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Planning UMTS Base Station Location: Optimization
Models With Power Control and Algorithms
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Abstract—Classical coverage models, adopted for second-gen-
eration cellular systems, are not suited for planning universal mo-
bile telecommunication system (UMTS) base station (BS) location
because they are only based on signal predictions and do not con-
sider the traffic distribution, the signal quality requirements, and
the power control (PC) mechanism. In this paper, we propose dis-
crete optimization models and algorithms aimed at supporting the
decisions in the process of planning where to locate new BSs. These
models consider the signal-to-interference ratio as quality measure
and capture at different levels of detail the signal quality require-
ments and the specific PC mechanism of the wideband CDMA air
interface. Given that these UMTS BS location models are nonpoly-
nomial (NP)-hard, we propose two randomized greedy procedures
and a tabu search algorithm for the uplink (mobile to BS) direction
which is the most stringent one from the traffic point of view in the
presence of balanced connections such as voice calls. The different
models, which take into account installation costs, signal quality
and traffic coverage, and the corresponding algorithms, are com-
pared on families of small to large-size instances generated by using
classical propagation models.

Index Terms—Code-division multiple access (CDMA), optimiza-
tion algorithms, optimization models, planning, power control
(PC), universal mobile telecommunication system (UMTS).

I. INTRODUCTION

W ITH THE extraordinary success of mobile communica-
tion services, service providers have been affording huge

investments for network infrastructures. Due to the high costs
and the scarcity of radio resources, an accurate and efficient
mobile network planning appears of outmost importance. With
the rapid growth of network size and number of users, efficient
quantitative methods to support decisions for base station (BS)
location have become essential. This need is now even more
acute with the advent of third-generation systems, such as uni-
versal mobile telecommunication system (UMTS), due to the
increased complexity of the system and the number of parame-
ters that must be considered [1]–[3].

The problem of planning second-generation cellular systems
adopting a time-division multiple access (TDMA)-based access
scheme has usually been simplified by subdividing it into a
coverage planning problem and a frequency planning problem
which are driven by a coverage and, respectively, a capacity
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criterion [1], [3], [4]. In the coverage planning phase, BSs are
placed so that the signal strength is high enough in the area to be
served [5]–[9]. This step only makes use of propagation models,
such as for instance Hata’s model, to predict the signal levels
(see, e.g., [10]). In the frequency planning phase, a set of chan-
nels has to be assigned to each BS [11], [12], taking into account
the traffic requirements and the service quality measured as the
signal-to-interference ratio (SIR).

With the wideband code-division multiple access
(W-CDMA) air interface of UMTS, this two-phase ap-
proach is not appropriate mainly because the bandwidth is
shared by all active connections and no actual frequency
assignment is strictly required. The access scheme allows for a
more flexible use of radio resources and the capacity of each
cell (e.g., the number of connections) is not limiteda priori
by a fixed channel assignment as in TDMA systems, but it
depends on the actual interference levels which determine
the achievable SIR values. As these values depend on both
traffic distribution and BS positions, BS location in UMTS
networks cannot only be based on coverage but it must also be
capacity driven [3]. Indeed, interference levels are functions
of the emitted powers which, due to apower control (PC)
mechanism, depend on the mobile station positions. Since the
power available for transmission is limited, mobile stations
that are far away from the BS may not reach the minimum
SIR when the interference level is too high. Therefore, the area
actually covered by each BS is heavily affected by the traffic
distribution and its size can vary when the interference level
changes (this is the so-calledcell breathingeffect). It is worth
emphasizing that, since interference levels depend both on the
connections within a given cell and on those in neighboring
cells, the SIR values and the capacity are highly affected by the
traffic distribution in the whole area.

The planning phase of cellular networks usually takes as
input the following kind of information related to the service
area: 1) a set of candidate sites where BSs can be installed;
2) the traffic distribution estimated by using empirical pre-
diction models; and 3) the propagation description based on
approximate radio channel models or ray tracing techniques.
The main purpose of planning is then to select the sites where
to install the BSs taking into account different aspects such as
costs, signal quality, and service coverage.

As we shall see in Section II, there has been so far little work
on optimizing BS locations for UMTS networks and, to the best
of our knowledge, none of the proposed models considers the
impact of traffic distribution, signal quality requirements, and
PC mechanism at an adequate level of detail. In this paper, we
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propose and investigate discrete optimization models aimed at
supporting the decisions in the process of planning where to lo-
cate new BSs. Our models differ in how closely they capture the
peculiarities of the signal quality constraints and the PC mech-
anism of the UMTS W-CDMA air interface. The focus here is
on the uplink direction (mobile to BS), which turns out to be the
most stringent one from the system capacity point of view in the
presence of full-duplex balanced connections such as voice calls
(see, e.g., [13] and [14]). Models for the downlink direction are
presented in [15] and [39].

In Section II, we discuss the main radio network planning
issues pertaining to UMTS BS location and comment on
previous work. In Section III, we propose and analyze mathe-
matical programming formulations of this general problem for
the W-CDMA setting considering the two most common ways
to model the PC mechanism. In Section IV, we describe three
heuristics: randomized greedy and reverse greedy procedures
as well as a tabu search (TS) algorithm. Computational results
obtained with realistic instances are reported and discussed in
Section V. Finally, Section VI contains some concluding re-
marks. Preliminary versions of part of this work were presented
in [16] and [17].

II. RADIO PLANNING ISSUES FORUMTS

UMTS [18] is the third-generation mobile communication
system standardized by ETSI, the European Telecommunica-
tions Standard Institute, and is also considered by ITU (Inter-
national Telecommunication Union) among the standards for
the International Mobile Telephone standard 2000 (IMT-2000)
family.

One of the two access schemes to be used in the assigned
spectrum is based on W-CDMA and frequency-division du-
plexing. The main characteristic of CDMA is its flexibility in
the use of radio resources. In particular, there is noa priori
limit on the number of simultaneous connections per cell (hard
capacity) as with TDMA systems, and resources are dynam-
ically assigned according to interference levels and traffic
distribution (soft capacity) [13]. However, this clearly implies
an increased complexity in the network planning process and
more involved access control procedures. Ad hoc planning and
optimization strategies for the CDMA technology are, thus,
needed to actually exploit this additional flexibility [3].

Spreading codes used for signals transmitted in downlink by
the same BS are mutually orthogonal, while codes used for sig-
nals emitted by different stations (base or mobile) can be consid-
ered as pseudorandom due to the scrambling sequence [19]. In
an ideal environment, the despreading process performed at the
receiving end can completely avoid interference of orthogonal
signals and reduce that of nonorthogonal ones by thespreading
factor(SF), which is the ratio between the spread signal rate and
the user rate. In wireless environments, due to multipath prop-
agation, the interference of orthogonal signals cannot be com-
pletely avoided and the SIR is given by

(1)

where is the received power of the signal, is the
total interference due to the signals transmitted by the same BS
(intracell interference), that due to the signals emitted by
the other BSs (intercell interference),is the orthogonality loss
factor , and the thermal noise power. In the uplink
case, no orthogonality must be accounted for and .

Since the quality of the received signal, usually expressed in
terms ofbit error rate, mainly depends on the SIR, it is common
to consider quality constraints requiring that the SIR exceeds a
minimum value which may vary according to the communi-
cation service considered (voice, video, packet data, etc.). For
the sake of simplicity, in the sequel, we refer to the minimum
SIR before despreading as .

A simplified and commonly adopted model [20] assumes that
the interference due to the neighboring cells can be ex-
pressed as a fractionof the interference due to the other trans-
missions in the same cell, so that the SIR can be expressed as

(2)

where the thermal noise is omitted since it is assumed to be
much smaller than the interference. This simplified model is ac-
curate when the traffic distribution among cells is homogeneous,
while it is inappropriate in all the other cases where the contri-
bution to intercell interference is different for each cell. Values
of in the 0.3–0.5 range are usually considered.

A. PC and Capacity Constraints

As mentioned above, the SIR depends on the received powers
of the considered signal and of the interfering ones. These in
turn depend on the transmitted powers and the attenuation of the
radio link between sources and receivers. According to propa-
gation conditions, the transmitted power can be adjusted by the
PC mechanism so as to minimize interference and guarantee
quality. Two PC mechanisms are commonly considered: one
based on the received power and the other one on the estimated
SIR. In the first one, the transmitted power is adjusted so that the
power received on each channel is equal to a given target value

. Similarly, in the second one, the transmitted power is
set so that the SIR is equal to a target value . The
latter mechanism, adopted for UMTS dedicated channels [18],
is more complex since the power emitted by each station de-
pends on that emitted by all the others, but more efficient since it
allows for the use of lower powers [21]. Therefore, from a plan-
ning prospective, assuming a power-based PC mechanism in-
stead of an SIR-based one leads to a conservative dimensioning
which may allocate more radio resources than necessary.

Both in the case of power-based or SIR-based PC mecha-
nisms, the transmitted powers are adjusted considering some
power limits. In particular, a limit on the maximum power used
for each radio channel must be considered both for uplink and
downlink. Moreover, for the downlink case only, a constraint on
the total power emitted by the BS must be added. Therefore, the
actual power emitted on a channel is the minimum between that
provided by the PC mechanism and the maximum value.

From a planning point of view, the effect of the power bounds
and SIR constraints is to limit the capacity of the system. In
the presence of power-based PC, as new users are added to the
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system, the SIR values of all the other users decrease until one
falls below the lowest acceptable quality level . No ad-
ditional user can then be served. In the presence of SIR-based
PC, signal quality is guaranteed by keeping the SIRs at a con-
stant target value . When new users are
added, the emission powers required to keep the SIRs equal to

increase until the power limit is exceeded and, hence,
the SIR falls below the target value. In both power-based and
SIR-based cases, the capacity is affected by user positions and
propagation conditions. Indeed, the capacity depends on the in-
terference generated by user-BS transmissions which, in turn,
depends on the emitted powers, which are strongly related to the
relative positions and the radio link propagation factors. Since
each user-BS transmission generates interference not only in its
own cell but also toward all the other cells, it is as if each user in-
volved in a connection “absorbs” a fraction of the capacity from
all BSs.

B. Related Work

Classical coverage optimization models do not consider SIR
constraints but only constraints on the received power levels in
the service area. In [22], the traffic distribution is described by
means ofdemand nodeswhich represent the center of an area
characterized by a given traffic demand (usually expressed in
Erlang). Using the demand node characterization, the coverage
problem is then defined by considering the signal level in each
node from all BSs and requiring that at least one level is above
a fixed threshold. A common objective of the optimization
process is that of finding the smallest set of BSs covering all
demand nodes (see, e.g., [6] and [7]). In [23] and [24], traffic
capacity constraints are also added for each BS. A different
coverage model is adopted in [5], where the position of trans-
mitters is selected from continuous three-dimensional space
so as to minimize the sum of path losses of the links to all
receivers.

A few recent works address network planning problems for
CDMA systems and, in particular, for UMTS. However, some
of them still rely on a classical coverage approach: In [25], a
simple model based on the minimum dominating set problem is
considered while in [26], the traffic capacity is also taken into
account and the resulting classical capacitated facility location
problem is tackled with a TS algorithm. In [27], a different ap-
proach is adopted: A maximum independent set of vertices is
searched for in a graph in which vertices represent candidate
sites and edges correspond to pairs of sites whose BSs would
have coverage areas with too much overlap.

In [28], a simplified model for locating BSs in CDMA-based
UMTS networks, which partially takes into account interfer-
ence, is proposed and a polynomial time approximation scheme
is presented. However, only intracell interference is considered
while the crucial aspect of the interference among BSs (inter-
cell one) is neglected. As we shall see in Section III-A, even
if the intercell interference is assumed to be a nonzero fraction
of the intracell interference, in the uplink case, each interference
constraint amounts to impose a simple upper bound on the max-
imum number of active connections with the corresponding BS.

III. BS LOCATION MODELS

Since, to the best of our knowledge, some crucial issues of
the planning problem for CDMA-based UMTS networks have
not yet been captured, we propose and investigate different
mathematical programming models for the UMTS BS location
problem that account for intercell interference in the SIR con-
straints and for the PC mechanism. As previously mentioned,
the focus here is on the uplink direction with power-based as
well as SIR-based PC mechanism.

In this work, we make two simplifying assumptions. First, we
assume that each connection is assigned to a single BS. There-
fore, we do not explicitly account for soft-handover which al-
lows a mobile terminal to be simultaneously connected with a
set of BSs. It is worth noting, however, that our assumption is
on the conservative side from a planning point of view since
soft-handover tends to increase the SIR values. A simple way
to account for this feature is that of including an additional
margin on the SIR constraints (i.e., of selecting a lower ).
Second, we assume that the number of available spreading codes
is higher that the number of connections assigned to any BS.
This assumption is clearly satisfied in the uplink direction since
there is a very large number of nonorthogonal codes.1

A. Basic Model

Consider a territory to be covered by a UMTS service. As-
sume that a set ofcandidate sites where a BS
can be installed, is given and that an installation costis as-
sociated with each candidate site . A set of test points
(TPs) is also given. Each TP can be con-
sidered as a centroid where a given amount of traffic(in Er-
lang) is requested and where a certain level of service (measured
in terms of SIR) must be guaranteed [6]. The required number
of simultaneously active connections for TP, denoted by ,
turns out to be a function of the traffic demand, i.e., .
The actual definition of the function is a degree of freedom
of the planning process. It can simply correspond to the average
number of active connections or to the number of simultaneous
connections not exceeded with a given probability. The con-
nection activity factor can be considered as well.

The propagation information is also supposed to be known. In
particular, let be the propagation factor of the
radio link between TP and a candidate site

. The propagation gain matrix is
estimated according to approximate propagation models such as
those proposed by Hata or to more precise but computationally
intensive ray tracing techniques (see, e.g., [10]).

In the W-CDMA UMTS BS location problem, one wishes
to select a subset of candidate sites within the setwhere to
install BSs, and to assign the TPs to the available BSs taking
into account the traffic demand, the signal quality requirements
in terms of SIR and the installation costs.

Let us define the two following classes of decision variables:

if a BS is installed in
otherwise

1In the downlink direction, where at most SF orthogonal codes are used, stan-
dard cardinality contraints can be easily added to the model.
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for and

test point is assigned to
otherwise

for and . The core of the basic integer programming
model that we propose for the uplink case is the classical unca-
pacitated facility location model

(3)

subject to

(4)

(5)

(6)

The first term in the objective function corresponds to the
total installation cost. Since is proportional to the power
emitted from TP when assigned to BS, the second term
aims at favoring assignments which require a smaller total
emission power. is a tradeoff parameter between these
two objectives. Constraints (4) make sure that each TPis
assigned to a single BS. Constraints (5) impose that TPs are
only assigned to sites where a BS is installed. Note that by
restricting the assignment variables to take on binary
values, it is required that in every feasible solution, all active
connections must be assigned to a single BS.

To account for the power limit on the user terminals, we need
to include, for each pair of TPs and candidate site ,
the following constraint:

(7)

where is the maximum emission power and
corresponds to the emission power required by a mobile station
in TP to guarantee the target received power at site .
Note that if , the TP cannot be assigned to
candidate site due to power limits, and therefore, the variable

can be omitted from the model. Otherwise, constraint (7) is
implied by the corresponding constraint (5).

The fundamental aspect to be taken into account is the quality
of the signal received by each BS. As mentioned in Section II,
the simplest way to express the quality constraints is either to
neglect the intercell interference or to consider that it amounts to
a given fraction of the intracell interference as given in formula
(2) for nonzero values of the parameter. For each connection,
the quality constraint can then be rewritten as

(8)

which is equivalent to

(9)

Considering a power-based PC mechanism, the power received
at BS from each mobile station in a TP assigned to

it is equal to and the quality constraint amounts to im-
posing an upper bound on the number of connec-
tions that can be assigned to that BS [20]. Specifically, we have

(10)

For the typical values and dB
used in the literature, we obtain an upper bound of 23.97 on
the maximum number of connections that can be served by any
single BS. Thus, for each candidate site , the signal quality
constraints can be rewritten as

(11)

The resultingbasic model, which amounts to

(12)

subject to

(13)

(14)

(15)

(16)

falls within the class of standard capacitated facility location
problems which have been extensively studied in the opera-
tions research literature (see [29]). Note that to obtain a for-
mulation which does not involve the variables such that

, it suffices to proceed as follows. For each
TP , let denote the set of all candidate sites to which
TP can be assigned to while respecting the power limit .
Symmetrically, for each candidate site, let denote the
set of all TPs that can be assigned towhile respecting the
power limit. Then replace the summation over allcandidate
sites in the second term of the objective function (12) and in
constraints (13) by a summation over, and the summation
over all TPs in constraints (15) by one over. Finally, sub-
stitute all constraints (14) by for all and .

Unfortunately even medium-size instances of these nonpoly-
nomial (NP)-hard capacitated location problems turn out to be
out of reach of state-of-the-art optimization algorithms. But,
even more importantly, the capacity constraints (15) do not cap-
ture the distinctive features of the W-CDMA technology and,
as we shall see in Section V-A, in most cases the above basic
model provides meaningless solutions.

B. Enhanced Model With Power-Based PC

To make the model more realistic, intercell interference needs
to be considered explicitly and independently from intracell in-
terference. The use of pseudorandom spreading codes implies
that, for a specific uplink connection between TPand BS ,
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there is no significant difference in the two types of interfer-
ence. In other words, in the SIR formula (1) and for each
connection, the quality constraint amounts to

, where is the minimum
SIR before despreading.

In the presence of a power-based PC mechanism, the thermal
noise is omitted as in the other works focusing on this type
of PC mechanism (see, e.g., [20]) and for each candidate site

the signal quality constraint can be expressed as follows:

(17)

where is by definition the power received from each as-
signed TP. It is not difficult to verify that constraint (17) en-
forces that, if a BS is installed in site (i.e., ), the
SIR value in must exceed the given . For any single
connection assigned to the BS located in site, the numerator
of the left-hand-side term is the power of the relevant signal re-
ceived in while the denominator amounts to the total interfer-
ence due to all other connections. Indeed, the double summation
term expresses the total power received at sitefrom all TPs

, from which the received power of the relevant
signal is substracted. More specifically, for any TP, the quan-
tity amounts to the emission power required at TP
to guarantee a received power value of at site . Note that,
since , the only term of the inner summation (over
index ) that is nonzero corresponds to the site to which TPis
actually assigned. Thus, if this site is denoted by , the outer
summation can be rewritten as
where is the power received at sitefrom
TP and is the number of connections required from TP.
Clearly, the contribution to the outer summation of any TPas-
signed to site amounts to since .

Multiplying both sides of the inequality (17) by the denom-
inator of its left-hand side and dividing the left and right sides
by , we obtain for each candidate site the bilinear
constraint

(18)

Thus, theenhanced model, assuming a power-based PC mech-
anism, amounts to the following nonlinear mathematical pro-
gram:

(19)

subject to (20)–(23), shown at the bottom of the page, where, for
each pair of TP in and candidate sitein , constraints (21)
corresponds to the most stringent constraint among (5) and (7).
As mentioned in Section III-A for the basic model, a formulation
involving only the variables such that
can be obtained by using appropriate summation setsand .

To tackle this problem with state-of-the-art mixed integer pro-
gramming (MIP) solvers like CPLEX 7.0 [30], constraints (18)
and, hence, (22) can be linearized as follows:

(24)

for a large enough value of . Indeed, constraint (24) amounts
to (18) when and, due to the value of , it is always
satisfied when . In the linearized version of the enhanced
model, the nonlinear constraints (22) are replaced by the corre-
sponding inequalities (24).

It is worth emphasizing that constraints (22) and (24) are al-
ways satisfied when , regardless of the way the TPs are
assigned to the BSs, and when , these constraints can be
restated as

(25)

Here, we define for one of the TP assigned
to BS and for all other TPs assigned to BS. For
all TPs assigned to other BSs, we have . This
is clearly in contrast with standard capacity constraints arising
in classical capacitated facility location problems that can be
expressed, when , as

(26)

where the “demand” of “client” does not depend on the
“facility” to which “client” is assigned (there is no summa-

(20)

(21)

(22)

(23)
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tion on the second subscript of thevariables) and, for each
“facility” , the constraint only involves the “clients” assigned
to it [29]. In the context of the UMTS BS location problem, it is
as if each TP “absorbs” part of the capacity of every BS and
not only that of the BS it is assigned to. Moreover, the amount of
capacity requested from BSdepends on the “distance” (gain)
between TP and BS , as well as on the “distance” (gain) be-
tween TP and the BS to which it is assigned.

By analyzing the quality (SIR) constraints (17), one can es-
tablish a simple but important property of the underlying assign-
ment subproblem of the BS location problem [31].

Property: Given any set of active BSs and set of
TPs, only assignments of TPs to “closest” active BSs need to be
considered, where “closeness” is meant in terms of the required
emission power.

This derives from the fact that if any one of the TPs is not
assigned to one of its “closest” BSs, the SIR level at each active
BS can only increase when that TP is reassigned to a closer BS.

Thus, the UMTS BS location problem under consideration
turns out to be substantially different from standard capacitated
facility location problems, where, for any given set of active
BSs, the optimal assignment is not knowna priori and needs
to be determined.

C. Model With SIR-Based PC

Assuming a more sophisticated SIR-based PC mechanism
yields a more involved mathematical programming model since
the emission power , required to connect each TP to the
candidate site it is assigned to, must be considered as an explicit
variable. Indeed, if TP is assigned to site is not taken to
be equal to , so as to guarantee a given prescribed
received power for every active connection. In the pres-
ence of an SIR-based PC mechanism, the emission power values

can be freely selected provided they do not exceed the max-
imum emission power and that the SIR level of each active
connection is not lower than a prescribed . Besides the

new power variables , the core model is then as in (3)–(6)
except that in the second term of the objective function
is replaced by the actual emission power. To account for the
power limit on the user terminals, constraints (7) are replaced
by . Moreover, for each pair of TP and
candidate site , the signal quality constraint is now

(27)

where . Note that is the power of the
signal received at BS from TP . If TP is assigned to site

(i.e., ), this third-order nonlinear constraint makes
sure that the SIR level of the corresponding connection is high
enough. Unlike in the power-based PC case, in this context, the
thermal noise is usually included to guarantee convergence of
the closed-loop PC mechanism used in real systems [21].

Thus, theSIR-based PC modelamounts to the following
mixed mathematical program:

(28)

subject to (29)–(33), shown at the bottom of the page, with bi-
nary variables and as well as real variables. Note that,
unlike in the power-based PC case, there is here a signal quality
constraint (31) for each pair of TPin and candidate sitein

, and obviously only those with are relevant.

D. Different Planning Objectives

Although the generic objective function proposed in (3) (and
the corresponding (12), (19), and (28) in the three models) takes
into account the installation costs and the total emission power;
the appropriate choice depends on the specific planning objec-
tives. According to the traffic requirements and distribution, the
number of candidate sites and their locations as well as the mo-
bile station maximum power, the signal quality constraints (15),
(22), and, respectively, (31) can be infeasible. In real-world in-
stances where traffic patterns are based on short-to-mid term
predictions, it is likely that the system will be required to serve
all traffic. On the other hand, when traffic patterns are based on
long-term predictions, a multiperiod network planning strategy
can be adopted [32] and, in the first stages, one has to cope with
solutions that do not cover all traffic. In this case, it is reasonable
to aim also at maximizing the fraction of traffic that is actually
served. This can be achieved by relaxing the assignment con-
straints (13), (20), and, respectively, (29)

(34)

so as to allow some TPs not to be assigned. The additional term
can then be included in the objective func-

tion with an appropriate negative weight parameter.

(29)

(30)

(31)

(32)

(33)
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IV. HEURISTIC ALGORITHMS

Since the UMTS BS location models proposed in the previous
section contain the uncapacitated facility location problem as a
special case, they turn out to be NP-hard. To obtain good ap-
proximate solutions within a reasonable amount of computing
time, we have first devised greedy and reverse greedy random-
ized procedures (see [33]) that construct a solution (i.e., a subset
of candidate sites where to activate BSs) by iteratively adding
or, respectively, removing BSs from the current solution. TS al-
gorithms have also been developed for the power-based as well
as SIR-based PC models.

We first describe the algorithms for the power-based PC
model. From Section III-B, we know that in this case, assigning
each TP to a “closest” active BS yields the largest possible SIR
value for each BS. Moreover, in this setting all connections to
a given BS have the same SIR level, denoted by . Given
any set of active BSs, if all traffic requests can not be covered,
the central procedure of our algorithms aims at satisfying the
largest fraction of demands [see the relaxed constraints (34)].
This subproblem amounts to a special case of the multidimen-
sional knapsack problem which is difficult (NP-hard) to solve
optimally [34]. Since in our context good solutions are needed
in a short amount of time, we proceed as follows.

Given a set of active BSs, each TP is first assigned to one
of its “closest” BSs in . Then, TPs assigned to active BSs
with are considered by nonincreasing value of
emission power and deleted one at a time until all
active BSs have an SIR of at least .

Thus, TPs which cause higher interference are first deleted
while the number of BSs affected by the deletion is not consid-
ered.

A. Randomized Greedy Procedures

In the first randomized greedy algorithm (Add), BSs are
added iteratively to starting from . At each iteration
there is a current set of sites (possibly empty) in which
BSs have already been installed. For each remaining candidate
site , the above assignment procedure is then applied
to so as to obtain a corresponding vector. The
characteristic vector of subset is simply defined
as for all and , otherwise. For each
of these potential solutions, specified by the set of active sites

and a corresponding pair , the following utility
function is evaluated:

(35)

where the first term amounts to the fraction of traffic that is cur-
rently covered and the second one expresses the total cost for
installing the BSs in the sites selected so far. The tradeoff pa-
rameter allows us to assign higher priority to max-
imize the first objective than to minimize the second one. At
each iteration, one is randomly selected among the

fraction of those that yield the largest value of, where
is a given parameter . The procedure stops when
the addition of a new BS worsens the current solution value ac-
cording to utility function .

In the randomized reverse greedy algorithm (Remove), BSs
are removed iteratively starting from . Given the current

, for each candidate site , the above procedure is
applied to so as to obtain correspondingand vectors.
Then, the following utility function is evaluated:

(36)

where is the sum, over all BSs that have so far been
installed, of the number of additional connections they could
service, namely, of , where is defined as the
difference between the current SIR and . is the
corresponding weight. At each iteration one is randomly
selected among the fraction of those that yield the largest
value of , where the parameter is . As for the
Add procedure, the Remove procedure stops when the removal
of another BS worsens the current solution value according to
utility function .

Given the randomized nature of the Add and Remove pro-
cedures and their relatively low computational requirements, a
multistartstrategy is adopted. Specifically, the greedy procedure
is run a predefined number of times and the best solution found
during all the runs is returned as output.

B. TS Algorithm

TS is ametaheuristicthat guides a local search procedure
to explore the solution space of optimization problems beyond
local optima. The idea is to use the history of the search process
through an appropriate memory scheme to prevent cycling (run-
ning into feasible solutions that have already been generated)
and to explore regions of the solution space that are promising in
terms of the objective function. The modern TS paradigm goes
back to the seminal work by Glover [35], [36] and is extensively
discussed in [37].

The basic ingredients of a general TS strategy can be de-
scribed as follows. Starting from an initial feasible solution,
a set of neighboring solutions are generated by applying
a set of possible “moves” to . Then the best solution in the
“neighborhood” is selected as the next iterateeven if
it does not strictly improve the value of the objective function
and the process is repeated to generate a sequence of solutions

.
In order to prevent cycling and to try to escape from local op-

tima a list of “tabu moves” is maintained. The purpose of this
list is to forbid the opposite move that has been made at a given
step for a certain number of iterations. A move that is added to
the list remains tabu for a number of iterations that corresponds
to the length of the list. According to the “aspiration criteria,”
tabu moves can be clearly made if they lead to an improved so-
lution. The best solution encountered is stored as the algorithm
proceeds and it is returned after a maximum number of itera-
tions . and are two parameters of the method.
Not surprisingly, the efficiency and performance of a TS proce-
dure strongly depend on the way the moves are defined and how
well they exploit the actual structure of the problem at hand.

As an initial solution, we consider the set of active BSs
provided by the Add or the Remove procedures together with
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an assignment of the TPs to their closest active BS, when-
ever they are served. Note that the current solution is in a sense
fully characterized by the set of active BSs. Besides the
add and removemoves used in the randomized greedy proce-
dures, we do also defineswapmoves that amount to installing
a new BS in one of the empty sites while deleting one of the
active BSs. Exploring all possible swap moves for any given
current solution would, of course, be very time consuming even
for small-size instances. But, due to the actual structure of the
problem, it is reasonable to focus on swaps between candidate
sites that are relatively “close” to each other. For each active BS
, we initially consider the set of available sites

that have the largest propagation gains with respect toand that
are in a sense the best candidates for a swap. Letbe a param-
eter such that . The swaps involving the
best sites in are systematically evaluated, while those corre-
sponding to the remaining available sites inare considered
with a given probability .

The objective function used to guide our TS algorithm is the
utility function given in (36). As to the implementation of the
tabu list, BSs that are installed (disactivated) cannot be disacti-
vated (reinstalled) during iterations. Although this imposes
stronger restrictions on the search process than just avoiding
considering solutions that have already been generated, we have
observed that it provides better experimental results. Indeed, by
reducing the size of the neighborhood examined at each itera-
tion, one allows the algorithm to explore a larger region of the
solution space. The ability of a local search procedure to explore
solution-space areas far away from each other is usually referred
to as diversification [37].

In the experiments described in Section V, TS is applied in
two different settings. On the one hand, TS iterations are used
in a multistart Add or Remove context as a local search pro-
cedure to improve the solutions obtained with each one of the
ten runs of the greedy method. Specifically, 200 iterations of TS
are applied after each one of the ten runs of Add or Remove and
the best solution encountered is returned. On the other hand, the
same total number of iterations of TS, namely 2000, are carried
out starting from a single initial solution provided by Add or Re-
move. Note that the advantage of Remove to generate a starting
solution is that it allows for automatically checking whether all
traffic demands can be satisfied.

C. Extension to SIR-Based PC Model

Although in the SIR-based case assigning TPs to closest BSs
is no longer guaranteed to yield the best possible SIR values, we
make this simplifying assumption which reflects a conservative
point of view in the sense that there might exist assignments of
TPs to active BSs involving a smaller number of active BSs or a
lower total installation cost. Note that, from a planning point of
view, delving into such details does not seem appropriate since
the actual assignments used during operation are dynamically
determined by the access procedure.

Given a current set of active BSs and an assignment
, to compute the emitted powers it would be necessary to

solve the system composed of constraints (27) for each active
connection between TP and BS together subject to the bounds
on the maximum power. Since the resulting system contains

constraints (27) in the variables , a solution satisfies all of
them with equality. Assuming that TPs are assigned to closest
active BSs, the system can then be simplified by reducing the
number of variables as well as the number of equations. Indeed,
for each given active BS, the equations corresponding to all
TPs assigned to BS are equivalent when considered as func-
tions of . Denoting the power received from any such TP
by , the single equation associated to eachin can
be rewritten as

(37)

The size of the resulting system is, thus, equal to the number of
active BSs which is at most and usually much smaller than the
number of TPs. This size reduction plays an important role in
making our algorithms applicable to the more accurate model.
Given the assignment and the solution of the the above
system, the emission power at the TPs are derived by setting

if and, otherwise, .

V. COMPUTATIONAL RESULTS

To evaluate the performance of the proposed algorithms, we
have considered synthetic but realistic uplink instances gener-
ated by using Hatas propagation model [38]. For each instance,
we consider a rectangular service area with dimensions ,
a number of candidate sites in which to locate omnidirec-
tional antennas, and a numberof TPs. Using a pseudorandom
number generator each candidate siteand each TPis assigned
a position with uniform distribution in the service area. The ma-
trix is obtained by using Hata’s formulas which give the at-
tenuation (loss) in decibels due to signal propagation. In par-
ticular, the attenuation for urban areas is given by

(38)

where is the signal frequency in megahertz, and are
the heights of the base and the mobile station in meters, andis
the distance in kilometers, while the formula for rural areas is

(39)

Clearly , where denotes the distance
between TP and candidate site.

We considered three families of uplink instances with a ser-
vice area of 400 400 m, 1 1 km, and 1.5 1.5 km, respec-
tively. Different instances of these families are obtained using
the pseudorandom generator. Two gain matricesare consid-
ered for each configuration using the urban and the rural Hata’s
formulas with

MHz (40)

Small-size instances are characterized by a service area of
400 400 m, candidate sites, TPs, and
for all TPs . Medium-size instances are characterized by a
service area of 1 1 km, , and uniformly
distributed in for all . Large-size urban (LU)
instances are characterized by a service area of 1.51.5 km,
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TABLE I
RESULTS OBTAINED WITH ADD, REMOVE (� = � = 0:3), MULTISTART TS AND SINGLE-RUN TS FOR SMALL -SU AND RURAL (SR)
INSTANCESWITH m = 22; n = 95; u = 1. FOR EACH ALGORITHM, FROM LEFT TO RIGHT: MINIMUM NUMBER OF BSs INSTALLED,

THE AVERAGE NUMBER AND THE STANDARD DEVIATION OVER 50 RUNS

, and uniformly distributed in for
all . Finally, all instances have uniform installation costs,
namely for all .

The remaining parameters have been selected as fol-
lows: and (so that ),

dB, dBm, dBm. In
all the experiments reported here, and ,
which imply that in the utility functions (35) and (36), the first
term has higher priority than the second term and that in (36)
the second term has higher priority than the third one.

A. Shortcomings of the Model With Simplified SIR Formula

The first computational effort aimed at comparing the sim-
plified power-based PC model (i.e., the basic model (12)–(16)
with only the relevant variables ) with the enhanced power-
based PC model (19)–(23) in which intercell interference is
explicitly considered. Setting and the other parame-
ters as mentioned above, in the simplified model the maximum
number of users per BS, is bounded above by 23.97 and, hence,
it is at most 23. The resulting models for the small instances
have been solved to optimality by using CPLEX 7.0 MIP solver
[30]. In all cases, the simplified model activates 5 BSs (which
corresponds to the lower bound, since is about 4.1) while
the optimal solution of the enhanced model always activates
just four BSs.

To evaluate the quality of the solutions yielded by the sim-
plified model, we consider the active BSs and the assignments
of TPs specified by the optimal solution provided by CPLEX,
and we compute the SIR value of each BS using a power-based
PC mechanism as well as the power received by each BS using
an SIR-based PC mechanism. Typical results obtained for one of
the small instances of Table I [instance small-size urban (SU-3)]
are reported in Fig. 1. SIR values and received powers are given
for each of the five active BSs. Note that in the power-based
PC setting, the power received is constant, while in the SIR-
based setting the SIR is constant. In the power-based setting,
SIR values often exceed the minimum level required to guar-
antee signal quality, while in the SIR-based setting, the SIR
values are set to and the actual received powers
associated to a number of connections can be lower than .

For a fair comparison between the solutions provided by the
simplified and enhanced models, we changed the value of pa-

(a)

(b)

Fig. 1. Quality of the optimal solution (including five BSs) of the simplified
model withf = 0:4 for instance SU-3 of Table I. (a) SIR values obtained with
the power-based PC setting. (b) Received powers obtained with the SIR-based
PC setting.
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Fig. 2. Quality of the optimal solution (including four BSs) of the simplified
model with f = 0:35 for instance SU-3: SIR values obtained with the
power-based PC setting.

rameter (setting it to 0.35) so that also the simplified model
returns solutions with only four active BSs. The corresponding
results obtained for the same instance of Fig. 1 are reported in
Fig. 2. Notice that in the power-based PC setting, the SIR values
drop far below any acceptable value, while in the SIR-based PC
setting, it has not even been possible to find a feasible value for
the received powers, meaning that the PC mechanism does not
converge to a stable solution.

Interesting insight on the inadequacy of the location model
with the simplified SIR constraints is provided by the distribu-
tion of the number of connections assigned to each active BS in
the solutions of the other more sophisticated models. A typical
example for a medium-size instance (instance MU-3) is shown
in Fig. 3. In the the case of SIR-based PC model, a substan-
tial fraction of BSs (here more than 37%) is assigned a number
of connections that is larger than 23, which is the strict upper
bound that would be imposed by the simplified power-based
PC model. Solutions of the enhanced power-based PC model
do also exhibit similar distributions.

All our experiments show that the model with the simpli-
fied SIR formula is not suitable for locating BSs in UMTS net-
works since it fails to capture some fundamental characteristics
of third-generation systems.

B. Comparison of Heuristic Algorithms for Power-Based PC
Model

In this subsection, the results obtained with the three algo-
rithms for the enhanced power-based PC model (19)–(23) with
no thermal noise are reported and discussed.

Results for the small-size instances obtained with the ran-
domized Add and Remove procedures over
50 runs are reported in Table I. The solutions found always
satisfy all 95 requested connections. Out of the ten instances
mentioned in Table I, five have been generated using the Hata
formula for urban areas (SU) and five using that for rural areas

(SR). For the same instances, the optimal solutions, involving
four BSs in all cases, have been obtained by using CPLEX 7.0.
Although Add and Remove are heuristics with no guarantee to
provide an optimal solution, they do so in half of these cases
and the number of BSs installed never exceeds the minimum
number by more than one. It is worth noting that the computa-
tion time required by Add or Remove to find a close-to-optimal
solution for a single instance was less than 5 s on a Pentium
III/700-MHz personal computer, while CPLEX 7.0 MIP solver
required 5–20 min to find an optimal solution on an about
twice as fast computer. As a matter of fact, solving even such
small instances using a state-of-the-art MIP solver turns out to
be a challenging task due to the very delicate choice of the
value . If the parameter is too small, then some SIR
constraints that should be omitted will not be disactivated and,
therefore, the resulting solutions contain a larger number of
BSs than optimal solutions of the actual problem. On the other
hand, for too large values of , one runs into numerical prob-
lems related to machine precision which tend to override some
SIR constraints and, hence, to yield solutions with a too small
number of BSs.

In Table I, multistart TS consists of 50 runs of Add (A) or
Remove (R) followed by 200 iterations of TS while single-run
TS consists of Remove followed by 2000 iterations of TS. For
these small instances, a tabu list of length is used,

and . As far as the best solutions
are concerned, for these small instances the Remove procedure
provides as good solutions as the TS variants. However, in mul-
tistart TS and single-run TS, the average quality of the solutions
is better and the standard deviations are lower in all but one case.
Due to this more robust behavior, a single run of multistart TS
would suffice to yield the same best solutions for eight out of
the ten instances.

Table II reports the results obtained with Add, Remove (both
with 50 runs), multistart TS (Add and Remove), and single-run
TS for ten medium-size instances. The number of TS iterations
for multistart and single-run TS are as for small-size instances.
For medium-size instances, a tabu list of length is used,

and . The solutions found pro-
vided in all but one cases full traffic coverage. The number of
BSs installed by our Add and Remove randomized procedures
differ at most by three. None of them consistently outperforms
the other one. However, the standard deviation of the number
of BSs in the solutions given by Remove (over the 50 runs) is
usually higher than that of the solutions provided by Add. The
solutions provided by the TS procedures require a few BSs less
than Add and Remove. Although there is no significant differ-
ence among the three TS procedures, single-run TS provides in
all but one cases the best solution and it always does so at lower
computational cost.

The 50 runs of Add and Remove take in average 10 and, re-
spectively, 30 s for the small-size instances, and 1:50 and, re-
spectively, 1:20 h for the medium-size instances. For large-size
instances more than 13 CPU hours are needed for Add and ap-
proximately 7 h for Remove. A single-run TS lasts in average
1:20 h for medium-size instances and 6 h for large-size ones.
For solution quality comparison purposes, multistart TS was run
with the same total number of TS iterations as single-run TS and
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Fig. 3. Distribution of the number of TPs assigned to the various BSs for the medium-size instance MU-3.

TABLE II
RESULTSOBTAINED WITH THE ADD, REMOVE (� = � = 0:3), MULTISTART TS AND SINGLE-RUN TS FOR MEDIUM-SIZE URBAN (MU) AND RURAL (MR)

INSTANCESWITH m = 120; n = 400, AND u UNIFORMLY DISTRIBUTED IN f1;2; 3g. FOR EACH ALGORITHM, FROM LEFT TO RIGHT: MINIMUM NUMBER OF

BSs INSTALLED, THE AVERAGE NUMBER, AND THE STANDARD DEVIATION OVER 50 RUNS. NOT ALL THE TRAFFIC IS COVERED

TABLE III
RESULTSOBTAINED WITH ADD AND REMOVE (� = � = 0:3) FORLU INSTANCESWITH m = 200;n = 750; u UNIFORMLY DISTRIBUTED IN f1;2g. FROM

LEFT TORIGHT: FRACTION OFTRAFFIC COVERED, MINIMUM NUMBER OFBSs INSTALLED, AVERAGE NUMBER, AND STANDARD DEVIATION OVER TEN RUNS

this obviously led to higher (approximately twice as long) com-
puting times.

As shown in Table II, multistart TS (ten runs) and single-run
TS yield for all instances better solutions than the best ones
obtained with Add and Remove. In many cases, these solutions
are obtained within less than 500 local search iterations.

We have also applied Add and Remove (ten runs), multistart
TS (ten runs with 200 iterations of local search each) as well
as single-run TS (1000 iterations) to five LU instances. This
choice of parameter values, with 1500 active connections in the
average, is quite realistic for UMTS setting in medium-to-large

cities. The results are reported in Tables III and IV. Unlike
for the previous classes of instances, the traffic demand is
not always satisfied. It is worth noting that Remove provides
solutions with much higher average number of active BSs even
though the best solution found is worse than the best one yield
by Add only for two out of the five instances. In fact, the best
solutions found with Remove turn out to be better for instances
LU-3 as well as LU-5 and equivalent for LU-1. Moreover, for
instance LU-2 the best solution provided by Remove contains
an additional BS but it covers the whole traffic. The advantage
of the Remove scheme to obtain the initial solutions is that it
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TABLE IV
RESULTS FORLU INSTANCESWITH m = 200; n = 750; u UNIFORMLY DISTRIBUTED IN f1; 2g. FROM LEFT TO RIGHT: FRACTION OF TRAFFIC COVERED,

MINIMUM NUMBER OF BSs INSTALLED, AVERAGE NUMBER, AND STANDARD DEVIATION OVER TEN RUNS

naturally allows for testing whether all traffic demands can be
satisfied.

According to Table IV, multistart TS and single-run TS al-
ways yield solutions of better quality than the best ones provided
by Add and Remove. For these large-size instances, a tabu list of
length is used, , and .
Note that for all five instances the improvement in terms of BSs
installed is substantial.

C. Comparison Between Models With Power-Based and
SIR-Based PC

We now discuss the results provided by the model with SIR-
based PC (28)–(33) pointing out the differences with respect to
those from the model with power-based PC (19)–(23). To ob-
tain meaningful solutions with the SIR-based model, a nonzero
thermal noise must be considered. For comparison purposes,
the same value of dB is also used in the model with
power-based PC.

Multistart TS is applied with ten runs and single-run TS with
2000 iterations. To maintain the computational times at a rea-
sonable level, TPs have been assigned to closest BSs in terms of
emitted powers, even though better performance (and possibly
also lower costs) may be attained with different types of assign-
ments. At each iteration, once the current solution is fully de-
termined (i.e., a TP-BS assignment is derived for the current set
of active BSs), the received powers are computed by solving the
related linear system (37). This constitutes the heavy part of the
computation. Tests have been conducted on the small-size in-
stances and both algorithms provided solutions with four BSs,
as in the enhanced power-based PC case. In order to empha-
size the differences, experiments were also carried out with the
medium-size instances. For each of the medium-size instances,
multistart TS took about 15 h while single-run TS took about
9 h. These computing times have to be compared to the 2:30
and 1:30 h, respectively, for the same type of algorithms ap-
plied to the enhanced power-based PC. This clearly indicates the
considerable additional computational load required to compute
the power values at each iteration. Table V shows the numer-
ical results for the ten medium-size instances. For multistart TS
the minimum number of installed BSs is reported together with
the average and the standard deviation (over ten runs), while for
single-run TS the best solution is given.

Comparing the number of active BSs yielded by the enhanced
power-based PC model with that obtained by the SIR-based
PC model, we observe that the latter one allows for a saving
of at least six BSs. This is due to the fact that, since the mo-
bile stations can emit lower powers with respect to those in the
power-based PC case, they generate lower interference toward

TABLE V
COMPARISONBETWEEN MODELSWITH SIR-BASED AND POWER-BASED PC:

NUMBER OF INSTALLED BSs WITH TABU SEARCH ALGORITHMS

Fig. 4. Measured SIR values with the enhanced power-based PC model for
instance MU-3.

all BSs they are not assigned to. Thus, the system can support
more connections per BSs and, in practice, the capacity of the
overall network is better exploited.

The above observations are also confirmed by comparing the
SIR values at each BS and the received powers for each connec-
tion. Fig. 4 reports the SIR values measured in each active BS
by using the enhanced power-based PC model. Notice that only
a few BSs have an SIR equal to the required of 6 dB,
and for many BSs the service quality is far above the required
level. Thus, the emitted powers are higher than needed and as
a result the interference levels are higher and the scarce radio
resources are not used as efficiently as they could.
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VI. CONCLUDING REMARKS

The main features characterizing the important problem of
planning UMTS networks using the W-CDMA air interface
have been discussed. Focusing on the uplink direction, we
have investigated discrete optimization models for the UMTS
BS location problem that capture at different levels of detail
the peculiarities of the signal quality constraints and the PC
mechanism for W-CDMA. Standard capacitated location
models being inappropriate, we have proposed an enhanced
power-based PC model as well as a more accurate SIR-based
PC one.

Since solving even medium-size instances of these NP-hard
problems is beyond the reach of state-of-the-art commercial
optimization solvers, we have developed three heuristics for
the power-based PC model. Our randomized greedy and re-
verse greedy procedures provide, in a reasonable amount of
time, good approximate solutions for medium-to-large size real-
istic instances generated by using classical propagation models.
A TS algorithm, which can be applied either in a multistart or
single-run setting, allows us to further improve the approximate
solutions obtained with these greedy procedures.

The three above algorithms have also been extended to the
SIR-based model by assuming that TPs are assigned to a closest
active BS. From the planning point of view, this is just a con-
servative assumption in the sense that there might exist solu-
tions with less natural assignments but better objective function
values.

Our experimental results show that the enhanced power-
based PC model yields interesting solutions but those obtained
with the SIR-based model use in a more efficient way the scarce
radio resources and the computed SIR values are closer to the
actual values in real systems.
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