
Abstract 

This paper introduces the object-oriented character recognition engine AQUIRE which was 
originally designed as a general pattern-classifier under the academic aspects of object-
orientation and parallelism together with low space and time complexity. When industry ex-
pressed interest in using AQUIRE to provide pen-based computers with a powerful character-
recognition engine, AQUIRE was revised to meet the commercial requirements. Together with 
a brief discussion of some special pen-related problems, this paper contains the theoretical 
background for the recognition mechanism and a description of the methods used to perform a 
high quality and high speed recognition-process with a minimum of executable code. The pro-
posed method has been implemented on an INFOS NotePad 386-SX pen-computer and on the 
associative processor AM3 developed within the PROMETHEUS project at the Department for 
Technical Computer Sciences at J.W.Goethe-University. The acceleration of the recognition 
mechanism by using the associative type of parallelism will be shown. 

1. Pen computing

Pen-computer environments offer a lot of opportunities to their users but also a lot of re-
strictions to hardware and software designers. The first and most obvious opportunity of pen 
computers on one hand and restriction on the other hand is their physical size and the fact that 
they are intentionally used with a pen instead of a keyboard as user-input device. From a user’s 
point of view nothing is more familiar than processing data using pen and paper. Pen-based 
knowledge- and data-aquisition can help to lower the barrier between non-experienced users 
and computers and terminals. It can help experienced users to enter commands and data in a 
more natuaral way.  
From a programmer’s point of view the replacement of the keyboard by a pen requires pen-
based user interfaces, providing a complete control mechanism for a pen as central input device. 
The User-Interface has to provide comfortable methods to handle the control and data streams 
to an application. The control stream can easily be handled using window and menu techniques 
which are the state-of-the-art in modern applications even in non pen-related environments. The 
data entry is more complex. Menu techniques, like so-called virtual keyboards are usable for 
data entry but less comfortable than data input via handprinted characters or digits.
This feature requires a highly sophisticated character recognition engine to be embedded into 
pen-based applications. The recognizer can be used to transform drawings like characters or 
gestures into their semantics. The semantics can then be used to trigger functions in case of 
gestures or as character or digit in case of character like entries.

AN OBJECT-ORIENTED CHARACTER RECOGNITION 
ENGINE

B. Klauer  K. Waldschmidt
J.W.Goethe - Universität Frankfurt, Professur für Technische Informatik

Robert Mayer Straße 11 - 15 D - 60054 Frankfurt am Main
R. Heinrich

INFOS GmbH
Ludwigstr. 78, D - 63067 Offenbach

Tagungsband
Euro-ARCH ’93
Informatik aktuell
Springer 1993



The physical and logical restrictions and requirements as mentioned above raised academic and 
commercial interest in the developement of a powerful recognition engine for handwriten sym-
bols with the following outlines:

● Small executable code
● Small database size
● High accuracy
● Directness (speed)

"Directness" means that users should have the feeling of controlling the system directly with the 
tip of the pen. Actions of the application should follow immediatly after a handprinted symbol 
has been completed. [RHY86] contains proposals how the completeness of handprinted sym-
bols can be decided.

1.1 Design-decisions

Due to the above mentioned restrictions and requirements the following design decisions con-
cerning the archtitecture of the recognizer and it’s implementation have been made:

1.1.1 Online-Recognition vs. Offline-recognition

In comparison to off-line recognition, on-line recognition performs recognition while the pat-
tern is beeing drawn on any kind of digitizing device. Directness, which means that user actions 
like gestures are immediately translated into machine action is an ergonimic requirement for 
pen-related applications. The directness usually implies online-recognition systems in pen-
based applications.

1.1.2 Static recognition vs. dynamic recognition

Static character recognition evaluates patterns without looking on how the pattern has been 
created. Dynamic recognition is focussed on strokes, edges in strokes, drawing speeds and 
accelerations in the drawing history. AQUIRE is a heterogeneous recognition engine combi-
ning a static (PATTMA) and a dynamic (MAGIC) module.

1.1.3 Source Language

Due to the portability of the source-code the recognizer has been programmed in C++. This 
decision seems to be contradictory to the size and speed requirement but is actually not. Ana-
lyzing the code produced by the Borland C++ compiler used for the MS-DOS version, it can be 
observed that it generates efficient machine-code. The runtime-libraries and the startup-code 
are the most space-expensive modules due to their generality. Special startup and runtime rou-
tines have been designed to gain efficiency in size and speed.



1.1.4 Software architecture

The recognizer consists of three modules a preprocessor (PREP), a pattern-matcher (PATTMA) 
and an ambiguity resolver (MAGIC: MAnual Gesture Inconsistancy Clearance) as shown in 
figure 1. The PREP module contains an Application Programming Interface (API) and an ex-
tractor providing the PATTMA and MAGIC modules with significant information on the 
symbol to be recognized. PREP works "on-line" during the drawing phase. It passes a boolean 
pattern to the PATTMA pattern matcher and stroke-information to the MAGIC module. PATT-
MA is a very fast pre-classifier but is in case of optically similar characters such as "B" and "8" 
or "b" and "6" insufficient in recognition accuracy. MAGIC detects - and resolves ambiguities. 
The resolving mechanism is activated only in case that an ambiguous pattern has been detected.

2. Methods

2.1 The PREP module

PREP provides the Application Programming Interface (API) and an extractor to retrieve si-
gnificant information from the input data. The API for the Intel 80x86 processors consists of an 
interrupt-service routine supporting one of the 80x86 processors software interrupts. The API 
for the AM3 processor consists of a set of C++ functions to control the recognizer. It provides 
the following functions:

1. Setup-functions for the recognition engine
2. Aquisition and storage of handdrawn symbols as defined below
3. Functions to control the recognition of patterns 

2.1.1 Recording and Scaling

The following expressions be informally defined:

Def 1.0 Handdrawn Symbols
Let a handdrawn symbol be defiened as a sequence of strokes

Def 1.1 Strokes
Let a stroke be defined as a sequence of coordinates

Digitizer

Preprocessor

Pattern-
Classifier

Ambiguity-�
Resolver

AQUIRE

PREP

PATTMA

MAGIC
stroke�
inform.

bool.�
matrix

ASCII�
DATA

ASCII� �
DATA

Ap
pli

ca
tio

n o
r O

pe
ra

tin
g S

ys
.

figure 1



The strokes as defined above are passed to the PREP module coordinate by coordinate via the 
API. Strokes are separated by the coordinate (ffff hex,ffff hex) which is defined to be invalid for 
coordinates within a stroke. PREP connects adjacent coordinates whit a straight line. The mi-
nimum and maximum x and y coordinates are recorded online. All coordinates are then scaled 
to fit into into a 32*32-bit boolean matrix.The boolean matrix will later be converted into a 
1024-bit vector to provide the PATTMA module with data. 

2.1.2 Extraction of significant information

A mask and a search argument are computed by the extractor and sent to the PATTMA module. 
The Pattern matcher computes the semantics by retrieving the most similar pattern in it’ s 
database. The ambiguity resolver is also provided with data from the extractor. If envoked, 
MAGIC consumes the total of strokes, start- and end-coordinates, as well as the start- and end- 
directions of the strokes, to examine ambiguous characters.

2.2 Methods used in PATTMA

The description of the basic classification mechanism of PATTMA requires formal definitions 
of some important expressions:

Def 2.0 Patterns
Let a pattern be a boolean vector

P = [pi]; 1≤i≤L;
L : length of the pattern

An element pi of a vector P is called a pixel. The value of the pixel corresponds to it’s color (e.g. 
black and white in case of boolean patterns). All pattern-data used in PATTMA is derived from 
the handprinted input symbols by the extractor of the PREP module. PREP converts handdrawn 
symbols (Def 1.0) into images (Def 2.1) with unknown semantics. 

Def 2.1 Images
Let an image be a tupel I consisting of a pattern P and the symbol s indicating the semantics of 
the pattern P. 

I  = (P,s);  s ∈ S

s is a member of the set S of all symbols. S must contain a symbol φ indicating that the seman-
tics of a symbol is unknown. All well known images have the semantics s ≠ φ. The database 
used by PATTMA contains images with semantics s≠φ. Unknown images as derived from the 
PREP module from handprinted symbols have a semantic s=φ.



Def 2.2 Hamming Distance
The Hamming Distance HD(A,B) of two patterns is the total of all pixels ai,bi with ai ≠ bi.

HD(A,B) = Σ (ai, ⊕ bi)
⊕ : boolean XOR

Def 2.3 The Masked Hamming Distance 
The Masked Hamming Distance MHD of two patterns A,B and a mask M is defined as follows:

MHD(A,B,M) = Σ ((ai  ⊕ b i)  mi )
: boolean AND
: boolean NOT

MHD behaves as HD if M = 0. In this case MHD computes the total of all different elements 
ai,bi with ai≠bi which are not hidden by mi. HD as well as MHD can be used as similarity indi-
cators in recognition systems. The following method can be used to find the semantics of an 
unknown image U = (X,φ):

Let W = {(P1,s1),(P2,s2), ...} be a set of well known images.

1. Compute the mask argument M
(A method to compute the mask will be shown in the following paragraph)

2. Compute MHD(X,Pi,M) for all i
3. Replace φ with si if MHD(X,Pi,M) is minimal for all i

2.2.1 The mask-argument of MHD

As one might expect the computation of the mask-argument is the key to obtain good recogni-
tion results using the MHD function.To classify handprinted characters using the MHD 
classifier the following informal method can be used to compute the mask:

Let X be the pattern of an unknown image
Let M be the mask argument to be computed 

A function BOLD(PATTERN A, INTEGER N) returning a boolean pattern, be defined as 
follows:

1. if N>0 set R:=A else R:=0
2. repeat N times
 for all aij with aij = 0 do 

   if an adjacent element of aij = 1 then
set rij:=1 

3. return(R)



The Mask M can then be computed as follows:

1. set Bold_X :=BOLD(X,ntimes)
2. set Bold2_X := BOLD(BX,mtimes)
3. set M := Bold2_X-Bold_X

The result of the computation is shown in figure 2. The mask has been derived from pattern A 
with the parameters ntimes=1 and mtimes=0.  

2.2.2 Hamming-Distance vs. Masked Hamming- Distance

The Hamming-Distance classifier is very popular to compute a similarity indicator for boolean 
patterns [KOH87]. The Masked Hamming-Distance distinguishes from the pure Hamming-
Distance in the simple fact that specific areas of the patterns to be compared can be hidden. The 
MHD classifier computes the Hamming-Distance of all bits which are not masked. This special 
feature can be used for fault-tolerant classification.
Example:

Figure 2 shows two "+ " symbols which are 
similar but not equal. A recognition system 
holding one of both symbols in it’s database 
should classi fy them to be simi lar.The 
Hamming-Distance of pattern A and B is 26, 
indicating that both patterns are different 
even if they are not from a human point of 
view. The masked Hamming-Distance of A 
and B and a mask argument as shown in fi-
gure 2 is 13, indicating that both patterns are 
similar. This result is more adequate to the 
human impression. The next example (figu-
re 3) shows that the MHD classifier works 
also in case that both symbols are different. 
In this case MHD(A,C,Mask) = 24, indi-
cating that both symbols are much more 
different. Figure 4 shows a statistical evalua-
tion of 135 handdrawn symbols to find op-
timal values for the parameters "ntimes" and 
"mtimes" for 1024-bit patterns (32*32-bit). 
It shows that the pure Hamming-Distance 

Pattern A
�

Pattern B
�

Mask
�

figure 2

Pattern A Pattern C Mask

figure 3

   13   13   18   68  117  121  124  126  126  123  116  112  109  108  105

   18   18   58  100  110  121  118  116  110  107  106  104  102   99   95

   14   14   14   27   93  118  124  126  122  120  117  113  109  105  104

   12   12   13   16   22   25   25   31   29   26   28   24   20   19   19

   10   10   10   16   54   94  120  127  124  120  117  112  109  103   98

   10   10   10   12   35   52   87  117  113  107  104   96   89   83   77

   10   10   10   12   21   32   54   87   94   93   87   82   73   69   63

    5    5    5   12   16   25   32   58   66   81   80   71   63   59   55

    5    5    5   10   15   17   20   39   48   62   72   66   53   53   46

    5    5    5   10   16   15   17   24   33   45   54   64   52   47   44

    5    5    5   10    9   13   18   21   32   43   46   52   54   48   42

    5    5    5    8   11   11   14   16   19   22   28   36   45   46   42

    5    5    5    8   13   15   14   16   16   17   20   24   28   36   35

    5    5    5    8   13   15   15   15   16   17   19   21   22   25   28

    5    5    5    8   11   11   10   11   11   11   13   14   15   19   23

parameter ntimes

p
a

r
a

m
e

te
r
 m

ti
m

e
s

0
�

0
�

figure 4



(ntimes=mtimes=0) is not optimal for the pattern-classif ication of human handprinted 
characters. It shows an optimum at ntimes=7 and mtimes=4. The parameters depend on the 
database-size, the type of symbols, the cardinality of the alphabet and on the dimension of the 
boolean matrix used to store the patterns.

2.3 Methods used for MAGIC

The ambiguity resolver MAGIC consists of a set of routines to detect and resolve ambiguities. 
Handprinted characters from 102 Persons from different countries on different continents have 
therefore been statistically evaluated to find ambiguities in the human style of handwriting. 
Ambiguities will be denoted as follows:  

(A1,A2,...An)
The intended meaning of the above expression is that symbol A1,A2,...An  cannot properly be 
distinguished by their optical image as represented by the 32*32 bit matrix.

Example:
(Z,2)
(O,0)

All ambiguities detected within the evalua-
tion have been classified to be hard or soft. 
Soft ambiguities can in most cases be resol-
ved by counting and tracing the strokes as in 
the (B,8) ambiguity. Hard ambiguities can-
not be resolved by stroke-evaluation as in 
the (Z,2) ambiguity. Figure 5 shows two 
symbols of a 2 and a Z and two examples of 
an O and a 0 recorded from different writers. 
Even a human can not classify them correct-
ly without any context. To solve the above 
mentionened problems rules have been stated for the writers to gain proper recognition. E.g. a 
Z must always be drawn with a horizontal stroke at it’s center. MAGIC contains a subroutine 
for each ambiguity which has been statistically detected. The routines to resolve the hard am-
biguities require that specific rules be obeyed by writers.

3. Implementations

The first version of AQUIRE has been pro-
grammed in C++. The three major modules 
PREP, PATTMA and MAGIC have been 
programmed as separate C++ classes. The 
PATTMA module has been derived from a 
module called CAM (s. figure 6). CAM per-
formes a retrieval of the best matching data-
base item using the MHD classifier.

class�
CAM

(virtuell)

class�
PATTMA

class�
PREP

class�
AMRES

figure 6

figure 5



3.1 The MS-DOS implementation

The MS-DOS implementation uses a CAM module which computes the MHD classifier for all 
database items sequentially. It provides functions to handle the database containing the set of 
known images.The runtime-behaviour has then been analyzed and some critical routines have 
been reprogrammed in assembly language. Portability has been lost in the optimized assembly 
language version but speed was significantly increased. The size of the executable program was 
reduced. Application programmers have access to the recognizer via the software interrupts of 
the Intel 80x86 processors. This provides an interface which is completely independent of lan-
guages and developement environments. The Application Programming Interface (API) 
provides the following functions:

INITIALIZE 
This function presets all global variables with proper initial values

INSERT COORDINATE
This function is used to pass a coordinate of a stroke to the PREP module for preprocessing. 

INSERT STROKE SEPARATOR
This function is used to declare a stroke consisting of previously entered coordinates to be 
complete. It is envoked by inserting the coordinate (ffff hex,ffff hex) with the INSERT COORDI-
NATE function. (ffffhex,ffff hex) is defined to be invalid within a stroke.

ENABLE/DISABLE MAGIC
The MAGIC module has been designed to resolve ambiguities in the recognition process of 
handprinted latin characters. It can not optimize the recognition process for arbitrary symbol-
sets. To recognize arbitrary non-latin character sets MAGIC should be turned off.

SELECT DRAWING AREA
A drawing area is an invisible ribbon specified by it’s upper and lower bounds. It is used by 
MAGIC to distinguish ambiguous characters like (Ww). AQUIRE also supports a so called 
free-drawing mode. In this mode the screen is divided into two halfes. Characters drawn into    
the lower half of the screen are always converted into lower-case. Characters drawn into the 
upper half are recognized as they are in upper- or lower-case with upper-case preference in case 
of (Ww)-like ambiguities.

RECOGNIZE
This function starts the recognition process for previously inserted and preprocessed data. It 
returns an integer value representing the semantics of the unknown symbol as result. It has been 
derived from the most-similar database-item. An important problem to be mentioned in this 
context is the so called CLOSURE PROBLEM. It discribes the decision of the question Is the 
symbol complete now? occurring after an arbitrary stroke has been drawn.  [RHY86] contains a 
discription and solutions to the closure problem. Good results have been made with the follo-
wing informally discribed methods.



1. Time method
A symbol be complete if a pen-up condition for more than 500ms has been detected.

2. Space method
A visible grid be defined on the screen. Characters are assumed to be drawn into the grid spaces. 
A symbol be complete if the user starts a stroke in a new grid space.

 

3.2 The AM3 implementation

The AM3 processor  [SCH89,SCH92, DAR90] is an associative 32-bit processor with a modi-
fied Harvard-architecture. It has one bus to handle the data and instruction streams and a 
separate addressless associative bus-system to provide a link to a varity of associative memory 
components. One basic function which is supported by all memory components within the AM3 
is the masked search function. The masked search function has been described by Kohonen 
[KOH87] as one of the basic associative functions.The above mentioned character recognition 
method was mapped onto the AM3 processor by replacing the CAM module implemented as 
virtual base class in C++ by a compatible module which uses directly the associative functions 
of the AM3 processor.

3.3 Performance parameters

The most important performance parameters of a character recognizer for pen-computers are 
code-size, database-size, speed and accuracy. The recognition speed and the size of the executa-
ble code are machine and operating-system dependent while database-size and accuracy are 
pure method-related parameters.

3.3.1 MS-DOS implementation

executable code size:~18KB

recognition speed: ~ 80 s per character in the database on a 486 machine running at 
33MHz

3.3.2 AM3 implementation
One goal of the AM3 implementation was to show that the method as proposed is suitable to be 
computed and to be accelerated by associative hardware. The academic intention was to show 
a sub-linear run-time behaviour with a growing database-size. Due to the memories used within 
the AM3, a logarithmic run-time behaviour could be measured. Due to the low system clock of 
the machine (4 MHz) the AM3 is much slower for reasonable database-sizes than the MS-DOS 
implementation.



3.3.3 Machine independent parameters

Database-size and accuracy are tighly related parameters. They depend on each other and on the 
cardinality of the alphabet to be recognized. The parameters as presented below require some 
comments on how they have been measured since recognition accuracy of recognizers can in 
general be very good with cooperative users and very bad with users intentionally trying to fool 
the system. The following reasonable experiment has been performed to measure the recogni-
tion quality: The handprinted character sets (upper-case, lower-case and numeric) of 102 people 
have been evaluated. A character set of 600 characters has then been extracted from the com-
plete set as database. The other characters have been used as test-patterns. The recognition rate 
has been measured under 2 conditions. In the first test only rule consistant characters (see Me-
thods used for MAGIC) have been used. In the second test all characters have been exposed to 
the recognizer. The following recognition rates under the above mentioned conditions could be 
measured:

97% Recognition-rate with rule consistant characters

92% With an arbitrary character set

4. Applications

4.1 Commercial application

In tight cooperation with INFOS GmbH AQUIRE has been optimized for the INFOS NotePad 
386-SX computer. It is commercially available with the INFOS Notepad computer. 

4.1.1 The INFOS NotePad 386-SX computer

The INFOS NotePad computer is standard 386-SX machine running at 20MHz under the ope-
rating system MS-DOS. It has a backlit LCD screen with a pen-digitizer and two PCMCIA 
slots. It is provided with 4MB RAM and serial and parallel interfaces. Via it’s keyboard inter-
face it can be connected with an optional physical keyboard. The complete machine fits into a 
28mm(H)*335mm(L)*270mm(W) package. 

4.1.2 The pure recognition engine

The recognition-engine can be loaded as TSR (terminate and stay resident) module into the 
standard DOS memory area or into the high-memory area. Applications can then access the 
recognizer via it’s API. The recognition engine comes together with a training-program to im-
prove the recognition-rate for individual styles of handwriting or to create customized symbol 
sets.



4.1.3 The PEN-COMMANDER for DOS

The PEN-COMMANDER is a special application for the INFOS 386-SX notepad computer. It 
has been designed to replace the keyboard in standard keyboard-oriented DOS applications by 
a pen. Al l handprinted data is converted into keyboard-l ike data. Therefore the PEN-
COMMANDER emulates the standard keyboard by recognizing and converting handprinted 
pen input data into keyboard data. The operating-system can not distinguish input data provided 
by the real hardware keyboard or by the emulation. Standard DOS applications can be used with 
the notepad computer even if they are not provided with a pen-based user interface. Figure 7 
shows a handprinted DOS DIR command. It has been converted into ASCII and sent to the 
operating-system. The operating system shows the command at the DOS-prompt. The " " 
symbol is a guesture used as RETURN key. After drawing the  " " the command is executed 
and the directory shows up. The PEN-COMMANDER is restricted to applications getting key-
board data via DOS interrupt 21hex. Applications using their own keyboard driver are not 
sui table since they are observing the physical keyboard hardware directly. The PEN-
COMMANDER cannot be used with mouse oriented applications since it behaves logically like 
a keyboard and not like a digitizing device. Therefore the PEN-COMMANDER shuts down 
and passes control to the mouse-driver if an application request mouse specific functions.

4.1.4 Scientific application

A scientific application is the implementation on the AM3 Processor. The recognizer is used to 
evaluate guestures of a car-driver, drawn on a touch-panel with a fingertip to control certain 

figure 7



functions of a car and a car-co-pilot. An important scientific result was that the CAM module 
of AQUIRE can be accelerated using the associative type of parallelism. The linear run-time 
behaviour on a sequential processor of the module became approximately logarithmic on the 
associative processor. The logarithmic runtime-behaviour is due to the logarithmic access-time 
of the emulated memories of the AM3 processor.

5. Future work

We expect that the base-method of PATTMA is suitable to support a speech-recognizer. The 
opportunity of associative paral lel ism supports this investigation since onl ine-speech-
recognition requires fast retrieval mechanisms for large databases. A special associative me-
mory derived from the experiances with associatively supported pattern recognition is currently 
under developement to compute the MHD classificator in constant time.

References

[DAR90] M. Darianian, Ch. Schönfeld, K. Waldschmidt, Ein Assoziativspeicherfeld hoher 
Kapazizät im Bit-Slice-Prozessor AM3 , Tagungsband der 11. GI/ITG-Fachtagung: Architektur 
von Rechensystemen, VDE 1990
[KOH87] T. Kohonen, Content Addressable Memories, Springer, 1987
[RHY86] J.R.Rhyne, Dialogue Management for gestural interfaces. Computer Graphics, 21 
(2), Workshop on User Interface Software, April 1987
[SCH89] M. Schulz et al. An Associative Microprogrammable Bit-Slice-Processor for Sensor 
Control, Proceedings of the 3rd CompEuro, Hamburg 1989
[SCH92] M.Schulz, An Object-Oriented interface in C++ to an associative processor, Procee-
dings of the 6th CompEuro, The Hague 1992
[WAL92] K. Waldschmidt, M. Schulz, Der assoziative Universalprozessor AM3: Architektur, 
Befehlssatz und objektorientiertes Programmierinterface, Tagungsband der 12. GI/ITG-
Fachtagung: Architektur von Rechensystemen, Kiel 1992

Special thanks to Fred Schuchard who collected some MBs of handprinted data for testing and 
verification, to Reiner Heinrich who provided us with the INFOS 386SX Notepad Computer 
and to Ronald Moore.

MS-DOS is a registered trademark of Microsoft Corporation
386SX is a registered trademark of Intel Corporation



AN OBJECT-ORIENTED PEN-BASED RECOGNIZER
FOR HANDPRINTED CHARACTERS

KEYWORDS

Handprinted character recognition, Pen computing, Associative memories, Fault tolerant computing, 
Pattern classification

ABSTRACT

This paper introduces the object oriented character recognition engine AQUIRE which has originally 
been designed as general pattern-classifier under the academic aspects of object-orientation and pa-
rallell ism together with low space and time complexity. When industry raised interest in using 
AQUIRE to provide pen-based computers and applications with a powerful character-recognition en-
gine, AQUIRE has been revised due to commercial requirements. Together with a brief discussion of 
some specific problems of pen-computing the paper contains the theoretical background for the reco-
gnition mechanism and a description of the methods used to perform a high quality and high speed 
recognition-process with a minimum of executable code (~18KB on IBM-AT kompatible machines 
under MS/DOS) an a small database (∼50KB for a complete character-set containing all upper-case, 
lower-case characters together with punctuation symbols and numbers). The paper contains a brief 
overview on the implementations of the proposed method on an INFOS 386 SX pen-computer and on 
the associative processor AM3 (Associative Microprogrammable Multipurpose Monoprocessor) de-
veloped at the department for technical computer sciences of J.W.Goethe-University as contribution to 
the PROMETHEUS project. Within PROMETHEUS AQUIRE has successfully been used as reco-
gnizer for finger-printed guestures on a touch-panel to provide a comfortable user (driver) - interface 
to a car-co-pilot. 

IN CASE OF ACCEPTANCE...

...this paper will be presented at the Euro - ARCH ’93 by the author.
... a camera-ready version of the paper will be provided by July 2. 1993.

B. Klauer  K. Waldschmidt
J.W.Goethe - Universität Frankfurt
Professur für Technische Informatik

Robert Mayer Straße 11 - 15
D - 6000 Frankfurt am Main

☎ ++ 49 69 798 2121
Fax ++49 69 798 2351

email klauer@ti.informatik.uni-frankfurt.de

R. Heinrich
INFOS GmbH

Ludwigstr. 78
D - 6050 Offenbach

☎ ++ 49 69 228131 0
Fax ++49 69 228131 31




