculate the needed spare capacity on the links to ensure full link restorability of single
link failures (see for instance Grover, Bilodeau, and Venables (1991)). The advantage of
such a sequential approach is its calculation speed: by dividing the overall design problem
in three subproblems that are solved independently, the final solution is found relatively
quickly (or, stated otherwise, we can design bigger SDH networks within a reasonable
calculation time). However the interdependence of the three subproblems is neglected, e.g.
the topology choice has an influence on the capacity costs and the routing of the working
traffic has a certain impact on the spare capacity cost. As a consequence, the separation of
the three subproblems might lead to low quality solutions (i.e., high costs).
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To overcome this disadvantage, one could tackle the design problem as a whole: the
relations between the three subproblems described above are fully taken into account. Such
an integrated approach makes it the possible to create high quality solutions. However, the
required resources, calculation time and memory requirements, are usually much higher
than for the sequential approach. As a consequence, only smaller problem instances can
be solved in practice. To design bigger networks simplifying assumptions or premature
termination of the algorithm must be applied to reduce the calculation time and/or memory
requirements. These measures however affect the solution quality.

The problems encountered with these two fundamentally different approaches give rise
to a new approach which forms a compromise between the sequential and the integrated
approach: a Zoom-In strategy. The ‘zooming-in’ philosophy is applied with respect to both
the accuracy of the solution and the search effort. At the first stage(s) of the algorithm a rough
solution is constructed, based on simplifying assumptions. As the algorithm proceeds, more
accurate models are used and the search effort is increased. The final stage of the algorithm
takes all problem details into account and performs a thorough and detailed search.

The Zoom-In strategy is also reflected in the evolution of the optimization techniques
that are used in the algorithm. Global construction heuristics are used in the beginning,
eventually combined with some random elements to get a more global view of the solution
space. Afterwards, the emphasis shifts towards local improvement techniques where the
nature of searching becomes more deterministic.

The Zoom-In approach tries to combine the advantages of both the sequential approach—
its calculation speed—and the integrated approach—its high quality solutions. To achieve
this, a careful choice has to be made of the problem details to be considered in each phase
of the algorithm. This decision is typically based on a trade-off: considering an additional
aspect of the problem improves the solution quality, but also leads to an augmentation of
the required time and memory.

An additional advantage of the Zoom-In strategy is its flexibility. Depending on the time
or memory available, some problem details can be ignored during one or more phases.
On one hand, for small problem instances, we can incorporate a large number of problem
details from the beginning of the algorithm, leading to high quality solutions. On the other
hand, the Zoom-In approach is also useful for much bigger problem instances, since we
can ignore some problem details in the first phases of the algorithm to limit the calculation
time without losing too much on solution quality.

To apply the Zoom-In strategy to the SDH network design problem, the interactions
between topology design, working capacity assignment and spare capacity assignment
must be studied carefully. We finally opted for a four-phase algorithm (see table 2).

Table 2. Zoom-In approach applied to SDH network design problem.

Function Cost model Capacity assignment

I Creation of basic topology Simplified Approximation

II Local optimization of topology Simplified Approximation

III Local optimization of topology Exact Correct

IV Refinement of capacity assignment Exact Correct, refined
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The first and usually most important phase is a Genetic Algorithm which provides a good
basic topology, based on a simplified cost model and an approximate capacity assignment
procedure. The quality of this basic topology is checked and eventually improved in a
second phase. The third phase considers the correct cost model and capacity assignment
procedure. Again, the influence on the topology is checked. The working and spare capacity
assignment is refined in the last phase, using a fixed topology.

4.1. Phase I: creation of basic topology

In a first phase, a starting topology is built and an estimate of the needed link capacities is
made. The cost of the line systems is approximated by a function which is proportional to
the capacity on the link—based on the STM-16 fiber system costs—and the regenerator cost
is assumed to be proportional to both the capacity and the length of the link. Furthermore,
several simulations have shown that applying a bi-routing strategy represents a rather good
approximation for the exact spare capacity assignment procedure based on link restoration,
as long as the total amount of needed capacity remains roughly the same (i.e., if the factor
η, see Section 2, is properly chosen). A typical example is shown in figure 5.

Based on a randomly chosen topology, the factorη was set to match the total network
costs for the bi-routing and link restoration case. For this fixed value ofη, the total network

Figure 5. Network cost for a random set of topologies: bi-routing case vs. link restoration case.
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costs were then compared for a number of topologies, obtained by randomly applying
some minor modifications on the initial topology. Most scattered points in the figure are
located close to the first bisector, which illustrates the high correlation of the network cost
c(N) between the bi-routing case and the link restoration case. This relationship allows
us to reduce the calculation time by appling the bi-routing strategy in the first phase of the
algorithm. The Genetic Algorithm described in Section 2 is used to solve the resulting
ACSND problem.

4.2. Phase II: local optimization of topology (optional)

In a second phase, we still consider the ACSND problem. We try to improve the topology
found in the first phase using local improvement techniques. Several possibilities were
implemented: removing a link, adding a link or replacing a link by a new link. To restrict
the number of possible link replacements several criteria could be used, e.g., only substi-
tuting a link l x by a link l ′x if l x andl ′x have a common node, introducing an upper bound
on the length of the linkl ′x, introducing an upper bound on the angle between the linksl x

andl ′x.
The decision which local optimization techniques will be used is based on a trade-off

between the desired quality of the final solution and the calculation time. This second phase
may be omitted if the Genetic Algorithm already performed a thorough search through
the solution space, which usually yields a solution that cannot be improved anymore by
the above mentioned local optimization techniques. Especially if the relative importance
of cable installation cost is high when compared with the line system cost, the Genetic
Algorithm outperforms the local optimization technique by far.

4.3. Phase III: local optimization of topology using more detailed description

The third phase considers the correct cost model (as described in Section 1) which incorpo-
rates the discrete nature of capacity (STM-1, STM-4 and STM-16) and length (regenerators
placed at regular distances). Furthermore, the exact capacity allocation procedure is ap-
plied: the working capacity suffices to route the demand through the network during normal
operation and the spare capacity allows to reroute the traffic affected by a single link failure
using a link restoration scheme. This phase is meant to examine the influence of the changes
with respect to the cost model and capacity assignment on the topology. We again try to
improve the topology found in the second phase by removing, adding or replacing a link.

Extremely long calculation times to evaluate the overall network cost for a certain topol-
ogy are avoided by fixing the routing strategy for the demand (working capacity along
shortest path) and by applying the rough SCA algorithm (see Subsection 3.3). Never-
theless, the evaluation time is usually much higher than for the bi-routing based capacity
assignment procedure used in the first two phases. This indicates the benefit of running the
second phase before starting the third phase: if necessary, some serious shortcomings on
the topology can be solved quickly in the second phase and only the ‘finishing touch’ on
the topology is performed by the slower third phase.
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4.4. Phase IV: refinement of capacity assignment

This final phase leaves the topology unchanged and refines the working and spare capacity
assignment, respectively.

For the working capacity assignment, we consider two possible paths for each node-to-
node demand: the shortest path and the shortest path which is link-disjoint from this shortest
path.7 By dividing each demand between its two possible paths, we try to obtain a cheaper
overall (working and spare) capacity allocation. The refinement of the working capacity is
performed in two steps. First we try to reduce the overall cost by switching a node-to-node
demand completely from its present path to its alternative path and recalculating the spare
capacity based on this altered working capacity allocation, using the rough SCA algorithm.
Since the switching of a node-to-node demand from its shortest path to its alternative path
tends to be more effective if the alternative path is as short as possible, the node-to-node
demands are enumerated according to increasing length difference between shortest and
alternative path. This procedure is repeated until any switching of a node-to-node demand
yields a solution which is at least as expensive as before: a local optimum is reached. In
the second step, we examine what happens when we switch one unit from the present path
to the alternative path or vice versa, until no improvements can be found anymore. Since
no fractional division of demands is allowed, the working capacity refinement stops here.
Note that this working capacity refinement is in fact also based on the Zoom-In strategy: we
first examine some drastic changes on the working capacity and only if the local optimum
is reached, the influence of small changes is checked.

Once the working capacity is fixed, we try to refine the spare capacity allocation by
examining the influence of the granularity of the redundant spare units (see Subsection 3.3,
refined tightening phase). The tightest spare capacity allocation is retained.

5. Numerical examples

The Zoom-In algorithm was tested on several quite different problem situations: we stud-
ied situations where no cables are present yet (so-called ‘green-field’ or ‘desert’ problem
instances) as well as situations with some cables already installed and we varied the scale
of the network (international, national and regional networks), the size of the network (8 to
50 nodes) and the density of the demand matrix. The calculation times ranged from a
few seconds to about 24 hours,8 depending mainly on the size of the network, but also on
the number of commodities and the relative importance of cable cost versus line system
cost. For all these problem instances, the memory requirements stayed largely below the
available resources.

As an example, two 20-node green-field problem instances are discussed in detail below:
a national and a regional network. The problems are identical with respect to the node
locations and demand matrix (39 commodities, ranging from 1 to 20 VC-4’s), but the scale
is different: the network diameters are 300 km and 30 km, respectively. The cable cost
is 2 MBF/km. Three types of fiber systems were considered, the corresponding costs are
mentioned in table 3. The regenerator interleaving distance is 50 km, independent from the
fiber system.
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Table 3. Cost of line systems and regenerators for different
fiber systems.

Line systems (MBF) Regenerators (MBF)

STM-1 1.0 0.025

STM-4 1.8 0.050

STM-16 3.5 0.100

Figure 6. Evolution of the overall network cost (national problem instance).

5.1. Case study I: national network

The evolution of the overall cost of the temporary solution is shown in figure 6. The Genetic
Algorithm (phase I) founds a first feasible solution with a cost of 3175 after 0.5 seconds.
Gradually, better solutions are found until an excellent solution with a cost of 3013 is
encountered after 3.4 seconds. No better solutions are found until the end of the Genetic
Algorithm and the found solution turns out to be optimal when compared with ‘neighbor’
networks with one link more, one link less or one replaced link (phase II). After 25.8 seconds
the first two phases of the Zoom-In algorithm are finished. From the third phase on, the
correct cost model and capacity assignment procedure are introduced. This transition of
cost model and capacity assignment procedure leads to a gap in the cost evolution from
3013 to 3032. Again, the algorithm searches for better neighboring networks (phase III),
in vain. In the last phase, the capacity assignment is refined, leading to a first improvement
by switching the working path of a node-to-node demand completely to its alternative path
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Table 4. Components of national network.

Component Number Cost (MBF)

Cable 1200.4 km 2400.8

STM-1 line systems 1 1

STM-1 regenerators 1 0.025

STM-4 line systems 0 0

STM-4 regenerators 0 0

STM-16 line systems 165 577.5

STM-16 regenerators 109 10.9

Total 2990.225

Figure 7. National network design (topology, working and spare capacity).

(cost 3010) and a second improvement is performed by switching 3 units from a working
path to an alternative path (cost 2990). Varying the granularity of the redundant spare units
in the SCA algorithm does not yield better solutions and the program terminates after 47.2
seconds. The final topology and capacity allocation are shown in figure 7, the different
components of the overall cost are mentioned in table 4.

When examining the evolution of the overall network cost, we notice that the topology
found by the Genetic Algorithm in phase I is not improved by the second and third phase.
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This is caused by several reasons. Firstly, several experiments showed that the Genetic
Algorithm performs best in situations where the relative importance of the cable cost versus
the line system cost is high—as is the case here: ratio 80%/19%, see table 4—, leading to
sparse networks. Furthermore, a local optimization technique based on adding, removing
or replacing a link is more powerful in the opposite situation of dense networks.9 This
examination of the strengths and weaknesses of the first two phases explains the lack of
improving moves in phase II. Since we are dealing with a cost dominated by the cable
installation here, the adaptation of the capacity assignment procedure from a bi-routing
strategy towards a working and spare capacity allocation based on link restoration has no
big influence on the cost of a solution. As a consequence, the topology found in phase I
turns out to be locally optimal with respect to the correct capacity assignment procedure
too (phase III).

When considering the type of line systems used to build the network (see table 4), a
clear predominance of STM-16 line systems is noticed. This is due to the high demand
requirements on one hand and the economy of scale principle on the other hand: two
STM-4 line systems (providing 8 VC-4 channels) are more expensive than 1 STM-16 line
system (providing 16 VC-4 channels). As a consequence, the working paths and certainly
the spare paths strive towards a distribution throughout the network that fills the available
STM-16 fiber systems as good as possible and uses as few STM-4 and STM-1 line systems
as possible.

The cost of the regenerators is only 0.4% of the total cost, hence the influence on the topol-
ogy choice and capacity allocation is almost negligible. Regenerators are only important
when international networks with high demands are considered (long distances combined
with big capacity requirements).

5.2. Case study II: regional network

When tackling the 30 km diameter problem instance, the overall cost of the temporary
solution changes as shown in figure 8.

The final topology and capacity allocation are shown in figure 9. Table 5 mentions the
different components of the overall cost (no regenerators are needed: short distances).

Now the relative importance of cable cost versus line system cost is much smaller (due
to the smaller distances): the final solution shows a ratio of 52%/48%. As a consequence
the topology is much denser (see figure 9).

When we compare the evolution of the algorithm for the regional network (figure 8)
with the national network (figure 6), some striking differences are noticed. Firstly, the total
calculation time is much bigger for the regional network: a problem instance with about a
fifty-fifty ratio of cable cost versus line system cost is usually much harder to solve than
a problem instance dominated by the cable cost. Secondly, the relative importance of the
four phases has changed. Whereas the second and the third phase were in fact useless for
the national problem instance, these phases clearly show their use for this example. Indeed,
local optimization techniques based on adding, removing or replacing a link become more
powerful when we are dealing with dense networks.
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Figure 8. Evolution of the overall network cost (regional problem instance).

Figure 9. Regional network design (topology, working and spare capacity).
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Table 5. Components of regional network.

Component Number Cost (MBF)

Cable 161.5 km 323.0

STM-1 line systems 2 2

STM-4 line systems 4 7.2

STM-16 line systems 83 290.5

Total 622.7

6. Comparison with other techniques

In this section the results of the main building blocks of the algorithm and the overall
Zoom-In algorithm are compared with some results found in literature.

6.1. ACSND problem

One possible way to trace the performance of a Genetic Algorithm is to compare the obtained
results with optimal solutions found with Integer Linear Programming techniques (see for
instance also Karunanithi and Carpenter (1997) for such a comparison). However, due
to the intrinsic complexity of the ACSND problem, only for some special cases (e.g. the
Traveling Salesman Problem) we were able to find guaranteed optimal solutions using an
integer programming code based on the work done in Stoer (1992) and Gr¨otschel, Monma,
and Stoer (1995). In these simple cases, the Genetic Algorithm reached the global optimum
rather quickly. In more general cases an optimality check was not possible. However, an
examination of the evolution of chromosomes in the Genetic Algorithm shows that the best
solution is not found ‘by accident’: a lot of chromosomes, mostly obtained after several
crossover operations, are nearly as good as the best solution.10 Furthermore, the strength of
the Genetic Algorithm for sparse networks, eventually combined with the strength of the
local optimization search in phase II for dense networks, gives rise to an algorithm which
is suited for a broad spectrum of ACSND problems.

6.2. Spare capacity assignment

The SCA algorithm allocates the spare capacity in a network with link modularity (e.g. 16 for
STM-16 fiber systems) to allow full link restorability of single link failures. This problem
was also tackled in Sakauchi, Nishimura, and Hasegawa (1990) and Grover, Bilodeau,
and Venables (1991), describing a LP approach and a heuristic algorithm SLP for the
near-optimal assignment of spare capacity, respectively. These papers mention a problem
instance with 11 nodes and 23 links based on OC-12 link modularity. The solution based
on a LP approach uses 164 OC-12 fiber systems (see figures 3 and 4 in (Sakauchi, 1990)),
the SLP algorithm yields a slightly better solution with 163 fiber systems (see figure 3b in
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Figure 10. Spare capacity allocation (mod. 12) by SCA algorithm.

(Grover, 1991)). We tested the refined11 SCA algorithm on this problem instance, yielding
a capacity assignment that uses 163 OC-12 fiber systems (see figure 10). This solution
is capacity-equivalent but not identical to the SLP solution and slightly better than the LP
based solution, using very few calculation time resources (1.1 seconds).

6.3. Working and spare capacity assignment

The overall capacity assignment procedure, as described in Subsection 4.4, is based on the
assumption that considering only two disjoint paths for the working traffic suffices to create
a cost-effective capacity distribution. Stated otherwise, considering a much higher degree
of bifurcation of the working traffic (i.e. considering a higher number of possible working
paths) usually won’t lead to a big additional reduction of the overall capacity cost. In fact,
the philosophy behind this approach is the flexible nature of spare capacity, which allows to
make efficient use of the available capacity due to the imperfect filling of the lastm-unit on
a link by the working capacity and moreover allows to compensate for local accumulations
of working capacity.

To verify this assumption, some experiments were carried out on a set of random problem
instances. We compared the results with an ILP method which constructs the optimal
solution of a related problem: the cheapest capacity allocation is constructed which allows
a routing of the traffic under normal conditions and provides enough spare capacity to
ensure full link restorability of single link failures, whenfractional flow variables are
allowed (Poppe, 1997). The set of possible solutions of the latter problem includes all
possible solutions of the SDH capacity problem—which requires integer flow variables—,
hence the solution found with the ILP technique provides a lower bound for the SDH
problem. The average gap between the solutions found with the method of Subsection 4.4
and the ILP solutions was 1.1%. The ILP solutions usually contained a lot of non-integer
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Table 6. Comparison of (working+ spare) capacity assignment with ILP lower bounds.

Lower bound (ILP) Found solution (phase IV) Gap (%)

Case study I 166 166 0.0

Case study II 86 87 1.2

flow variables, so the actual gap between the found solution and the optimal solution
might even be smaller. From these experiments, we can conclude that considering only
two disjoint paths for the working traffic usually has little or no influence on the solution
quality.

As an example, the number of STM-16 line systems obtained in the (slightly adapted)12

case studies I and II (see Section 5) were also compared with the lower bounds obtained by
the ILP method, see table 6.

6.4. Overall problem: design of SDH mesh restorable network

The Zoom-In approach can be described as an integrated approach with some adaptations
to avoid excessive calculation time. The algorithm described in Section 4 is in fact based
on two main assumptions:

1. The exact type of capacity assignment (based on bi-routing in phases I and II, exact
working and spare assignment in phase III and IV) has no big influence on the choice
of the topology or at least, the drawbacks of a topology choice based on an approximate
capacity assignment can be eliminated almost completely by local improvement of the
topology in phase III.

2. The fast capacity allocation procedure used in phase III (working capacity along short-
est path, rough SCA algorithm to assign spare capacity) is sufficiently accurate to
measure the influence of the capacity on the topology choice. As a consequence, the
refined capacity allocation procedure in phase IV can be carried out on a fixed
topology.

To give an impression of the impact of these assumptions on the calculation time, we
estimated the time needed to design a SDH mesh restorable network for case study I
(see Subsection 5.1) when all capacity allocation refinements were considered from the
beginning of the algorithm: 2300 seconds instead of 47 seconds! It is clear that this inte-
grated approach does not leave us any hope of tackling large problem instances (e.g. 50
nodes) within a reasonable calculation time.

To check whether the assumptions mentioned above are justified, some experiments were
carried out to get an indication of the quality of the overall solution. Due to the intrinsic
complexity of the overall problem, verifying the optimality of the solutions of the Zoom-In
algorithm is only possible for small problem instances. The algorithm was tested on a
problem instance with 8 nodes, 13 candidate links and 13 commodities, taken from Gavish
et al (1989). This problem was solved to optimality in Poppe and Demeester (1997), using
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Table 7. Comparison of solution quality of ILP algorithm and Zoom-In algorithm
(same calculation times).

ILP solution (MBF) Zoom-In solution (MBF) Gap (%)

Case study I 3038 2981 1.2

Case study II 649 633 2.5

a sophisticated branch-and-cut-and-price algorithm, based on an integrated ILP approach.
The result obtained with the Zoom-In algorithm was 562.2 (calculation time: 9.1 seconds),
the global optimum for this problem instance.

The Zoom-In algorithm and the branch-and-cut-and-price were also compared for a set
of bigger random problem instances. Due to time and memory restrictions it was not
possible to search the whole branching tree for these bigger problems: the ILP algorithm
was ended after examining a number of branching nodes. To be able to compare the
quality of the results, the calculation time of the Zoom-In algorithm was also restricted (by
decreasing the number of possible moves in local optimization procedures) not to exceed
the time needed by the ILP algorithm. On the average, the solutions found with the Zoom-
In algorithm were 1.3% cheaper than the ILP solutions (standard deviation: 0.85%). The
simulation results show the intrinsic advantage of a Zoom-In approach when compared
to an integrated approach: by carefully balancing the impact of introducing a simplifying
assumption on the solution quality on one hand and the calculation time on the other hand
in each phase of the algorithm, a method can be developed which produces better results
than an integrated approach within the same time. Furthermore, the memory requirements
of the Zoom-In algorithm are very modest, even for large problem sizes (e.g., 50 nodes).
In realistic situations, the calculation time will be the limiting factor.

As an example, the results for the two (slightly adapted)13 case studies in Section 5 are
compared in table 7.

7. Conclusions

An algorithm has been developed for the near-optimal design of SDH mesh restorable
networks. The technique is based on several building blocks such as a type of Genetic
Algorithm to design an initial topology, local optimization procedures to adapt the topology
to a specific capacity assignment procedure and a SCA algorithm to assign spare capacity
to ensure full link restorability of single link failures. To combine these building blocks
into an overall method, a Zoom-In strategy is applied: the algorithm gradually moves from
a rough solution based on an approximate problem description towards a refined solution
taking all problem details into account. This novel approach, which forms a compromise
between a sequential and an integrated method, aims at combining the advantages of both
approaches.

The algorithm was tested extensively on several different problem instances and the
results were compared with other techniques mentioned in literature. These experiments
show that the Zoom-In algorithm is a quite promising technique which is able to deliver
high quality solutions using modest time and memory requirements. Furthermore, the used
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approach provides a flexible framework with respect to changing problem formulations:
usually only some minor modifications are needed to tackle related problems. Ongoing
work is studying the introduction of other restoration mechanisms and modeling more
complex failure scenarios.
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Notes

1. The described algorithm can also be used to design similar networks, e.g. based on the SONET technology.
2. With at least link-connectivity 2, to allow bi-routing along link-disjoint paths.
3. A bad part of a topology is a part that typically leads to solutions with link-connectivity<2 or a high network

cost.
4. A chainl1 − l2−, . . . ,−l i is an ordered list of links wherel x andl x+1 have a common node and the degree

of this node is exactly 2,∀x ∈ {1, 2, . . . , i − 1}.
5. An m-unit of capacity is a block ofm capacity units (corresponding to one fiber system).
6. Another possibility to speed up the tightening phase is to add an intermediate phase between phase II and III,

where we remove allm-units of spare capacity that are not at all used by the rerouting determined at the end
of phase II (for any link failure). However, such an intermediate phase usually does not significantly reduce
the spare capacity of phase II, since the considered rerouting pattern at the end of phase II is typically using
up most of the spare capacity in the close neighborhood of the failing link and little or no spare capacity far
from the failing link. This inefficient usage of the spare resources can not be corrected by the intermediate
phase.

7. The requirement of the second path to be link-disjoint with respect to the first path is based on the intuitive
notion that this choice allows a thorough redistribution of the working capacity allocation, if needed.

8. All calculation times mentioned in this paper are measured on a Pentium Pro 200 Mhz PC with 32Mbyte
internal memory.

9. As an example, we also studied the situation where phase I was omitted: phase II starts from a topology
without links and moves towards better networks using local optimization. This way, the first feasible result
was obtained after 7.5 seconds (cost 4101) and the final result of phase II was 3047 after 130 seconds, i.e.
1.1% worse than the result based on phase I using up much more calculation time. Several tests on other
random problem instances confirmed this behavior, clearly indicating that the Genetic Algorithm generally
outperforms the local optimization technique by far in the case of sparse networks.

10. We refer to Pickavet et al. (1997) for a more detailed discussion of the solution quality obtained with the
Genetic Algorithm.

11. I.e. in phase III of the SCA algorithm, we repeatedly remove one 12-unit of spare capacity from the link with
most redundant spareunits.

12. We considered only STM-16 fiber systems and the regenerator cost was neglected. As can be seen from the
results in section 5 (Tables 3 and 4), these restrictions have no big influence on the final result.

13. Again, only STM-16 fiber systems were considered and the regenerator cost was neglected.
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